• Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Vlerick Business School Featured Masters Courses
Imperial College London Featured Masters Courses
Cass Business School Featured Masters Courses
Bath Spa University Featured Masters Courses
"forensic" AND "genetics"…×
0 miles

Masters Degrees (Forensic Genetics)

We have 19 Masters Degrees (Forensic Genetics)

  • "forensic" AND "genetics" ×
  • clear all
Showing 1 to 15 of 19
Order by 
Why choose this course?. Read more

Why choose this course?

The MSc Forensic Genetics and Human Identification is a comprehensive course on Human Identification and Mass Fatality Incident Analysis incorporating the full methodological repertoire of Forensic Genetics and DNA analysis, Physical Anthropology, Crime Scene Investigation and Human Identification based on biometric assessment of a variety of physical characteristics.

Intensive Course Program

We deliver our masters programmes in two semesters of taught subject materials, followed by a full-time intensive research project over the summer.

Throughout the taught section of the program, current and advanced topics in Human Identification are taught by forensic scientists and practitioners in comprehensive lecture series. Lecture topics are discussed in seminars and reinforced in practical teaching sessions.

During our methods units, students learn advanced research techniques and topic related professional skills. 

Subsequently, students carry out their independent research project (in one of the featured subjects) in collaboration with a member of the Forensic Science department, based upon a comprehensive literature review and project design.

The ten week full-time research project is accompanied by training in scientific writing, project design and oral presentation skills.

Student Services and Guidance

A two week orientation prior to the programme provides assistance and advice for managing the day to day life and familiarisation with the university facilities. The School of Applied Sciences also provides an optional one week transition program for international students. 

Our student support offices, and International Centre provide comprehensive support throughout the entire course of study.

Postgraduate Bursaries:

If you commenced undergraduate study at any University in 2012 you may be eligible for a £10,000 bursary

What happens on the course?

Module Content

Forensic Genetics, Forensic Anthropology, Human Identification from Physical Characteristics, Professional Skills in Forensic Science, Laboratory techniques, Molecular Genetics and Genomics, Research Methods and Research Project

Why Wolverhampton?

The Masters in Forensic Genetics and Human Identification is a comprehensive course on Human Identification and Mass Fatality Incident Analysis incorporating the full methodological repertoire of Forensic Genetics and DNA Analysis, Physical Anthropology and Human Identification based on biometric assessment of physical characteristics incorporated with advanced research techniques and associated professional skills.

With reference to its structure and combination of key topics, this course is quite unique in the national as well as international market, while being designed to generate a postgraduate level of competence in an important as well as exciting area of Forensic Science.



Read less
The master's degree offers students the chance to specialise in the ambit of forensics. It has the following objectives. Read more
The master's degree offers students the chance to specialise in the ambit of forensics. It has the following objectives:
-To provide students with advanced multidisciplinary scientific training in the use of forensics in the fields of chemistry, physics, genetics and statistics so that they receive specialised training in a wide range of scientific disciplines involved in the scientific analysis of evidence from crime scenes or of events or circumstances that are subject to legal proceedings. On completing this training, students will have the knowledge and skills to become members of multidisciplinary teams in their future professional careers.
-To enable students to develop the skills need to interpret evidence from crime scenes using their knowledge of the chemical, physical and biological foundations of the principal techniques in forensic analysis.
-To produce professionals with the competencies needed to carry out evaluations, reports or appraisals for different public and private organisations or to apply their knowledge in laboratories that study problems related to forensic practice.

Student Profile

The master's degree is aimed at students with official university qualifications in experimental sciences, life sciences and related technologies or bachelor's degrees Biochemistry, Biology, Chemistry, Biotechnology, Physics, Geology, Medicine, Veterinary, Pharmacy, Environmental Sciences, Food Science and Technology or Engineering.

The master's degree is also aimed at forensic professionals who wish to study a certain aspect of the discipline in greater depth.

Career Opportunities

Graduates in University Master's Degree in Forensic Genetics, Physics and Chemistry are capable of working in:
-State and regional government civil service
-Scientific police units
-Customs laboratories
-Laboratories (official, private, accredited)
-Consultancy firms
-Self-employment (independent professional practice)

Read less
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires contributions from research scientists, clinical laboratory scientists and clinicians to investigate the causes of, and therefore permit optimal management for, diseases for which alterations in the genome, either at the DNA sequence level or epigenetic level, play a significant role. Read more
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires contributions from research scientists, clinical laboratory scientists and clinicians to investigate the causes of, and therefore permit optimal management for, diseases for which alterations in the genome, either at the DNA sequence level or epigenetic level, play a significant role. Collaboration between staff from the University of Glasgow and the NHS West of Scotland Genetics Service enables the MSc in Medical Genetics and Genomics to provide a state-of-the-art view of the application of modern genetic and genomic technologies in medical genetics research and diagnostics, and in delivery of a high quality genetics service to patients, as well as in design of targeted therapies.

Why this programme

◾This is a fully up-to-date Medical Genetics degree delivered by dedicated, multi-award-winning teaching and clinical staff of the University, with considerable input from hospital-based Regional Genetics Service clinicians and clinical scientists.
◾The full spectrum of genetic services is represented, from patient and family counselling to diagnostic testing of individuals and screening of entire populations for genetic conditions: eg the NHS prenatal and newborn screening programmes.
◾The MSc Medical Genetics Course is based on the south side of the River Clyde in the brand new (2015) purpose built Teaching & Learning Centre, at the Queen Elizabeth University Hospitals (we are located 4 miles from the main University Campus). The Centre also houses state of the art educational resources, including a purpose built teaching laboratory, computing facilities and a well equipped library. The West of Scotland Genetic Services are also based here at the Queen Elizabeth Campus allowing students to learn directly from NHS staff about the latest developments to this service.
◾The Medical Genetics MSc Teaching Staff have won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering). These awards recognise and reward excellence and good practice in postgraduate education.
◾The close collaboration between university and hospital staff ensures that the Medical Genetics MSc provides a completely up-to-date representation of the practice of medical genetics and you will have the opportunity to observe during clinics and visit the diagnostic laboratories at the new Southern General Hospital laboratory medicine building.
◾The Medical Genetics degree explores the effects of mutations and variants as well as the current techniques used in NHS genetics laboratory diagnostics and recent developments in diagnostics (including microarray analysis and the use of massively parallel [“next-generation”] sequencing).
◾New developments in medical genetics are incorporated into the lectures and interactive teaching sessions very soon after they are presented at international meetings or published, and you will gain hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenesis of DNA sequence variants.
◾You will develop your skills in problem solving, experimental design, evaluation and interpretation of experimental data, literature searches, scientific writing, oral presentations, poster presentations and team working.
◾This MSc programme will lay the academic foundations on which some students may build in pursuing research at PhD level in genetics or related areas of biomedical science or by moving into related careers in diagnostic services.
◾The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.
◾For doctors: The Joint Royal Colleges of Physicians’ Training Board (JRCPTB) in the UK recognises the MSc in Medical Genetics and Genomics (which was established in 1984) as counting for six months of the higher specialist training in Clinical Genetics.
◾The Medical Council of Hong Kong recognises the MSc in Medical Genetics and Genomics from University of Glasgow in it's list of Quotable Qualifications.

Programme structure

Genetic Disease: from the Laboratory to the Clinic

This course is designed in collaboration with the West of Scotland Regional Genetics Service to give students a working knowledge of the principles and practice of Medical Genetics and Genomics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease. The link from genotype to phenotype, will be explored, with consideration of how this knowledge might contribute to new therapeutic approaches.

Case Investigations in Medical Genetics and Genomics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Clinical Genomics

Students will take this course OR Omic Technologies for Biomedical Sciences OR Frontiers in Cancer Science.

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussion the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Omic technologies for the Biomedical Sciences: from Genomics to Metabolomics

Students will take this course OR Clinical Genomics OR Frontiers in Cancer Science.

Visit the website for further information

Career prospects

Research: About half of our graduates enter a research career and most of these graduates undertake and complete PhDs; the MSc in Medical Genetics and Genomics facilitates acquisition of skills relevant to a career in research in many different bio-molecular disciplines.

Diagnostics: Some of our graduates enter careers with clinical genetic diagnostic services, particularly in molecular genetics and cytogenetics.

Clinical genetics: Those of our graduates with a prior medical / nursing training often utilise their new skills in careers as clinical geneticists or genetic counsellors.

Other: Although the focus of teaching is on using the available technologies for the purpose of genetic diagnostics, many of these technologies are used in diverse areas of biomedical science research and in forensic DNA analysis. Some of our numerous graduates, who are now employed in many countries around the world, have entered careers in industry, scientific publishing, education and medicine.

Read less
Our MSc Advanced Forensic Analysis course is designed to give you an advanced understanding of the main areas of forensic science and is unlike any other postgraduate course in forensic science, in that it covers in more depth all of the areas touched on in UWE Bristol's undergraduate courses. Read more
Our MSc Advanced Forensic Analysis course is designed to give you an advanced understanding of the main areas of forensic science and is unlike any other postgraduate course in forensic science, in that it covers in more depth all of the areas touched on in UWE Bristol's undergraduate courses. There are modules in all three key areas of forensic science: biology, chemistry and crime scene science and we also offer a module covering more advanced aspects of research and statistics. You can base your in-depth research project aspect of the programme at UWE Bristol's Forensic Analysis department, or on placement with one of our partner forensic providers. These include West Technology or Mass Spec Analytical, and local fire services that rely on the analytical skills you'll develop.

Key benefits

A flexible and highly vocational postgraduate programme, accredited by the Chartered Society of Forensic Sciences, for those looking to enhance skills and knowledge to support careers in forensic science.

You'll have access to the specially modified Crime Scene House, which can be adapted to mimic the conditions typically found at a variety of crime scenes.

The two-bedroom house, which also includes a bathroom, kitchen and lounge, gives you authentic experience of what you might encounter as a forensics professional following a range of incidents and scenarios for example, a burglary, murder or abduction. There is CCTV and two-way communication in all the rooms, along with a control suite to allow live feedback from observing instructors. We can record sessions for analysis and evaluation an excellent learning tool.

Course detail

The department has an excellent bio- sensors research team, which supports this study programme and offers wider perspectives on the role of a forensic scientist.

Through your studies, you will follow evidence from the crime scene, through laboratory examination and analysis, to writing a report for court and giving evidence in a courtroom situation with examination-in-chief and cross examination.

The course is available as a full-time or part-time route, allowing flexibility and access for students already in related employment. It also offers excellent preparation for doctorate-levels studies.

Modules

• Advanced Crime Scene Science
• Forensic Biology and Genetics
• Forensic Analysis and Toxicology
• Research Methods and Practical Skills
• Research Project

Format

The research project is undertaken for the MSc award. Part-time students do this over two terms of the second year in the laboratory where they work. Full-time students carry out the project supervised by specialist subject tutors at UWE Bristol, or on placement with one of our partner forensic providers.

Students who complete all taught modules successfully, but do not undertake the research project, achieve a Postgraduate Diploma.

Students who complete the Forensic Biology and Genetics module successfully, plus any one of the other modules on the course, achieve a Postgraduate Certificate.

Assessment

We assess each taught module through written examinations and coursework. Coursework may be in the form of a case study, practical report, poster or oral presentation. One assessment involves collecting evidence from a mock crime scene, examining it in the laboratory, and providing a written report as you would for a court, plus examination-in-chief and cross examination in a mock courtroom.

Careers / Further study

Our postgraduate course in Advanced Forensic Analysis is highly regarded by forensic science employers it feeds into analytical careers and into specialisms such as DNA analysis. It is also ideal preparation for PhD routes, and UWE Bristol has excellent links with institutions providing doctorate-level programmes in forensic analysis. They use our departmental facilities for aspects of their research.
Graduates have gone on to work with our local partner providers, and in roles that include DNA analyst, forensic chemist and Scene of Crime Officer (SOCO).

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –
-
The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
This MSc provides students with a foundation in the analysis of human remains, both in archaeological and modern forensic settings. Read more
This MSc provides students with a foundation in the analysis of human remains, both in archaeological and modern forensic settings. With a solid grounding in skeletal and dental anatomy, students learn about morphological variation, development, methods for biological profiling, human disease and forensic approaches to trauma and taphonomy.

Degree information

Students will learn procedures for interpretation and analysis of human skeletal remains - considering both archaeological and modern forensic contexts. There is a unique opportunity to analyse recently excavated human remains, utilising methods and techniques learned during the programme. While the focus of this programme is primarily on modern humans, late Pleistocene hominids are also considered.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), one optional module (15 credits) and a research dissertation (90 credits).

Core modules
-Dental Anthropology
-Forensic Anthropology
-Methodology and Issues in Bioarchaeology and Palaeoepidemiology
-Morphology and Palaeopathology of the Human Skeleton
-Variation and Evolution of the Human Skull

Optional modules
-Anthropological and Archaeological Genetics
-Archaeology of Early Modern Humans
-Forensic Archaeology
-Forensic Geoscience (by arrangement with the Jill Dando Centre for Forensic Sciences)
-Funerary Archaeology
-Human Evolution (by arrangement with the Department of Anthropology)
-Palaeoanthropology (by arrangement with the Department of Anthropology)
-Zooarchaeology in Practice
-Other Master's options available at the Institute of Archaeology.

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 15,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars and practical classes. This MSc has strong links with the Forensic Archaeological Science MSc which gives individual programmes an interesting mix of participants and provides many opportunities for discussion. Assessment is through essays, class tests, reports and the dissertation.

Careers

Some graduates of the programme go on to PhD studies, while others go on to work in a range of archaeological and non-archaeological organisations as osteoarchaeological specialists, the police, curators and political researchers.

Why study this degree at UCL?

The UCL Institute of Archaeology is the largest and most diverse archaeology department in the UK, offering students a range of opportunities.

This particular MSc is unique, offering a combination of bioarchaeological and forensic principles for the study of human remains unlike anything else available in the UK. Students further benefit from access to a large collection of skeletal material for study, including dental and palaeopathology reference collections. Access to sophisticated equipment and techniques (laser scanner, SEM, thin sectioning, CT) is also available.

Some lectures will take place at the Royal College of Surgeons and students have access to their teaching collections and museums, including the Wellcome Museum of Anatomy and Pathology.

Read less
This Masters course will open the door to a fascinating and fast-moving sector of analytical science that will build on your previous undergraduate studies, in chemistry, biology or other appropriate science courses. Read more
This Masters course will open the door to a fascinating and fast-moving sector of analytical science that will build on your previous undergraduate studies, in chemistry, biology or other appropriate science courses. You will gain knowledge and scientific skills that are directly applicable to the field of forensic science, with prospects of employment in forensic science laboratories as well as in other analytical science laboratories.

The course involves a unique combination of forensic chemistry and forensic biology, covering subjects such as trace evidence, toxicology and DNA analysis. Once you have covered the underlying principles of both areas, you can then specialise in your chosen field for your MSc research project.

The course is accredited by the Chartered Society of Forensic Sciences, which enhances its credibility and currency among potential employers.

This course can also be taken part time - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/forensic-science-dtpfrs6/

Learn From The Best

Our teaching team are active researchers who routinely incorporate their expertise and enthusiasm into their teaching. Many of the staff have worked in forensic science laboratories and have been involved in high profile cases such as the Stephen Lawrence, Joanna Yeates, Suffolk strangler and Jigsaw murder cases. Their areas of research include toxicology, the analysis of fibres and their transfer and persistence and the analysis of ancient DNA.

Academic staff include former forensic biologists, forensic toxicologists, and forensic fibre experts. They continue to maintain close links with the industry including the police and practising forensic scientists. Many of them are well-established within professional forensic science societies and organisations, which directly inform policy and practices within the field.

Teaching And Assessment

Our teaching will give you a solid grounding in all the technical areas that are key to forensic science, while simultaneously developing the higher level of independent thinking and advanced interpretation that is expected at Masters level. To support your learning journey, many of the staff have an ‘open door’ policy which makes it easy to ask questions; it’s also possible to book appointments with them so that you can work through queries about lab work, concepts and theories, and any other aspects of the subject.

We use different types of assessments: some will contribute to your final grade while others will be used to provide you with guidance on your progress and reinforce your learning. You can expect both your tutors and your peers to provide useful comments and feedback throughout the course.

Module Overview
AP0700 - Graduate Science Research Methods (Core, 20 Credits)
AP0703 - Subject Exploration (Core, 20 Credits)
AP0708 - Applied Sciences Research Project (Core, 60 Credits)
AP0723 - Practices & Procedures in Forensic Science (Core, 20 Credits)
AP0724 - Forensic Toxicology & Drugs of Abuse (Core, 20 Credits)
AP0725 - Criminalistics (Core, 20 Credits)
AP0726 - Forensic Genetics (Core, 20 Credits)

Learning Environment

You will have access to a dedicated crime scene house to enable you to examine simulated crime scenes. Students can also access Return to Scene (R2S) software which provides a 360 degree interactive scan of a crime scene allowing you to perform further analysis in detail after you have left the scene. Northumbria University has also invested heavily in an impressive suite of analytical equipment allowing you to gain first-hand experience of the techniques used in operational laboratories.

We use a range of technologies to enhance your learning, with tools including web-based self-guided exercises, online tests with feedback, and electronic discussion boards. These tools support and extend the material that is delivered during lectures.

You will have 24/7 term-time access to Northumbria’s library, which was ranked #2 in the Times Higher Education Student Experience Survey for 2015 and has been accredited by the UK Government for Customer Service Excellence since 2010.

Research-Rich Learning

We host the Northumbria University Centre for Forensic Science and our research directly impacts on what and how you learn. Northumbria is helping to push the frontiers of knowledge in areas such as:
-Forensic fibre comparisons using statistical and chemometric approaches
-DNA profiling in contexts such as injuries to children and poaching of wildlife
-Human genetic and phenotypic variation
-Analytical toxicology

As part of the course, you will undertake a Masters project that will require you to evaluate relevant literature as well as to develop your ideas within the context of existing research. The project will involve information retrieval, critical appraisal, presentation of aims and strategy, development of advanced analytical and problem-solving skills, the discussion and interpretation of results, and the composition of a written dissertation. Each project will be aligned to an active area of research that is specific to an academic member of staff.

Give Your Career An Edge

This course is accredited by the Chartered Society of Forensic Sciences. This reflects the relevance and rigour of the curriculum, and provides assurance of workplace-ready knowledge and application.

The focus on practical laboratory work, combined with the mix of group work, independent learning and professional practice, will help ensure that you develop skills that are transferable to a range of careers and disciplines.

Throughout your time at Northumbria we will prompt you to reflect on your self-development through the Higher Education Achievement Report process. We will also encourage you to take advantage of the services of our Careers and Employment Service such as CV advice and interview preparation.

Your Future

Forensic science has gained a high profile through TV dramas and, in the years ahead the sector is likely to be further transformed by technological advances in a number of fields. With an MSc Forensic Science you will be well-placed to take up a fascinating and rewarding role in forensic science laboratories.

What’s more, by developing the attributes of a Masters student, including the ability to solve complex problems, think critically, and work effectively with others and on your own, you will enhance your employability in all sectors of the analytical science industry. You will also be well equipped to pursue further studies at PhD level.

Read less
On this part-time, distance learning course you will learn how to evaluate and interpret different forms of forensic evidence and how to consider its relevance to police investigations. Read more

Course Description

On this part-time, distance learning course you will learn how to evaluate and interpret different forms of forensic evidence and how to consider its relevance to police investigations. You will study the scientific principles and practical application of the many and varied techniques used to forensically examine different evidence types.

You will learn how to select the most appropriate techniques for different evidence types, how to interpret the results and how to apply critical analysis to determine what that means in terms of evidential value.

The skills and knowledge you will gain on this course will enable you to confidently argue the reasoning behind the interpretation and evaluation of forensic evidence and to demonstrate in a court of law that you are credible as an expert witness.

This course is offered in association with the University of Florida and the University of Canberra.

If you have any questions about this course, join us for a live online chat with academic tutors and admissions staff.

Course Structure

If you complete all of the modules and a dissertation you will be awarded an MSc. However it is also possible to compete only the modules, without a dissertation, and receive a Postgraduate Diploma (PGDip), or to complete just the first year modules and receive a Postgraduate Certificate (PGCert) These are 'exit awards' which means that you cannot apply for them directly; you must apply for the MSc.

Core Modules:

Crime Scene Examination
Trace Evidence Analysis
Evidential Value and Interpretation
Research Methods

Option Modules (choose 4-6):

Physical Evidence modules

Fingerprint corrosion of metal
Arson investigation
Forensic engineering
Toxicology of chemical weapons (F)
Blood distribution and spatter (F)
Environmental forensics (C)

Biological Evidence modules

Biological evidence and serology (F)
Forensic toxicology (F)
Biological evidence and serology (F)

Human Remains modules

Introduction to forensic archaeology
Introduction to forensic anthropology
Forensic entomology (F)
Forensic genetics (F)

Management modules

Crime scene management
Intelligence gathering and data mining

*Modules marked F or C are taught by the University of Florida or the University of Canberra.

After completing your modules, you will complete a dissertation of approximately 15,000-20,000 words, which may be related to work-based issues you are facing.

(Please note: due to regular enhancement of the University’s courses, please refer to Leicester’s own website (http://www.le.ac.uk) or/and Terms and Conditions (http://www2.le.ac.uk/legal) for the most accurate and up-to-date course information. We recommend that you familiarise yourself with this information prior to submitting an application.)

Read less
Medical Life Sciences is an English-taught two-year Master’s programme in molecular disease research and bridges the gap between the sciences and medical studies. Read more
Medical Life Sciences is an English-taught two-year Master’s programme in molecular disease research and bridges the gap between the sciences and medical studies. You will get to know clinical research from scratch; you will learn how to investigate diseases/disease mechanisms both in ancient and contemporary populations, how to translate research results into prevention, diagnosis and therapies of diseases.
From the basics of medical science to lab experiments for the Master’s thesis, individual scientific training takes first priority. Experimental work in state-of-the-art research labs is essential in Medical Life Sciences; clinical internships, data analysis, lectures, seminars and electives complement the Medical Life Sciences curriculum.
Evolutionary biology will train you in thinking from cause to consequence. Molecular paleopathology and ancient DNA research tell you a lot about disease through human history. These insights help to fight disease today, which is why evolutionary medicine is becoming a cutting-edge research field. Whether you want to focus on ancient populations and paleopathology or on specific disease indications nowadays, here you get the tools and skills to do both.
To lay the foundation for working in medical research, Medical Life Sciences includes courses on clinical manifestations of diseases, molecular pathology and immunology. Hands-on courses in molecular biology, bioinformatics, clinical cell biology, medical statistics, and human genetics broaden your knowledge and make the interfaces between medicine and the sciences visible. You will learn how to acquire knowledge, verify and use it.. That biomedicine has many facets to discover is the great thing that keeps students fascinated and well-equipped for finding a job in academia or the industry.

Focus Areas

From the second semester, you additionally specialise in one of the following focus areas:

INFLAMMATION takes you deep into the molecular mechanisms of chronic inflammatory diseases, the causal network between inflammatory processes and disease, genetics and environment. New research results for prevention, diagnosis and therapy will be presented and discussed. An internship in specialised clinics helps to see how “bed to bench side”, i.e. translational medicine, works.

EVOLUTIONARY MEDICINE looks at how interrelations between humans and their environment have led to current disease susceptibility. Why do we suffer from chronic diseases such as diabetes, heart disease and obesity? Is our lifestyle making us sick? Why are certain genetic variants maintained in populations despite their disease risk? Evolutionary medicine focuses on bridging the gap between evolutionary biology and medicine by considering the evolutionary origins of common diseases to help find new biomedical approaches for preventing and treating them.

ONCOLOGY delves deep into molecular research on malignant diseases, the interplay of genetics and environment, cell biology of tumours, and many other aspects. You will achieve a better understanding of unresolved problems and opportunities of current research approaches.

LONGEVITY focuses on molecular mechanisms that seem to counteract the detrimental effect of ageing. The disease resilience and metabolic stability of extraordinarily fit people well over 90 years of age are of special interest. This research is complemented by experiments on model organisms. You will also look at the molecular pathways of ageing, and which role genes and the environment play. How the intricate web of counteracting effects triggering ageing and/or longevity works stands as the central focus of this area.

Scientists and clinicians will make you familiar with these topics in lectures and seminars. You will discuss different research approaches, perspectives and the latest developments in medical research. Lab practicals in state-of-the-art research labs, a lab project, and the experimental Master's thesis will provide ample opportunity to be involved in real-time research projects.

Electives

To widen your perspective, you choose one of three electives designed to complement the focus areas. The schedules are designed so that you can take part in more than one elective if places are available. Tracing Disease through Time looks at disease etiology by analysing biomolecules, diets and pathogens in archaeological specimens. You may opt for Epidemiology to immerse yourself in epidemiological approaches with special emphasis on cardiovascular diseases, one of the greatest health threats in modern societies. Another option is Molecular Imaging, which gives you insight into the world of high-tech imaging in medical research.

Additional electives such as Neurology, Tissue Engineering or Epithelial Barrier Functions and Soft Skills courses such as Project Management, Career Orientation and English Scientific Writing are integrated into the curriculum.

Read less
Programme description. This online learning programme provides an interdisciplinary approach to conservation management. Read more

Programme description

This online learning programme provides an interdisciplinary approach to conservation management.

It draws together expertise from within the University of Edinburgh's Global Health Academy and partner global associates, to deliver first class teaching and research in the field of Biodiversity, Wildlife and Ecosystem Health.

You will assess all aspects of ecosystems, aiming to conserve and maintain their sustainability in both the developing and developed world.

This programme is affiliated with the University's Global Academies.

Online learning

Our online learning technology is fully interactive, award-winning and enables you to communicate with our highly qualified teaching staff from the comfort of your own home or workplace.

Our online students not only have access to Edinburgh’s excellent resources, but also become part of a supportive online community, bringing together students and tutors from around the world.

Programme structure

The programme is delivered using innovative online learning. It involves a mixed teaching approach that includes independent study and reflection, as well as online discussion and group project work.

Year 1: certificate

You study the following areas:

  • Evolution and Biodiversity
  • Ecosystem Health and Sustainability
  • Ecosystems and Governance
  • Conservation Ethics

Year 2: diploma

You choose six elective courses from the following:

  • Climate Change, Policy and Practice
  • Communication and Public Engagement of Conservation
  • Connecting Environment and Society
  • Conservation Genetics
  • Ecosystem Resilience and Extreme Events
  • Environmental Law
  • Ex-situ Wildlife Management
  • An introduction to transboundary diseases
  • Introduction to GIS and spatial data analysis
  • Invasive Non-Native Species
  • Land Use and Food Security
  • Managing and Leading Conservation Projects
  • Reflections on Professional Development
  • The Marine Environment
  • The Modern Zoo
  • The Use of Artificial Reproduction Technologies in Threatened Species
  • Water and Sanitation
  • Wildlife Crime and Forensic Investigation
  • Wildlife, animal Health and environment
  • Zoonotic Disease

Elective courses are subject to minimum student numbers and timetabling restrictions.

Year 3: masters

You complete your own choice of dissertation of 10,000-15,000 words.

Postgraduate Professional Development (PPD)

Postgraduate Professional Development (PPD) is aimed at working professionals who want to advance their knowledge through a postgraduate-level course(s), without the time or financial commitment of a full Masters, Postgraduate Diploma or Postgraduate Certificate.

You may take a maximum of 50 credits worth of courses over two years through our PPD scheme. These lead to a University of Edinburgh postgraduate award of academic credit. Alternatively, after one year of taking courses you can choose to transfer your credits and continue on to studying towards a higher award on a Masters, Postgraduate Diploma or Postgraduate Certificate programme. Although PPD courses have various start dates throughout a year you may only start a Masters, Postgraduate Diploma or Postgraduate Certificate programme in the month of September. Any time spent studying PPD will be deducted from the amount of time you will have left to complete a Masters, Postgraduate Diploma or Postgraduate Certificate programme.

Please contact the programme team for more information about available courses and course start dates.

Career opportunities

This programme has been designed to help you find work in environmental, intergovernmental, national and international agencies, as well as lobby groups, NGOs and other research groups.



Read less
Research within this area centres on ethnobiological knowledge systems and other systems of environmental knowledge and is supported by members of the Centre for Biocultural Diversity (http://www.kent.ac.uk/sac/research/research-centres/cbcd/index.html). Read more
Research within this area centres on ethnobiological knowledge systems and other systems of environmental knowledge and is supported by members of the Centre for Biocultural Diversity (http://www.kent.ac.uk/sac/research/research-centres/cbcd/index.html).

We research local responses to deforestation, climate change, natural resource management, medical ethnobotany, the impacts of mobility and displacement and the interface between conservation and development. The Centre has an Ethnobiology Lab and Ethnobotanical Garden, and extensive collaborative links, including with the Royal Botanic Gardens (Kew), and Eden Project.

MSc by Research
This course is a one-year full time or two-year part-time programmes. You research and write a thesis under the supervision of one or two academic staff.

Visit the website https://www.kent.ac.uk/courses/postgraduate/204/ethnobiology

Course structure

The first year may include coursework, especially methods modules for students who need this additional training. In general, you work closely with one supervisor throughout your research, although you have a committee of three (including your primary supervisor) overseeing your progress.

Study support

- Postgraduate resources

The School has a lively postgraduate community drawn together not only by shared resources such as postgraduate rooms, computer facilities (with a dedicated IT officer) and laboratories, but also by student-led events, societies, staff/postgraduate seminars, weekly research student seminars and a number of special lectures.

The School houses well-equipped research laboratories for genetics, ecology, visual anthropology, virtual paleoanthropology, Animal Postcranial Evolution, biological anthropology, anthropological computing, botany, osteology and ethnobiology. The state-of-the-art visual anthropology laboratory is stocked with digital editing programmes and other facilities for digital video and photographic work, and has a photographic darkroom for analogue developing and printing. The biological anthropology laboratory is equipped for osteoarchaeological and forensic work. It curates the Powell-Cotton collection of human remains, together with Anglo-Saxon skeletons from Bishopstone, East Sussex. The ethnobiology laboratory provides equipment and specimens for teaching ethnobiological research skills, and serves as a transit station for receiving, examining and redirecting field material. It also houses the Powell-Cotton collection of plant-based material culture from Southeast Asia, and a small reference and teaching collection of herbarium and spirit specimens (1,000 items) arising from recent research projects.

Kent has outstanding anthropology IT facilities. Over the last decade, the School has been associated with many innovatory projects, particularly in the field of cognitive anthropology. It provides an electronic information service to other anthropology departments, for example by hosting both the Anthropological Index Online and Experience-Rich Anthropology project. We encourage all students to use the Centre’s facilities (no previous experience or training is necessary).

Anthropology at Kent has close links with the nearby Powell-Cotton Museum, which has one of the largest ethnographic collections in the British Isles and is particularly strong in sub-Saharan African and Southeast Asian material. It also houses an extensive comparative collection of primate and other mammalian material. Human skeletal material is housed at the Kent Osteological Research and Analysis Centre within the School.

Anthropology, together with the Durrell Institute of Conservation and Ecology (DICE) form the School of Anthropology and Conservation.

- Researcher Development Programme

Kent's Graduate School co-ordinates the Researcher Development Programme (http://www.kent.ac.uk/graduateschool/skills/programmes/tstindex.html) for research students, which includes workshops focused on research, specialist and transferable skills. The programme is mapped to the national Researcher Development Framework and covers a diverse range of topics, including subjectspecific research skills, research management, personal effectiveness, communication skills, networking and teamworking, and career management skills.

Research areas

Work in these areas is focused on the Centre for Biocultural Diversity. We conduct research on ethnobiological knowledge systems, ethnoecology, and other systems of environmental knowledge, as well as local responses to deforestation, climate change, natural resource management, medical ethnobotany, the impacts of mobility and displacement and the interface between conservation and development. The Centre has an Ethnobiology Lab and Ethnobotanical Garden, and extensive collaborative links, including with the Royal Botanic Gardens (Kew), and Eden Project.

Careers

As a School recognised for its excellence in research we are one of the partners in the South East Doctoral Training Centre, which is recognised by the Economic and Social Research Council (ESRC). This relationship ensures that successful completion of our courses is sufficient preparation for research in the various fields of social anthropology. Many of our students go on to do PhD research.

The School has a very good record for postgraduate employment and academic continuation. Studying anthropology, you develop an understanding of the complexity of all actions, beliefs and discourse by acquiring strong methodological and analytical skills. Anthropologists are increasingly being hired by companies and organisations that recognise the value of employing people who understand the complexities of societies and organisations.

Many of our alumni teach in academic positions in universities across the world, whilst others work for a wide range of organisations.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Study for this Masters in Bioarchaeology at Liverpool John Moores University and gain hands-on experience at the archaeology excavation at the Poulton Project, carry out novel research and discover new laboratory techniques. Read more
Study for this Masters in Bioarchaeology at Liverpool John Moores University and gain hands-on experience at the archaeology excavation at the Poulton Project, carry out novel research and discover new laboratory techniques.

-Complete this masters degree in one year (full time)
-Masters course developed and delivered by leading researchers in the field
-Excavation and bioarchaeological analysis of real human remains
-Gain hands-on experience in field and laboratory techniques using specialised bioarchaeological labs and facilities
-Substantial bone selection for research and for experience as teaching toolstools


Bioarchaeology is an exciting and fast-advancing science that combines archaeology with branches of the natural sciences. Study focuses on the key topics pertaining to human remains from archaeological sites.

Bioarchaeology includes areas of scientific investigation including palaeodemography, past behaviour, biological affinity, subsistence strategy, and health and well-being in the past.

The MSc in Bioarchaeology will help you to develop a broad understanding of these issues, through the excavation and analysis of human and animal remains. Analytical techniques will cover dental and osteological analyses, archaeological field methods, and ancient genetics.

The programme aims to develop your advanced practical skills in skeletal analysis, making use of the department’s well-equipped specialist laboratories and reference collections.

A particular strength of our provision and Faculty expertise is that we are able to address the bioarchaeology of many world areas and time periods. When you complete the course, you will have all the skills necessary to continue into an academic career or gain employment in research, museums, education or commercial organisations.

During the year you will be given a personal tutor that will support you throughout your time at LJMU and be following both your academic and professional development.

Please see guidance below on core and option modules for further information on what you will study.
Semester 1 (three core modules)

Advanced Osteology and Skeletal Pathology
Provides students with an advanced knowledge of the human skeleton and the ability to identify animal bones, methods of curation of skeletal collections and understanding of pathological modifications.
Research Design and Quantitative Methods
Provides extensive training in generic research knowledge and statistical techniques for the Natural Sciences. Students design a research project and are assessed via the preparation of a full grant application for the project.
Dental Anthropology
Provides students with the theoretical knowledge and practical experience required by bioarchaeologists to identify and examine human teeth.
Semester 2 (two core modules and one option)

Bioarchaeology: Bones, Teeth and Genes
Focuses on the different methods used to study human remains in archaeological and anthropological contexts. Delivery is through a combination of lectures, practicals, workshops and seminar sessions by experts in different fields, followed by reading and in-class discussion of recent literature.
Excavation
Covers field survey, site management, excavation and related data analysis. In addition to practicals and lectures, the course includes a non-residential field experience.
Dissertation
Comprises an independent, in-depth scientific research study on a chosen relevant topic. The following options are typically offered:
Ballistics and Arson Investigation
Teaches the fundamental principles of fire science, fire dynamics and material science, enabling students to demonstrate their application of fire investigation.
Taphonomy Trauma Analysis
Provides students with an extensive understanding of the biomechanics of human bones and the reaction of bones to the environment for a taphonomic history of the remains. Students gain a broad appreciation of different types of weapons to reconstruct a traumatic event using skeletal evidence.
Human Identification and Forensic DNA
Analyses the issues related to the identification of an unknown subject from both skeletal and genetic features. The module also introduces students to the use of a DNA typing approach for the identification of human remains.

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Please email if you require further guidance or clarification.

Read less
The Department of Education offers a new, one-year (12 month) full time MSc programme in Psychology in Education. This MSc is a conversion course which will provide successful graduates with the Graduate Basis for Chartership (GBC) of the British Psychological Society (BPS). Read more
The Department of Education offers a new, one-year (12 month) full time MSc programme in Psychology in Education.

This MSc is a conversion course which will provide successful graduates with the Graduate Basis for Chartership (GBC) of the British Psychological Society (BPS). It is ideal for candidates who did not study Psychology at undergraduate level but would like to pursue a career in Psychology. It may also be of interest to students who have studied Psychology on a non-accredited programme but need GBC in order to progress to further training and employment in Psychology.

Programme aims

The aim of the MSc in Psychology in Education is to provide students with the knowledge and skills necessary for building a professional career as a practising psychologist or a psychological researcher. The programme will cover core areas of psychology and key debates in the psychology of education, while also developing students’ research skills and their ability to apply psychological methods and approaches to educational policy and practice.

Successful completion of the Master’s programme will provide students with the Graduate Basis for Chartered Membership (GBC) of the British Psychological Society (BPS). GBC is a requirement for further professional training in Psychology.

Programme content

Term 1
-Development and Cognition (20 credits)
-Individuality and Its Roots (20 credits)
-Research Methods for Studying Psychology in Education (This module runs for two terms and totals 40 credits)

Term 2
-Psychology in Society (20 credits)
-Option Module (20 credits)
-Research Methods for Studying Psychology in Education (This module runs for two terms and totals 40 credits)

Term 3
-Empirical Dissertation (60 credits)

Option modules - Option modules will be chosen from a list which is subject to change. Options likely to be available to students in 2017/18 include:
-Disorders of Language and Cognition
-Genetics and Education
-Mind, Brain and Education

Careers

The programme aims to provide students with the Graduate Basis for Chartered Membership (GBC) of the British Psychological Society (BPS). GBC is a requirement for training as a professional psychologist and the MSc will therefore lead directly to professional training programmes in clinical, educational, counselling, occupational, health or forensic psychology. Our students will also be equipped to consider careers in teaching, youth work, mental health, data science and the not-for-profit sector. By providing you with a programme that covers a wide range of topics in the psychology of education we hope to develop your understanding of the careers that interest you. We will also invite psychology and education practitioners in to speak to our students.

Read less
The Department of Biology offers a Master of Science Degree that can be tailored to meet the needs of the student. Choices include a Thesis Option and a Non-thesis Option. Read more
The Department of Biology offers a Master of Science Degree that can be tailored to meet the needs of the student. Choices include a Thesis Option and a Non-thesis Option. The programs are designed to accommodate both full-time and part-time students.

Please visit the website to see the curriculum for these programs:

http://bio.wcupa.edu/biology/index.php/graduate-degrees.html

Our Mission

The primary mission of the Department of Biology is to provide a high quality educational experience to graduate students. This is achieved by maintaining small class sizes staffed by full-time faculty. Virtually all courses have a laboratory component, facilitating participatory learning. An integrated core curriculum is intended to strengthen the communication, quantitative and analytical skills of all biology majors. Several focused concentrations within the undergraduate curriculum offer options of either specialising for immediate employment upon graduation, or preparing for postgraduate education. 

Masters students receive training as biological scientists primarily for career advancement. Although most students come from the Delaware Valley region, their educational experience is intended to equip them well for careers anywhere. Biology majors are required to perform independent projects in many courses, and are encouraged to work closely with faculty in collaborative research. The combination of unusually broad course selection and individual attention allows students from very diverse backgrounds to excel within the program. A part of the department's mission is to participate in the process of scientific inquiry.

The department expects its faculty to engage in scholarly activity, and encourages research publication and the acquisition of extramural funding. Scholarship enhances the stature of the Department and University, adds exceptionally current information to lecture material, and has helped to secure technologically up-to-date laboratory equipment. The department's research environment also provides an ongoing framework into which graduate and undergraduate student research projects can beincorporated. A strong record of collaborative faculty-student research is one reason for the successful placement of most Biology Department graduates. 

The Biology Department serves the University by supporting coursework for other disciplines, principally in Nursing, Health, Kinesiology and the Forensic and Toxicological Chemistry program, and is actively involved in maintaining the high quality of the Preprofessional Program. The department is working closely with the School of Education in training Secondary school biology teachers, and is strengthening ties with other departments in environmental science. Department faculty serve the community as consultants to government, non-profit organisations, other schools and industry.

Research Opportunities

The faculty of the Department of Biology are nationally recognised for their research programs and publications in prestigious journals. Faculty research is regularly supported by grants from the National Science Foundation, the National Institutes of Health, or similar state and national organisations. Research and teaching facilities are equipped with such state-of-the-art equipment as liquid scintillation and gamma counters, spectrophotometers, and a digitised HPLC system. We also have access to a FEI environmental scanning electron microscope, a FEI transmission electron microscope, and Reichart ultramicrotome.

The Biology Department also manages a USDA certified (NIH approved) animal care facility, the 20,000 specimen William Darlington Herbarium, and 100 acre Robert B. Gordon Natural Area for Environmental Studies.

Research opportunities for graduate students are particularly strong in three areas:

(1) Ecology, Evolution, and Organismal Biology;
(2) Physiology, Development, and Cell Biology; and
(3) Molecular Genetics, Immunology, and Microbiology.

Faculty in each of these programs have ongoing research projects and welcome serious student investigators into their laboratories.

Read less
Explore drug development, manufacture and production and enhance your prospects for a career as a drug discovery or development scientist in the pharmaceutical, healthcare, nutraceutical or bioscience industries. Read more
Explore drug development, manufacture and production and enhance your prospects for a career as a drug discovery or development scientist in the pharmaceutical, healthcare, nutraceutical or bioscience industries.

This course provides expert critical and technical knowledge related to the development, analysis and production of medicines, the drug industry and regulatory affairs.

You'll study recent trends in chemical, biological and biotechnological therapeutics and evaluate the latest technologies used in the pharmaceutical industry.

You'll also gain an understanding of the processes and methods used in clinical trials and the regulation of medicines and acquire the skills and knowledge to pursue your career in pharmaceutical science.

See the website http://www.napier.ac.uk/en/Courses/MSc-Pharmaceutical-Science-Postgraduate-FullTime

What you'll learn

This course provides the opportunity to acquire all the attributes necessary for a successful career in pharmaceutical science, undertaking lead research and development, or analytical management roles in the drug and healthcare industries.

You’ll acquire broad knowledge of contemporary, integrated drug discovery strategies and acquire the necessary skills to communicate effectively across the key, diverse component disciplines with other professional scientists and non-specialist audiences.

You’ll develop broad knowledge of current pharmaceutical analysis and quality control strategies and will learn about GMP and GLP compliance. You’ll also gain an in-depth critical understanding of current research in biotechnology and pharmaceutical science.

There is an emphasis on developing your practical laboratory skills with various opportunities for hands-on experience in a range of current techniques and practices including specialist equipment such as HPLC, UV/Vis, and FTIR. In your final trimester you’ll undertake an independent project within a vibrant research team, allowing you to apply and further develop your technical, research and professional skills. There may be the opportunity to conduct your research project externally in a relevant organisation or pharmaceutical industry in the UK or overseas.

You‘ll also develop key skills including communication, problem solving, team work, project management, and leadership. You’ll learn through interactive lectures, workshops, tutorials, site visits and laboratory sessions, and by engaging with guided independent study. A variety of assessment tools are used to enhance and evaluate your learning.

This is a full-time course taken over one year and split up into three trimesters. You can choose to start in either January or September. There may also be some opportunities to study abroad.

This programme is also available as a Masters by Research.

Modules

• Current practice in drug development
• Molecular pharmacology and toxicology
• Current topics in pharmaceutical science
• Research skills
• Quality Control and Pharmaceutical Analysis
• Drug design and chemotherapy
• Research project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

A large proportion of our graduates enter laboratory based and research management based product development work. They are employed in industries ranging from the big pharmaceutical companies to developing biotech companies; contract drug testing companies and service providers to the pharmaceutical and healthcare industries; hospital laboratories, NHS and local government.

If you currently work in a relevant sector, this course will enhance your prospects for career progression. This qualification also provides a sound platform for study to PhD level in pharmaceutical and biomolecular sciences and an academic career.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less

Show 10 15 30 per page



Cookie Policy    X