• Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of London International Programmes Featured Masters Courses
Southampton Solent University Featured Masters Courses
Cranfield University Featured Masters Courses
King’s College London Featured Masters Courses
ETH Zürich Featured Masters Courses
"food" AND "engineer"×
0 miles

Masters Degrees (Food Engineer)

We have 29 Masters Degrees (Food Engineer)

  • "food" AND "engineer" ×
  • clear all
Showing 1 to 15 of 29
Order by 
This course gives you the skills you need to start a career as a food processing engineer. This is a role much in demand in the food and drink industry, the largest manufacturing sector in the UK. Read more

This course gives you the skills you need to start a career as a food processing engineer. This is a role much in demand in the food and drink industry, the largest manufacturing sector in the UK.

You learn practical techniques and work with food manufacturers on real projects that prepare you for your career. You also visit factories including • AB World Foods • Burtons Biscuits • KP Snacks • Premier Foods • Thornton's.

The course is designed to be flexible to help you study around your other commitments.

What you study

During the course you gain an overview of engineering principles and key sector issues, giving you a range of knowledge across the food sector. Your learning is based around examples and assessments relevant to the food processing industry.

You undertake a group project to develop a new food product and its processing. This involves working with students from different courses, giving you experience in a multi-disciplinary food processing environment. You explore ethics, sustainability, health and safety and intellectual property rights, as well as business and marketing strategies related to the food industry.

You also study material flow characteristics, which is a core discipline in food processing. Using food materials to illustrate key characteristics, you learn techniques to analyse the rheology and flow of food products through food processing equipment, including understanding the thixotropic behaviour of tomato ketchup.

You then choose two further optional modules, allowing you to focus on your key areas of interest.

The course also gives you the opportunity to take modules on • food • food safety • the management of food production • food processing • food manufacturing techniques • engineering processes.

Course structure

Level one modules

  • engineering principles
  • mechanical engineering
  • sustainability, energy and environmental management
  • lean operations and six sigma

Level two core modules

  • international product development
  • rheology and multi-phase flow
  • food safety engineering and management
  • food manufacturing engineering

Level two optional modules

Choose two from

  • manufacturing systems
  • industrial automation
  • supply chain modelling and simulation
  • logistics and enterprise information systems

Assessment

  • coursework
  • exams
  • project

Employability

The course leads to career opportunities in the food and drink sector, where there is a high demand for scientific and technically qualified individuals. Example roles and potential salaries include • engineering manager (£55,000) • maintenance manager (£40,000) • production area controller (£28,000) • project engineer (£40,000) • site engineering manager (£55,000).

The National Centre of Excellence for Food Engineering has extensive contacts with national and multi-national food and drink companies including • Nestle • PepsiCo • Mondelez • Greencore • Premier Foods • Kellogg’s • William Jackson Food Group. The Centre support students to progress to roles with companies in this significant industrial sector.



Read less
This master’s course in Food Process Engineering will give you the theoretical and practical knowledge needed in the food industry, which, combined with relevant industrial training and experience, can help you on the path towards becoming a chartered engineer. Read more

This master’s course in Food Process Engineering will give you the theoretical and practical knowledge needed in the food industry, which, combined with relevant industrial training and experience, can help you on the path towards becoming a chartered engineer.

The food and drink industry is the biggest manufacturing sector in the UK, larger than the automotive and aerospace sectors combined. The sector is worth more than £20 billion a year, and its aims are to produce high quality, safe and affordable food at the lowest environmental cost.

There is a shortage of people with the skills needed to handle 21st century changes in food production, including nutrition, world population growth, IOT (Internet of Things), infomatics and automation, food personalisation, health, wellness and sustainability.

Your training will give you the skills, knowledge and ability to become a professional food process engineer. It will equip you with a detailed understanding of food process engineering theory, methods and practice, and is delivered by a team of specialists including lecturers from the food industry, or with food industry experience.

This programme includes specialist modules which will allow you to appreciate the processing properties of food materials, and how they can be converted from ingredient to product. It is taught and assessed in combination with the associated engineering science, to ensure that you understand how each process can be applied.

Your learning will be delivered by lecturers from the food industry, or with food industry experience. It will also be informed by the faculty’s research strengths in processing properties of food materials, from farm to fork.

The University of Nottingham has a strong research reputation in the field of food science. Our school of Biosciences is ranked no. 1 research environment in the UK for Agriculture, Veterinary and Food Science (Research Excellence Framework 2014).

This course is part of the Department of Chemical and Environmental Engineering, which is ranked 6th in The Guardian University Guide 2018 and 8th in The Times Good University Guide 2018.



Read less
About the Master’s Degree. P²food is a 2 year, course-based, full-time international research Master's Degree focused on the physiological and psychological determinants of food choice, offered by the. Read more

About the Master’s Degree

P²food is a 2 year, course-based, full-time international research Master's Degree focused on the physiological and psychological determinants of food choice, offered by the University of Burgundy - Franche-Comté and AgroSup Dijon.

 

Course content

Food plays a much bigger role in consumers' lives than simply feeding them. Each day, humans make several food choices. Their diet has considerable impact on their nutritional status and health, but also on the environment.

A greater understanding of the reasons for consumers' choice of foods is needed in order to set up effective programs and develop new products, to improve dietary patterns in line with recommendations, and to increase food sustainability. Although seemingly simple, food choices are complex behaviors that depend on many factors and their interactions. In this Master’s Degree, a key focus is placed on the physiological and psychological factors of food choice.

 

As a student in this Master’s program, you will gain in-depth knowledge about food properties and fundamental insights about human food behavior. You will acquire sensory and consumer research methodology. You will come to understand the mechanisms of hunger, satiety and satiation, and the factors involved in palatability. You will study the influence of stress and mood on food behaviors, and explore the ways in which cultural context influences food choices. You will examine the importance of representation and consumer attitudes towards food, as well as the reasons for resistance to dietary change. You will understand why it is necessary to take on this issue in an interdisciplinary way.

 

Program description

Our approach is student-centered and participative. It combines lectures, seminars and practicals, workshops and individual/team projects. The modules below are indicative of those offered in this program. This list is based on the current organization and may change year to year in response to new needs in the food industry:

 

1st year (60 credits)

- Research methodology and tools

- Fundamental food requirements

- Chemosensory perception, emotions, memory and food choices

- Perception and sensory evaluation

- Professionalization

- Psychology basics

- Health benefits of foods

- Physiological regulation of eating behavior

- Marketing and ethics

 

During the 1st year, students carry out a 2 month internship in a research laboratory or an industry.

 

 2nd year (60 credits)

U12: Chemosensory determinants of food perception

U13: Cognitive processes implied in food perception and consumption

U14: Brain and food consumption

U15: Dynamics of feeding behavior over a lifetime

U16: Research methodology and training, including a research project 

 

During the 2nd year, students carry out a 6 month research internship.

 

 

About the University

The University “Bourgogne Franche – Comté” has been ranked 2nd best French University in the field of Food Sciences (Shangaï, 2017). Most of the lecturers and scientists involved in the Master’s program are members of the Research Center for Taste and Feeding Behavior (CSGA), an internationally renowned research center dedicated to interdisciplinary research on chemosensory perception and food consumption behavior. In addition to the pedagogical team, international invited lecturers will be involved.

 

Funding and tuition fees

As an international postgraduate you will benefit from France’s low tuition fees and have access to a wide range of funding programs (Grants from French embassies, AUF bursaries, etc.). You can also apply for funding from the Université Bourgogne Franche - Comté (25 grants in 2017).

 

Career  

This Master’s Degree aims at providing students with job-relevant competencies and skills for a career in industry (project leader or research engineer in nutrition; consumer science and R&D departments of international companies) or an academic position (food and consumer research; sensory and cognitive neuroscience research; food, nutrition and health research, etc.)

 



Read less
This course offers advanced training for biological, chemical and physical scientists (pure and applied) for careers in the pharmaceutical, food/nutrition, health-care, biomedical, oil and other important industries or as a basis for entry to MRes or PhD. Read more
This course offers advanced training for biological, chemical and physical scientists (pure and applied) for careers in the pharmaceutical, food/nutrition, health-care, biomedical, oil and other important industries or as a basis for entry to MRes or PhD.

Biomolecular Technology underpins the production of drug delivery systems, the making of healthier food products, the design of health-care products, the making of antisera and vaccines - and even the efficient extraction of oil from the harsh environment of a deep well: these are among the biotechnology processes which depend in fundamental terms on our ability to handle giant molecular complexes of living origin. Furthermore, molecular biologists and chemists are now increasingly able to ‘engineer’ new types of proteins and complexes over and beyond those which 3 billion years of evolution have provided.

Industry needs skilled personnel capable of understanding how these molecules may be used in an industrial context and the processes of gene cloning and protein engineering.

It is taught by the School of Biosciences in conjunction with the University's Schools of Pharmacy, Biomedical Sciences and Clinical Sciences and The School of Biosciences at the University of Leicester. Experts from local and national industry also contribute, ensuring access to the latest developments in the field.

A 3 month industrial placement module offers an exciting opportunity to discover first hand the needs of modern industry and provides advanced training for employment and further academic studies.
By suitable arrangement non-UK students can do this in their normal country of residence.

Applicants should hold first degrees at honours level in any Biological, Chemical or Physical Science subject (e.g. Biochemistry, Chemistry, Pharmacy, Genetics, Food Sciences, Plant Sciences, Physics). Suitably motivated candidates with Engineering or Mathematics degrees will also be considered.

A number of scholarships and European bursaries may be available.

Read less
As a Master of Engineering (ME) graduate you will have the opportunity to either seek employment as a professional engineer, or start a research career. Read more

As a Master of Engineering (ME) graduate you will have the opportunity to either seek employment as a professional engineer, or start a research career.

The ME normally takes 12 months to complete full-time.  It builds on prior study at undergraduate level, such as the four-year BE(Hons) or BSc(Tech).  The degree requires 120 points, which can either be made up of 30 points in taught papers and a 90-point dissertation (research project), or one 120-point thesis.

If you enrol in an ME via the Faculty of Science & Engineering you can major in Engineering, and your thesis topic may come from our wide range of study areas such as biological engineering, chemical engineering, civil engineering, mechanical engineering, materials engineering, environmental engineering and electronic engineering.

The Faculty of Science & Engineering fosters collaborative relationships between science, engineering, industry and management.  The Faculty has developed a very strong research base to support its aims of providing you with in-depth knowledge, analytical skills, innovative ideas, and techniques to translate science into technology in the real world.

You will have the opportunity to undertake research with staff who are leaders in their field and will have the use of world-class laboratory facilities. Past ME students have worked on projects such as a ‘snake robot’ for disaster rescue and a brain-controlled electro-mechanical prosthetic hand.

Facilities

The University of Waikato School of Engineering’s specialised laboratories includes the Large Scale Lab complex that features a suite of workshops and laboratories dedicated to engineering teaching and research.  These include 3D printing, a mechanical workshop and computer labs with engineering design software.

The computing facilities at the University of Waikato are among the best in New Zealand, ranging from phones and tablets for mobile application development to cluster computers for massively parallel processing. Software engineering students will have 24 hour access to computer labs equipped with all the latest computer software.

Build a successful career

Depending on the thesis topic studied, graduates of this degree may find employment in the research and development department in a range of engineering industries, including energy companies, environmental agencies, government departments, biomedical/pharmaceutical industries, private research companies, universities, food and dairy industries, electronics, agriculture, forestry and more. The ME can also be a stepping stone to doctoral studies.

Career opportunities

  • Aeronautical Engineer
  • Automotive Engineer
  • Biotechnologist
  • Computer-aided Engineer
  • Engineering Geologist
  • Food and Drink Technologist
  • Laboratory Technician
  • Mechanical Engineer
  • Medical Sciences Technician
  • Patent Attorney
  • Pharmaceutical Engineer
  • Quality Assurance Officer
  • Research Assistant
  • Theoretical Physics Research


Read less
What's the Master of Chemical Engineering all about? . The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Read more

What's the Master of Chemical Engineering all about? 

The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Students also learn to take environmental and safety issues into account during all phases of the process.

Two guiding principles of sustainable development – the rational exploitation of resources and energy, and the application of the best available technology – are emphasised, as is the mantra “reduce, reuse, recycle”.

As a chemical engineering student, you will learn to think in a process-oriented manner and grasp the complexity of physico-chemical systems. Even more than other specialists, you will be asked to solve problems of a very diverse nature. Insights into processes at the nano and micro scale are fundamental for the development of new products and/or (mega-scale) technologies.

While students should have a foundational knowledge of chemistry, the underlying chemistry of the elements and components, their properties and mutual reactions are not the main focal points of the programme.

With a focus on process, product and environmental planet engineering, the programme does not only guarantee a solid chemical engineering background, it also focuses on process and product intensification, energy efficient processing routes, biochemical processes and product-based thinking rather than on the classical process approach.

Structure 

The programme itself consists of an important core curriculum that covers the foundations of chemical engineering. The core curriculum builds on the basic knowledge obtained during the Bachelor’s. In this part of the programme, you will concentrate on both the classical and the emerging trends in chemical engineering. 

Students also take up 9 credits from ‘Current trends in chemical engineering’-courses. These courses are signature courses for the Master’s programme and build on the research expertise present within the department. These courses encompass microbial process technology, process intensification, exergy analysis of chemical processes and product design. 

The curriculum consists of a broad generic core, which is then strengthened and honed during the second year, when students select one of the three specialisations: product, process and environmental engineering.

This choice provides you with the opportunity to specialise to a certain extent. Since the emerging areas covered in the programme are considered to be the major challenges within the chemical and related industries, graduating in Leuven as a chemical engineer will give you a serious advantage over your European colleagues since you will be able to integrate new technologies within existing production processes.

During their Master’s studies, students are encouraged to take non-technical courses (general interest courses), organized for instance by other faculties (economics, social sciences, psychology…) in order to broaden their scope beyond mere technical courses.

An important aspect of the Master’s programme is the Master’s thesis. Assigning Master’s thesis topics to students is based on a procedure in which students select 5 preferred topics from a long list.

The Master’s programme highly values interactions with the chemical industry which is one of the most important pillars of the Flemish economy. As such, some courses are taught by guest professors from the industry.

International and industrial experience

One or two semesters of the programme can be completed abroad in the context of the ERASMUS+ programme. Additionally, you can apply for an industrial internship abroad through the departmental internship coordinator. These internships take place between the third Bachelor’s year and the first Master’s year, or between the two Master’s years.

The department also offers a new exchange programme with the University of Delaware (United States) and with the Ecole Polytechique in Montréal (Canada).

The faculty’s exchange programmes are complemented by the BEST network (Board of European Students of Technology). This student organisation offers the opportunity to follow short courses, usually organised in the summer months. The faculty also participates in various leading international networks.

You can find more information on this topic on the website of the Faculty website.

Career perspectives

The chemical sector represents one of the most important economic sectors in Belgium. It provides about 90,000 direct and more than 150,000 indirect jobs. With a 53 billion euro turnover and a 35% share of the total Belgian export, the chemical sector is an indispensable part of the contemporary Belgian economy.

As a chemical engineer you will predominantly work in industrial branches involved in (the production of) bulk and specialty chemicals, oil and natural gas (petrochemical companies and refineries), non-ferrometallurgics, energy, waste treatment, food, cosmetics, pharmaceuticals and biotechnology. The following professional activities lie before you:

  • design, planning and building of installations ('project engineer')
  • monitoring and optimisation of existing processes ('process engineer')
  • design/formulation and optimisation of products ('product engineer')
  • R&D of technical products, processes and devices
  • customer services, retailing ('sales engineer')
  • management

Apart from the traditional career options, your insight into complex processes will also be much appreciated in jobs in the financial and governmental sector, where chemical engineers are often employed to supervise industrial activities, to deliver permissions, and to compose regulations with respect to safety and environmental issues.

As self-employed persons, chemical engineers work in engineering offices or as consultants. Due to their often very dynamic personality, chemical engineers can also be successful as entrepreneurs.



Read less
Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms. Read more

Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms. Its practical applications include age-old techniques such as brewing and fermentation, which are still important today. In recent decades, gene modification has revolutionized the biotechnology industry, spawning countless new products and improving established processes.

More and more types of fermentation are being used, and most new medicines are products of biotechnology. Modern biotechnology has become an applied area of science with a multidisciplinary approach embracing recombinant DNA technology, cellular biology, microbiology, biochemistry, as well as process design, engineering, modelling and control.

Programme summary

Biotechnology is a broad, multidisciplinary area of science. A Master of Science in Biotechnology is an expert in one (group of) discipline(s) and has to have sufficient knowledge and skills in other disciplines to cooperate with experts from the other disciplines. Therefore, students specialise during the Master programme and learn how to solve complex biotechnological problems in a multidisciplinary team.

On the programme of Biotechnology page you can find the general outline of the programme and more detailed information about courses, theses and internships.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Your future career

The first job after graduation, obtained by Msc biotechnologist, is often localised at a research institute or an university in- or outside The Netherlands. It usually concerns a research project or, more detailed, a PhD project: more than 50% of the graduated biotechnologist becomes PhD. Although most graduates choose for a career in science about 1/3 also starts in functions as engineer or technical expert. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Molecular Life Sciences 

MSc Food Technology

MSc Bioinformatics

MSc Plant Biotechnology

MSc Environmental Sciences



Read less
Chemical engineering and chemical engineers provide the leading-edge solutions to the society’s needs. Read more

Mission and goals

Chemical engineering and chemical engineers provide the leading-edge solutions to the society’s needs: we need efficient and clean technologies for energy transformation, technologically advanced materials, better medicines, efficient food production techniques, a clean environment, a better utilization of the natural resources. Chemical Engineering plays a pivotal role because all these challenges have a common denominator: they involve chemical processes. Chemical engineers are the "engineers of chemistry": by making use of chemistry, physics and mathematics they describe the chemical processes from the molecular level to the macroscale (chemical plant), and design, operate, and control all processes that produce and/or transform materials and energy.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

Career opportunities

The Master of Science programme in Chemical Engineering completes the basic preparation of the bachelor chemical engineer and provide guided paths towards high-level professional profiles which are employed in various industrial sectors including the chemical, pharmaceutical, food, biological and automotive industry; energy production and management; transformation and process industries; engineering companies designing, developing and implementing processes and plant; research centres and industrial laboratories; technical structures in Public Administration; environmental and safety consultancy firms.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Chemical_Engineering_01.pdf
Chemical engineering provides the leading-edge solutions to the society’s needs: we require clean energy sources, efficient and clean technologies for energy transformation, technologically advanced materials, better medicines, efficient food production techniques, a clean environment, a better utilization of the natural resources. Chemical Engineering plays a pivotal role because all these challenges have a common denominator: they are based on chemical processes. Chemical engineers are the “engineers of chemistry”: by making use of chemistry, physics and mathematics they describe the chemical processes from the molecular level (chemical bond) to the macroscale (chemical plant), and design, operate, and control all processes that produce and/or transform materials and energy. The Master of Science programme in Chemical Engineering provides guided paths towards high-level professional profiles which find employment in various industrial sectors. The programme is taught in English.

Subjects

The Chemical Engineering programme includes mandatory courses on Chemical reaction engineering and applied chemical kinetics; Advanced calculus; Industrial organic chemistry; Unit operations of chemical plants; Mechanics of solids and structures; Applied mechanics. Other courses can be selected by the students on many subjects related to e.g. chemical plants and unit operations, safety, process design, catalysis, material science, numerical methods, environmental protection, food production, energy, biomaterials, etc.. A proper selection of the eligible courses will lead to specializations in Process engineering, Project engineering or Product engineering.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This part-time modular programme is mainly for industry-based students from the UK and overseas whose focus is on process technology, management, business and IT. Read more

Why this course?

This part-time modular programme is mainly for industry-based students from the UK and overseas whose focus is on process technology, management, business and IT.

The course is accredited by the Institution of Chemical Engineers (IChemE), an international body of Chemical Engineers operating in countries such as the UK, Australia, New Zealand, Singapore, and more. Graduates can fulfil the Master’s degree requirement for gaining chartership and becoming a Chartered Engineer (CEng).

This course uses a project and work-based approach. It operates mainly by distance learning to allow you to spend the minimum time off-the-job. The programme meets the development needs of graduates from a range of engineering, technology and science disciplines, for example:
- Chemical Engineers
- Mechanical Engineers
- Control Engineers
- Chemists

It’s relevant to a broad range of type and size of company throughout the chemical and process sectors.

For graduates in disciplines other than chemical engineering, a wide range of chemical engineering bridging modules are available and can be studied as part of an agreed programme prior to starting the MSc.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/processtechnologymanagement/

You'll study

The MSc Chemical Technology & Management and the MSc Process Technology & Management are delivered in parallel. Both courses have some of the same core classes. Some of the classes relate to business/management and IT and some are technical classes of mutual interest.

The course format is a three year, modular course with a major final year project completed in your place of work. A two year postgraduate diploma option and one year postgraduate certificate are also available.

You can tailor the degree to your own requirements by selecting classes from the areas of:
- Process Technology
- Chemical Technology
- Business/IT

The Process Technology modules address two major priority areas for the process industries:
- The design, optimisation, control and operation of safe, clean, economically viable processes
- A deeper understanding of principles in complex areas, such as reactors, multi-phase mixtures and advanced separation processes

- How many classes do you need to complete?
The MSc requires 12 taught classes and a work-based project (equivalent to six modules). The diploma requires 12 classes and the certificate six classes.
For graduates in disciplines other than chemical engineering, foundation or bridging modules in chemical engineering are available.

- Final project
You’ll normally take on this project in your own workplace allowing you to make practical use of the concepts learned throughout the course. The project is the main focus of year 3 of the course. An academic supervisor with experience in your chosen project field will help you with the academic requirements of the project. The management and eventual conclusion of the project will be driven by you.

Facilities

In the department of Chemical & Process Engineering we've state-of-the-art research laboratories that opened in 2008. They include a comprehensive suite of experimental facilities including:
- light scattering
- spectroscopy
- adsorption measurements
- high pressure viscometry

Distance learning students are able to access to the University library online services, borrow online books and download academic papers and journals. You'll be able to access the University of Strathclyde library which holds 1,200,700 electronic books, 239 databases and over 105,000 e-journals that can be used 24 hours a day from any suitably enabled computer. The library also offers a postal service for distance learning students.

Course awards

Teaching staff in the department regularly receive nominations in the annual University-wide Teaching Excellence Awards, voted for by Strathclyde’s students. Staff have also been in receipt of external awards from organisations such as the IChemE and the Royal Academy of Engineering.

Additional information

This programme is only available on a part-time basis. If you want to cover the same scope of subjects on a full-time basis you should apply for the MSc Advanced Chemical & Process Engineering or MSc Sustainable Engineering: Chemical Processing.

Learning & teaching

The course is based on printed lecture notes and material delivered from the University’s Virtual Learning Environment (VLE), ‘myplace’. GoToWebinar is used for live tutorial sessions.

Lecturers provide support through:
- online tutorials
- forums
- email
- telephone
- face to face on campus tutorials

Engineering modules are run by staff in the Chemical and Process Engineering department and specialists from industry.

Distance learning students are also welcome to attend full time lectures and tutorials and access on campus facilities if they are in the Glasgow area either temporarily or as a local resident.

- Guest lectures
There are a number guest lectures from experts across several industries.

Careers

Whether you're planning to progress your career into management, redevelop yourself as an engineer or move into a new industry – a Masters degree will expand your career opportunities. As you choose your own modules, the MSc Process Technology and Management allows flexible and adaptable learning, so that you can plan your degree to you own career aspirations. Relevant industries that graduates work in include oil and gas, food and drink, pharmaceutical, water treatment and many more.

In addition, this MSc will provide you with a means to validate your skills and competency to employers – but also to the engineering council (specifically IChemE) opening up new prospects with charterships and further development.

- Where are they now?
100% of our graduates are in work or further study.*

Job titles include:
Manufacturing Co-ordinator
Operations Director
Process Chemist
Process Engineer
Production Chemist
Senior Research Engineer

Employers include:
Bristol-Myers Squibb
Commonwealth Scientific and Industrial Research Organisation (CSIRO)
DSM Nutritional Products Ltd
H2Oil & Gas Ltd
Infineum UK Ltd
Simon Carves Engineering

*Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
This practical, industry-focused course can help you develop the skills and knowledge you will need to improve water quality and supply in Australian and international communities. Read more
This practical, industry-focused course can help you develop the skills and knowledge you will need to improve water quality and supply in Australian and international communities.

Access to safe water is critical for economic growth, agriculture and food production, sustainable development and poverty reduction. However, many communities and governments now struggle to supply safe water and effectively manage their water resources.

If you are a recent graduate looking to launch your water quality career, or you are a practising water scientist or engineer, this course can position you as an expert in water chemistry. It is especially relevant to those who have studied chemistry, hydrology, water-related engineering courses, agriculture, environmental science or other related fields.

There is a growing need for water scientists who understand the chemistry of water. In this course, you can build advanced chemistry skills and specialised knowledge in water biology, microbiology, ecotoxicology, engineering, hydrogeology and environmental geoscience. Your studies will focus on water treatment, sanitation, water recycling and the sustainable supply of safe drinking water.

Career opportunities

If you are a recent graduate looking to enter a career in water quality, or a practising water scientist or engineer, this course can help you to develop your career as a specialist in water chemistry. It is especially relevant if you have studied chemistry, hydrology, water-related engineering courses, agriculture, environmental science or other related fields.

Graduates of this course may be employed in a wide range of industrial, commercial and government organisations involved in sourcing, treating and distributing water.

List of potential careers:

Chemist
Chemical engineer
Environmental scientist
Hydrologist
Water chemist
Water engineer
Water scientist.
Credit for previous study
Students entering with an honours degree or postgraduate diploma may receive credits for recognised learning.

Learn about Credit for Recognised Learning (CRL).
How this course will make you industry ready
This practical, industry-focused course can help you develop the skills and knowledge you will need to improve water quality and supply in Australian and international communities.

You will have access to high-tech science labs, modern equipment and collaborative learning spaces across the campus and within the purpose-built Resources and Chemistry Precinct.

You will also benefit from Curtin’s high reputation in water quality research, which has led to led to millions of dollars in funding, local and global research alliances and the recruitment of high calibre industry experts.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less
The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles. Read more

About the course

The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles.

Brunel’s MSc in Water Engineering is unique in providing specialist knowledge on the critical sub-topics of water and wastewater management and engineering, desalination systems, building water services engineering, industrial waste water management, and water in health care.

The programme demonstrates the links between theory and practice by including input from our industrial partners and through site visits. This is a key aspect for establishing a competitive and high added value course that provides adequate links with industry.

Features of the course include:

Students’ skills in gathering and understanding complex information from a variety of sources (including engineering, scientific and socio-economic information) will be developed in an advanced research methods module. 

Issues relating to risk and health and safety will be introduced in the research methods module and built on in specialist modules. 

Generic modules in financial and project management will underpin specialist modules focusing on water engineering topics.

Real problem-solving examples – starting from basic principles, to the identified problem, the solution, the implementation process and was implemented and the end result. 

Real case studies – demonstrating how environmental and economic sustainability is considered within civil engineering, particularly in water resources management.

Aims

Problems associated with water resources, access, distribution and quality are amongst the most important global issues in this century. Water quality and scarcity issues are being exacerbated by rising populations, economic growth and climate change*.

Brunel's programme in Water Engineering aims to develop world class and leading edge experts on water sustainability who are able to tackle the industry’s complex challenges at a senior level. During the programme you will also learn about the development and application of models that estimate the carbon and water footprint within the energy and food sector.

The MSc is delivered by experienced industry professionals who bring significant practical experience to the course – and the University’s complete suite of engineering facilities and world-class research experience are set up for development and engineering of advanced systems, testing a variety of processes, designs and software tools.

*Recent figures indicate that 1.1 billion people worldwide do not have access to clean drinking water, while 2.6 billion do not have adequate sanitation (source: WHO/UNICEF 2005). 

Course Content

The primary aim of this programme is to create master’s degree graduates with qualities and transferable skills for demanding employment in the water engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Specific aims are as follows:

- To provide education at postgraduate level in civil engineering. 
- To develop the versatility and depth to deal with new, complex and unusual challenges across a range of water engineering issues, drawing on an understanding of all aspects of water engineering principles. 
- To develop imagination, initiative and creativity to enable graduates to follow a successful engineering career with national and international companies and organisations. 
- To provide a pathway that will prepare graduates for successful careers including, where appropriate, progression to Chartered Engineer status.

The programme will provide opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas:

Knowledge and understanding of:

- The principles of water engineering, including fluid mechanics, hydrology, and sustainable design. 
- Specialist areas that impact on the successful application of water engineering knowledge projects, e.g. sustainable construction management, financial management and risk analysis. 
- The interplay between engineering and sustainability in complex, real-world situations.

At the cognitive level students will be able to:

- Select, use and evaluate appropriate investigative techniques.
- Assemble and critically analyse relevant primary and secondary data.
- Recognise and assess the problems and critically evaluate solutions to challenges in managing water engineering projects.
- Evaluate the environmental and financial sustainability of current and potential civil engineering activities.

Personal and transferable skills that students develop will allow them to:

- Define and organise a substantial advanced investigation. 
- Select and employ appropriate advanced research methods. 
- Organise technical information into a concise, coherent document.
- Effectively employ a variety of communication styles aimed at different audiences. 
- Plan, manage, evaluate and orally-presented personal projects. 
- Work as part of, and lead, a team.

Typical Modules

Each taught module will count for 15 credits, approximating to 150 learning hours. The Master's programme can be taken full time, over 12 months. The first eight months of the full time course will eight taught modules. For the final four months, students will complete a dissertation counting for 60 credits. Modules cover:

Sustainable Project Management
GIS and Data Analysis
Water Infrastructure Engineering
Risk and Financial Management
Hydrology & Hydraulics
Water Treatment Engineering
Water Process Engineering
Research Methods
Civil Engineering Dissertation

Teaching

Our philosophy is to underpin theoretical aspects of the subject with hands-on experience in applying water engineering techniques. Although you may move on to project management and supervision roles, we feel it important that your knowledge is firmly based on an understanding of how things are done. To this end, industrial partners will provide guest lectures on specialist topics.

In addition to teaching, water engineering staff at Brunel are active researchers. This keeps us at the cutting edge of developments and, we hope, allows us to pass on our enthusiasm for the subject.

How many hours of study are involved?

Contact between students and academic staff is relatively high at around 20 hours per week to assist you in adjusting to university life. As the course progresses the number of contact hours is steadily reduced as you undertake more project-based work.

How will I be taught?

Lectures:
These provide a broad overview of the main concepts and ideas you need to understand and give you a framework on which to expand your knowledge by private study.
Laboratories:
Practicals are generally two- or three-hour sessions in which you can practise your observational and analytical skills, and develop a deeper understanding of theoretical concepts.
Design Studios:
In a studio you will work on individual and group projects with guidance from members of staff. You may be required to produce a design or develop a solution to an engineering problem. These sessions allow you to develop your intellectual ability and practice your teamwork skills.
Site visits:
Learning from real-world examples in an important part of the course. You will visit sites featuring a range of water engineering approaches and asked to evaluate what you see.
One-to-one:
On registration for the course you will be allocated a personal tutor who will be available to provide academic and pastoral support during your time at university. You will get one-to-one supervision on all project work.

Assessment

Several methods of assessment are employed on the course. There are written examinations and coursework. You will undertake projects, assignments, essays, laboratory work and short tests.

Project work is commonplace and is usually completed in groups to imitate the everyday experience in an engineering firm, where specialists must pool their talents to design a solution to a problem.

In this situation you can develop your management and leadership skills and ensure that all members of the group deliver their best. Group members share the mark gained, so it is up to each individual to get the most out of everyone else.

Special Features

Extensive facilities
Students can make the most of laboratory facilities which are extensive, modern and well equipped. We have recently made a major investment in our Joseph Bazalgette Laboratories which includes hydraulic testing laboratory equipment and facilities such as our open channel flow flumes.

Personal tutors
Although we recruit a large number of highly qualified students to our undergraduate, postgraduate and research degrees each year, we don’t forget that you are an individual. From the beginning of your time here, you are allocated a personal tutor who will guide you through academic and pastoral issues.

World-class research
The College is 'research intensive' – most of our academics are actively involved in cutting-edge research. Much of this research is undertaken with collaborators outside the University, including construction companies, water utilities, and other leading industrial firms. We work with universities in China, Poland, Egypt, Turkey, Italy, Denmark and Japan. This research is fed directly into our courses, providing a challenging investigative culture and ensuring that you are exposed to up-to-date and relevant material throughout your time at Brunel.

Strong industry links
We have excellent links with business and industry in the UK and overseas. This means:
Your degree is designed to meet the needs of industry and the marketplace.
The latest developments in the commercial world feed into your course.
You have greater choice and quality of professional placements.
We have more contacts to help you find a job when you graduate.

Visting Professors 
The Royal Academy of Engineering - UK’s national academy for engineering has appointed senior industrial engineers as visiting professors at Brunel University London.
The Visting Professors Scheme provides financial support for experienced industrial engineers to deliver face-to-face teaching and mentoring at a host of institutions. Our engineering undergraduates will benefit from an enhanced understanding of the role of engineering and the way it is practised, along with its challenges and demands. 

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course has been designed in close consultation with the industry and is accredited as a designated 'technical' MSc degree by the Join Board of Moderators (JBM). The JBM is made up of Institution of Highways and Transport and the Institution of Highway Engineeres respectively.

1. This means this course provides Further Learning for a Chartered Engineer who holds a CEng accredited first degree (full JBM listing of accredited degrees).
2. As a designated ‘technical’ MSc, it will also allow suitable holders of an IEng accredited first degree to meet the educational base for a Chartered Engineer.

Read less
The modern society relies on the work of Chemical Engineers who develop and design the processes that make the useful products for the society by efficient use and management of resources including water and energy while controlling health and safety procedures and protecting the environment. Read more
The modern society relies on the work of Chemical Engineers who develop and design the processes that make the useful products for the society by efficient use and management of resources including water and energy while controlling health and safety procedures and protecting the environment.

Chemical Engineering provides essential tools based on the concept of sustainability and low carbon footprint for changing raw materials into useful products in a safe and cost effective way. Chemical Engineers understand how to alter the chemical, biochemical or physical state of a substance, to create everything from health care products (face creams, shampoo, perfume, drugs) to food (dairy products, cereals, agro-chemicals) and water (desalination for freshwater) to energy (petroleum to nuclear fuels).

Your study at MSc level at Bradford will be a foundation for life aimed at developing a deep understanding of advanced technical principles, analytical tools, and competence in their application together with a wide range of management, personal and professional skills. The course will provide you with essential tools based on the concept of sustainability and low carbon footprint for changing raw materials into useful products in a safe and cost effective way.

Why Bradford?

Flexibility of career path – Choice of three routes:
-Chemical Engineering - advanced chemical engineering and process technology skills for exciting and challenging careers in chemical and process industries
-Petroleum Engineering -matches the needs in different areas of oil and gas production and in medium/small operating and consulting companies
-Polymer Engineering - design and operation of processes to engineer materials with advanced properties leading to careers in diverse manufacturing sectors

Research Strengths - Internationally acclaimed research activities in the following areas:
-Chemical and Petrochemical Engineering
-Polymers
-Energy
-Water
-Pharmaceutical engineering
-Coating and advanced materials engineering

Rankings

Top Five: Chemical Engineering at the University of Bradford is ranked 5th in the UK in the Guardian University League Table 2017/

[[Modules
MSc Chemical & Petroleum Engineering (Chemical Engineering Background)
-Desalination Technology
-Materials & Manufacturing Processes
-Transport Phenomena
-Design Optimisation
-Computational Fluid Dynamics
-Upstream Production & Refinery Operations
-Research Skills
-Food & Pharmaceutical Processes Engineering
-Polymer Engineering
-Risk Management
-Engineering Computational Methods
-MSc Project

MSc Chemical & Petroleum Engineering (non-Chemical Engineering Background)
-Desalination Technology
-Transport Phenomena
-Chemical Engineering Practice
-Material & Manufacturing Processes
-Design Optimisation
-Computational Fluid Dynamics
-Upstream Production & Refinery Operations
-Research Skills
-Food & Pharmaceutical Processes Engineering
-Polymer Engineering
-Risk Management
-Engineering Computational Methods
-MSc Project

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Read less
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. Read more
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. This programme is open to Engineering graduates of all disciplines with an 8 month programme option leading to a Postgraduate Diploma in Sustainable Energy.

Visit the website: http://www.ucc.ie/en/ckr26/

Course Details

In Part I students take modules to the value of 50 credits and a Preliminary Research Report in Sustainable Energy (NE6008) to the value of 10 credits. Part II consists of a Dissertation in Sustainable Energy (NE6009) to the value of 30 credits which is completed over the summer months.

Part I

Students take 50 credits as follows:

NE3002 Energy in Buildings (5 credits)
EE3011 Power Electronic Systems (5 credits)
EE4010 Electrical Power Systems (5 credits)
NE3003 Sustainable Energy (5 credits)
NE4006 Energy Systems in Buildings (5 credits)
NE6003 Wind Energy (5 credits)
NE6004 Biomass Energy (5 credits)
NE6005 Ocean Energy (5 credits)
NE6006 Solar and Geothermal Energy (5 credits)
NE6007 Energy Systems Modelling (5 credits)

Depending on the background of the student, the Programme Coordinator may decide to replace some of the above taught modules from the following list of modules up to a maximum of 20 credits:

CE4001 The Engineer in Society (Law, Architecture and Planning) (5 credits)
EE3012 Electromechanical Energy Conversion (5 credits)
EE4001 Power Electronics, Drives and Energy Conversion (5 credits)
EE4002 Control Engineering (5 credits)
EE6107 Advanced Power Electronics and Electric Drives (5 credits)
ME6007 Mechanical Systems (5 credits)
NE4008 Photovoltaic Systems (5 credits)
PE6003 Process Validation and Quality (5 credits)

In addition, all students must take 10 credits as follows:

NE6008 Preliminary Research Report in Sustainable Energy (10 credits)

Part II

NE6009* Dissertation in Sustainable Energy (30 credits)

*must be submitted on a date in September as specified by the Department

Detailed Entry Requirements

Candidates must have a BE(Hons) or BEng (Hons) Degree or equivalent engineering qualification, with a minimum grade 2H2. However, candidates with equivalent academic qualifications and suitable experience may be accepted subject to the approval of College of Science, Engineering and Food Science. In all cases, the course of study for each candidate must be approved by the Programme Coordinator.
Candidates, for whom English is not their primary language, should possess an IELTS of 6.5 (or TOEFL equivalent) with no less than 6.0 in each individual category.

Candidates from Grandes Écoles Colleges are also eligible to apply if they are studying a cognate discipline in an ENSEA or EFREI Graduate School and are eligible to enter the final year (M2) of their programme.

Assessment

- Postgraduate Diploma in Sustainable Energy -

Students who pass but fail to achieve the requisite grade of 50% across the taught modules and the Preliminary Research Report will be eligible for the award of a Postgraduate Diploma in Sustainable Energy. Candidates passing Part I of the programme who do not wish to proceed to Part II may opt to be conferred with a Postgraduate Diploma in Sustainable Energy.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The Masters in Software Development will give you an intensive grounding in computer programming, professional software development, and related skills. Read more

The Masters in Software Development will give you an intensive grounding in computer programming, professional software development, and related skills. This is a conversion degree programme intended for students without a computing science background. You will apply your knowledge and skills by undertaking a demanding software development project.

Why this programme

  • The School of Computing Science is consistently highly ranked achieving 2nd in Scotland and 10th in the UK (Complete University Guide 2017)
  • The School is a member of the Scottish Informatics and Computer Science Alliance: SICSA. This collaboration of Scottish universities aims to develop Scotland's place as a world leader in Informatics and Computer Science research and education.
  • You will have opportunities to meet employers who come to make recruitment presentations, and often seek to recruit our graduates during the programme.
  • You will benefit from having 24-hour access to a computer laboratory equipped with state-of-the-art hardware and software.

Programme structure

Modes of delivery of the MSc in Software Development include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses

  • Advanced programming
  • Algorithms and data structures
  • Database theory and applications
  • Enterprise cyber security
  • Programming
  • Software engineering
  • Software project management
  • Systems and networks
  • Group project

Optional courses

  • Crytography and secure development
  • Cyber security fundamentals
  • Cyber security forensics
  • Digitisation
  • Human computer interaction: design and evaluation
  • Internet technology
  • Safety critical systems.

Depending on staff availability, the optional courses listed here may change.

If you wish to engage in part-time study, please be aware that dependent upon your optional taught courses, you may still be expected to be on campus on most week days.

Career Prospects

Former students are now employed in the chemical, electronics, travel, food, and oil industries, in banking and insurance, in software houses, in retailing, in education, in the health service, in management consultancy, in civil engineering, and in other sectors. Some graduates apply their newly-acquired software development skills within their existing careers, or move into research or teaching.

Graduates of this programme have gone on to positions such as:

  • Junior Java Developer at Sky
  • Software Engineer at Kotikan
  • Graduate Developer at BiP Solutions
  • Self-employed Junior Database Programmer
  • Software Engineer at Morgan Stanley
  • Graduate Developer at BiP Solutions
  • Web Developer at FibroTest
  • Software Developer at Seemis.


Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Key Features of MSc in Chemical Engineering

The MSc Chemical Engineering course is built upon the wide range of research in chemical engineering at Swansea University. This includes engineering applications of nanotechnology, bioengineering, biomedical engineering, cell and tissue engineering, chemical engineering, colloid science and engineering, desalination, pharmaceutical engineering, polymer engineering, rheology, separation processes, transport processes, and water and wastewater engineering.

The MSc Chemical Engineering research project provides an opportunity to work with a member of academic staff in one of the above, or related, area of research. The project may also involve collaboration with industry.

The taught component of the MSc Chemical Engineering course covers specific areas of advanced chemical engineering as well as the complex regulations that are found in the engineering workplace. It also provides an opportunity for the development of personal and transferable skills such as project planning, communication skills, and entrepreneurship.

As a student on the Master's course in Chemical Engineering, you will advance your technical knowledge, which can lead to further research or a career in chemical engineering.

Modules

Modules on the MSc Chemical Engineering course typically include:

Complex Fluids and Rheology

Entrepreneurship for Engineers

Colloid and Interface Science

Communication Skills for Research Engineers

Water and Wastewater Engineering

Membrane Technology

Environmental Analysis and Legislation

Optimisation

Desalination

Polymers: Properties and Design

Principles of Nanomedicine

Nanoscale Structures and Devices

Pollutant Transport by Groundwater Flows

MSc Research Practice

MSc Dissertation - Chemical Engineering

Accreditation

The MSc Chemical Engineering at Swansea University is accredited by the Institution of Chemical Engineers (IChemE).

The MSc Chemical Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis

Astra Zeneca

Avecia

BP Chemicals

Bulmers

Dow Corning

GlaxoSmithKline

Nestle

Murco

Phillips 66

Unilever

Valero

Swansea staff have research links with local, national, and international companies. An industrial advisory board, consisting of eight industrialists from a range of chemical engineering backgrounds, ensure our courses maintain their industrial relevance.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Careers

The demand for Chemical Engineering graduates remains excellent with the highest starting salaries out of all engineering disciplines.

Chemical engineers find employment in a variety of public and private sector industries, applying the principles of chemical engineering to health, energy, food, the environment, medicine, petrochemicals and pharmaceuticals.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less

Show 10 15 30 per page



Cookie Policy    X