• Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Durham University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Leeds Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Swansea University Featured Masters Courses
"fluids"×
0 miles

Masters Degrees (Fluids)

We have 78 Masters Degrees (Fluids)

  • "fluids" ×
  • clear all
Showing 1 to 15 of 78
Order by 
The Earth's biosphere is completely immersed in fluids. Air and water are both considered fluids and therefore every living creature on the planet is affected by the behaviour and quality of these media. Read more
The Earth's biosphere is completely immersed in fluids. Air and water are both considered fluids and therefore every living creature on the planet is affected by the behaviour and quality of these media. Engineering practice in fluids engineering involves fluid mechanics and engineering systems that are associated with the fluid environment.

The Master of Professional Engineering (Fluids) is a 3 year full-time course delivering technical and professional outcomes that will allow you to be recognised as an Australian graduate engineer in this field. This degree has been given provisional accreditation at the level of Professional Engineering by the industry governing body, Engineers Australia http://www.engineersaustralia.org.au/

If your bachelor's degree included foundational engineering units, you may be given advanced standing in the Master of Professional Engineering. Entry pathways are available for students with widely varying backgrounds.

In this course you will engage in areas of study including water resources management, wind engineering for design, coastal engineering, open channel flow and hydraulic structures, and advanced computational fluid dynamics.

The MPE is comprised of foundation units of study, elective units in the area of your specialisation and a 12-week practical industry experience component. There are also a number of professional electives you can choose from and a capstone project in your final year.

If you are interested in continuing on to complete a research degree, a research dissertation can act as a research pathway.

To ask a question about this course, visit http://sydney.edu.au/internationaloffice/

Read less
The program is designed to help qualified engineers strengthen their management capability and technical expertise. Qualified engineers looking to specialise or update their skills could also consider this program. Read more
The program is designed to help qualified engineers strengthen their management capability and technical expertise. Qualified engineers looking to specialise or update their skills could also consider this program.

The Master of Engineering will allow you to build on your existing engineering undergraduate degree by developing specialised technical knowledge in your chosen major.

Course structure

This program comprises core units of study along with electives to broaden your knowledge. You will complete a sequence of specialist units that comprises a major in your chosen field. It has a strong focus on project work to enhance self-directed learning.

Professional engineering management subjects will enhance your leadership and commercial capabilities, providing you with greater opportunities to advance your career. They include:

sustainable design, engineering and management
entrepreneurship for engineers
project process planning and control
safety systems and risk management.

Research pathways are available within all majors, allowing you to complete a research project as preparation for a research degree.

Depending on the level and type of your prior studies, you may be eligible for recognition of prior learning. This will reduce the length of your degree.

To ask a question about this course, visit http://sydney.edu.au/internationaloffice/

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

From authoring definitive text books on chemical engineering to finding solutions to the world's water shortages, Swansea University has a proud tradition of delivering pioneering innovative process engineering solutions. As we have a wide range of research in chemical engineering, Swansea University provides an excellent base for your research as an MSc by Research student in Chemical Engineering.

Key Features of MSc by Research in Chemical Engineering

There is a wide range of research in chemical engineering at Swansea University. This includes:

Membrane separation

Biochemical engineering

Biomanufacturing

Engineering applications of nanotechnology

Bioengineering, biomedical engineering

Cell and tissue engineering

Colloid science and engineering

Desalination

Pharmaceutical engineering

Polymer engineering

Rheology

Separation processes

Transport processes

Water and wastewater engineering

The MSc by Research in Chemical Engineering at Swansea University provides an opportunity to work with a member of academic staff in one of the above, or related, area of research.

The MSc by Research in Chemical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Links with industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis

Astra Zeneca

Avecia

BP Chemicals

Bulmers

Dow Corning

GlaxoSmithKline

Nestle

Murco

Phillips 66

Unilever

Valero

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Swansea University has resources specific to Chemical Engineering.

Research

Research in Chemical Engineering at Swansea is located within the Systems and Process Engineering Research Centre which has a number of focused research groups including the Centre for Water Advanced Technologies and Environmental Research (CWATER), the Centre for Complex Fluids Processing and the Multidisciplinary Nanotechnology Centre.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) is an internationally leading centre of excellence for the development of advanced technologies in water treatment. The Centre benefits from world-leading expertise in the areas of desalination and membrane technologies for water treatment.

The Centre for Complex Fluids Processing is internationally recognised for its leading and innovative research on the processing of complex fluids which is a major feature of modern industry. Such fluids are extremely diverse in origin and composition - ranging, for example, from fermentation broths and food products to inks and mineral slurries. However, underlying this diversity are certain properties that must be understood if the processing is to be effective and efficient. These include flow behaviour in process equipment, how the components of the fluid determine its overall properties and how individual components may be selectively separated.

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.



Read less
We invite MPhil proposals in any of our research areas. In Pure Mathematics our two main fields are functional analysis and geometric algebra. Read more
We invite MPhil proposals in any of our research areas. In Pure Mathematics our two main fields are functional analysis and geometric algebra. In Applied Mathematics our research is predominantly in fluid mechanics, astrophysics and cosmology.

As a research postgraduate in the School of Mathematics and Statistics you will be working under the supervision of an expert in your chosen field. To help you identify a topic and potential supervisor, we encourage you to find out more about our staff specialisms.

Research areas

Within each field of Pure Mathematics there are multiple subgroups. In analysis, one subgroup concentrates on operator theory and function theory, the other on Banach algebras, cohomology and modules. In algebra there are subgroups devoted to the study of infinite groups, and finite classical groups and their geometries

Our Applied Mathematics staff have research interests in:
-Fluid dynamics, including numerical modelling of quantum fluids (superfluid liquid Helium and Bose-Einstein condensates)
-Classical and astrophysical fluids (the Earth's core, planetary dynamos, accretion discs and galaxies)
-Cosmology, including the very early universe and quantum gravity

Research seminars and events

We run weekly research seminars in algebra and geometries, analysis, and applied mathematics, as well as postgraduate seminars led by students.

Specialist courses are offered through the MAGIC distance learning consortium, sponsored in part by the Engineering and Physical Sciences Research Council (EPSRC).

Partnerships and networks

We are part of:
-The North British Functional Analysis Seminar
-The North British Geometric Group Theory Seminar
-Algebra and Representation Theory in the North, funded by the London Mathematical Society and the Edinburgh Mathematical Society

With Durham University, we are part of the Joint Quantum Centre broadly dedicated to various aspects of quantum science.

Facilities

You will have access to online research facilities via your own desktop PC in a shared postgraduate work space. There is also a teaching cluster (of about 150 PCs) within the School.

As well as the library resources provided by the main Robinson Library, you will have access to the School's mathematics and statistics library and reading room.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Erasmus Mundus Computational Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Erasmus Mundus Computational Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University has gained a significant international profile as one of the key international centres for research and training in computational mechanics and engineering. As a student on the Master's course in Erasmus Mundus Computational Mechanics, you will be provided with in-depth, multidisciplinary training in the application of the finite element method and related state-of-the-art numerical and computational techniques to the solution and simulation of highly challenging problems in engineering analysis and design.

Key Features of Erasmus Mundus Computational Mechanics MSc

The Zienkiewicz Centre for Computational Engineering is acknowledged internationally as the leading UK centre for computational engineering research. It represents an interdisciplinary group of researchers who are active in computational or applied mechanics. It is unrivalled concentration of knowledge and expertise in this field. Many numerical techniques currently in use in commercial simulation software have originated from Swansea University.

The Erasmus Mundus MSc Computational Mechanics course is a two-year postgraduate programme run by an international consortium of four leading European Universities, namely Swansea University, Universitat Politècnica de Catalunya (Spain), École Centrale de Nantes (France) and University of Stuttgart (Germany) in cooperation with the International Centre for Numerical Methods in Engineering (CIMNE, Spain).

As a student on the Erasmus Mundus MSc Computational Mechanics course, you will gain a general knowledge of the theory of computational mechanics, including the strengths and weaknesses of the approach, appreciate the worth of undertaking a computational simulation in an industrial context, and be provided with training in the development of new software for the improved simulation of current engineering problems.

In the first year of the Erasmus Mundus MSc Computational Mechanics course, you will follow an agreed common set of core modules leading to common examinations in Swansea or Barcelona. In addition, an industrial placement will take place during this year, where you will have the opportunity to be exposed to the use of computational mechanics within an industrial context. For the second year of the Erasmus Mundus MSc Computational Mechanics, you will move to one of the other Universities, depending upon your preferred specialisation, to complete a series of taught modules and the research thesis. There will be a wide choice of specialisation areas (i.e. fluids, structures, aerospace, biomedical) by incorporating modules from the four Universities. This allows you to experience postgraduate education in more than one European institution.

Modules

Modules on the Erasmus Mundus MSc Computational Mechanics course can vary each year but you could expect to study the following core modules (together with elective modules):

Numerical Methods for Partial Differential Equations

Continuum Mechanics

Advanced Fluid Mechanics

Industrial Project

Finite Element Computational Analysis

Entrepreneurship for Engineers

Finite Element in Fluids

Computational Plasticity

Fluid-Structure Interaction

Nonlinear Continuum Mechanics

Computational Fluid Dynamics

Dynamics and Transient Analysis

Reservoir Modelling and Simulation

Accreditation

The Erasmus Mundus Computational Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

See http://www.jbm.org.uk for further information.

This degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

On the Erasmus Mundus MSc Computational Mechanics course, you will have the opportunity to apply your skills and knowledge in computational mechanics in an industrial context.

As a student on the Erasmus Mundus MSc Computational Mechanics course you will be placed in engineering industries, consultancies or research institutions that have an interest and expertise in computational mechanics. Typically, you will be trained by the relevant industry in the use of their in-house or commercial computational mechanics software.

You will also gain knowledge and expertise on the use of the particular range of commercial software used in the industry where you are placed.

Careers

The next decade will experience an explosive growth in the demand for accurate and reliable numerical simulation and optimisation of engineering systems.

Computational mechanics will become even more multidisciplinary than in the past and many technological tools will be, for instance, integrated to explore biological systems and submicron devices. This will have a major impact in our everyday lives.

Employment can be found in a broad range of engineering industries as this course provides the skills for the modelling, formulation, analysis and implementation of simulation tools for advanced engineering problems.

Student Quotes

“I gained immensely from the high quality coursework, extensive research support, confluence of cultures and unforgettable friendship.”

Prabhu Muthuganeisan, MSc Computational Mechanics



Read less
This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. Read more

Overview

This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. As such it is also an opportunity for candidates from a different Engineering background to develop key Mechanical Engineering knowledge and skills required for their professional development. A key objective of the programme is to be an accredited route to becoming Chartered Engineer.

This programme makes use of masters-level courses in the Energy Sciences and Manufacture & Design complemented with specialist courses from relevant MSc courses offered by the institute. We have seen a growing need for an advanced mechanical engineering programme at the request of applicants, and our industry partners. This programme has been specifically developed to meet this need and to encourage students of this field into further learning.

The Scottish Funding Council has made available 20 scholarships covering fees only to students with Scottish backgrounds. 6 of these places are reserved for applicants to this programme in the first instance. The remaining places are spread over all our Energy based MSc programmes. There is no separate application process for this. If you are eligible, you will be considered automatically. You will be notified through the summer if you have been selected.

Programme content

Semester One - Mandatory
- B81PI Professional and Industrial Studies
This course is specifically designed to meet the master’s level outcome requirements in the areas of professional development and practice for chartered engineering status. This multi-disciplinary course uses industrial speakers and speakers from those in the university involved in bridging the gap between academia and industrial application.

- B51GS Specialist Engineering Technologies 1
The first of the specialist engineering technologies courses is based on computational fluid dynamics and assessed by a group project

Optional (Choose two)
- B51DE Engineering Design
In this course students interact with companies in a real life small R&D project supplied by the industrial partners. Working in teams, the students have to manage the design of a prototype, product or system and interact with the industrial contact putting into practice problem-solving skills from other engineering topics studied elsewhere in the programme.

- B51EK Fluids 1
Fluid mechanics applied to aerodynamics, including ideal flows, boundary layers, and aerofoils and their use for analysis and design purposes.

- B51EM Advanced Mechanics of Materials 1
Advanced classical mechanics including 3D stress and strain with particular application to thin walled vessels. Fatigue analysis and design for fatigue limit.

- B51EO Dynamics 1
To provide students with a thorough understanding of vibration theory and an appreciation of its application in an engineering environment

- B51EQ Thermodynamics 1
Thermodynamic cycles including heat engines and reverse heat engines and means of evaluating best performance.

- G11GA Flame Appraisal
Introduction to the stages required for evaluating an oilfield for production. This covers geological considerations and fluid flow from oil bearing rock.

Semester Two – Mandatory

- B81EZ Critical Analysis and Research Preparation
This course provides research training and addresses literature review skills, project planning, data analysis and presentation with a focus to critically discuss literature, and use data to support an argument.

- B51HB Failure Accident Analysis
To acquaint students with the potential causes of material, structure or component failure; framework under which a failure or forensic engineering investigation should be carried out and give them the opportunity to work case studies through from information-gathering to preparation of reports and an awareness of fire and explosion engineering.

- B51GT Specialist Engineering Technologies 2
To present advanced theory and practice in important or emerging areas of technology including non-linear final element materials to include contact mechanics, design of components subjected to high stress applications.

Optional (Choose one)
- B51EL Fluids 2
To provide a methodology for analysing one-dimensional compressible flow systems.

- B51EN Advanced Mechanics of Materials 2
To provide students with an opportunity to: carry out advanced analyses of mechanics of materials problems; analyse mechanics of materials where time is a significant additional variable; use final element analysis for cases involving viscoelasticity and complex geometry
engage with the findings of recent research in a mechanics of materials topic

- B51EP Dynamics 2
To provide students with a thorough understanding of control theory and an appreciation of the subject of environmental acoustics and passive noise control

- B51ER Thermodynamics 2
Investigation of heat transfer mechanisms with a view to the design of effective heat exchangers for given operating conditions. The study of radiation heat transfer and combustion equilibrium.

- B51DF Engineering Manufacture
To provide the student with a detailed understanding of the importance and integration of advanced manufacturing technology and manufacturing systems within the context of product engineering. On completion, the students should have acquired a detailed understanding of the product development process from initial conception through to product support as well as appreciate the impact of each stage of the process on the business and organisationally with respect to information dependence and manufacturing processes employed.

- G11GD Flame Development
A continuation of Flame Appraisal, this course looks at the well-head arrangement for oil extraction. This is an introduction to drilling engineering and the techniques required for oil extraction.

Semester 3 – Mandatory

- B51MD Masters Dissertation
An individual project led by a research active member of staff on a current research theme with the aim of leading to the production of a journal article.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Advanced Mechanical Engineering. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Modelling in Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Modelling in Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

This MRes in Computer Modelling in Engineering programme consists of two streams: students may choose to specialise in either structures or fluids. The taught modules provide a good grounding in computer modelling and in the finite element method, in particular.

Key Features of MRes in Computer Modelling in Engineering

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Using mathematical modelling as the basis, computational methods provide procedures which, with the aid of the computer, allow complex problems to be solved. The techniques play an ever-increasing role in industry and there is further emphasis to apply the methodology to other important areas such as medicine and the life sciences.

The Zienkiewicz Centre for Computational Engineering, within which this course is run, has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

This Computer Modelling in Engineering course is suitable for those who are interested in gaining a solid understanding of computer modelling, specialising in either structures or fluids, and taking the skills gained through this course to develop their career in industry or research.

If you would like to qualify as a Chartered Engineer, this course is accredited with providing the additional educational components for the further learning needed to qualify as a Chartered Engineer, as set out by UK and European engineering professional institutions.

Modules

Modules on the Computer Modelling in Engineering programme typically include:

• Finite Element and Computational Analysis

• Numerical Methods for Partial Differential Equations

• Solid Mechanics

• Advanced Fluid Mechanics

• Dynamics and Transient Analysis

• Communication Skills for Research Engineers

• MRes Research Project

Accreditation

The MRes Computer Modelling in Engineering course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

The MRes Computer Modelling in Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The MRes Computer Modelling in Engineering degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

The Civil and Computational Engineering Centre has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Examples of recent collaborators and sponsoring agencies include: ABB, Audi, BAE Systems, British Gas, Cinpress, DERA, Dti, EADS, EPSRC, European Union, HEFCW, HSE, Hyder, Mobil, NASA, Quinshield, Rolls-Royce, South West Water, Sumitomo Shell, Unilever, US Army, WDA.

Student Quotes

“I was attracted to the MRes course at Swansea as the subject matter was just what I was looking for.

I previously worked as a Cardiovascular Research Assistant at the Murdoch Children’s Research Institute in Melbourne. My employer, the Head of the Cardiology Department, encouraged me to develop skills in modelling as this has a lot of potential to help answer some current questions and controversies in the field. I was looking for a Master’s level course that could provide me with computational modelling skills that I could apply to blood flow problems, particularly those arising from congenital heart disease.

The College of Engineering at Swansea is certainly a good choice. In the computational modelling area, it is one of the leading centres in the world (they wrote the textbook, literally). A lot of people I knew in Swansea initially came to study for a couple of years, but then ended up never leaving. I can see how that could happen.”

Jonathan Mynard, MRes Computer Modelling in Engineering, then PhD at the University of Melbourne, currently post-doctoral fellow at the Biomedical Simulation Laboratory, University of Toronto, Canada

Careers

Employment in a wide range of industries, which require the skills developed during the Computer Modelling in Engineering course, from aerospace to the medical sector. Computational modelling techniques have developed in importance to provide solutions to complex problems and as a graduate of this course, you will be able to utilise your highly sought-after skills in industry or research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
Do you want to forge your future in the marine industry? Develop an advanced understanding of both marine engineering and naval architecture on a course that will equip you with a refined knowledge of nautical design and mechanics. Read more
Do you want to forge your future in the marine industry? Develop an advanced understanding of both marine engineering and naval architecture on a course that will equip you with a refined knowledge of nautical design and mechanics. Our accreditation means you’ll be ready to apply for Chartered Engineer status upon graduation, primed for a variety of careers in the marine industry.

You will lay strong foundations for a successful career using our extensive industry links to secure a paid, one-year work placement. You’ll distinguish yourself professionally with a degree accredited by the Royal Institution of Naval Architects (RINA), the Institute of Mechanical Engineering (IMechE) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council.

Key features

-Progress to Chartered Engineer status - upon graduation you’ll have fulfilled the education requirements.
-Distinguish yourself professionally with a degree accredited by the Royal Institution of Naval Architects (RINA), the Institute of Mechanical Engineering (IMechE) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. The course fully satisfies the educational base for a Chartered Engineer (CEng).
-Increase your opportunities with a solid base in mechanical engineering and an emphasis on design, opening up a variety of possible careers.
-Lay strong foundations for a successful career using our extensive industry links to secure a paid, one-year work placement. Gain the confidence, real-world know-how and vital industry experience employers are looking for.
-Work with the latest industry-standard software, in our high specification laboratories. Both will help you develop a strong understanding of fundamental principles, while honing your skills at the same time.
-Access the support you need. The Women in Technology Network (WiTNet) is a support network for all female students in technology and science subjects where women are in a minority.

Course details

Year 1
Year 1 shares modules with the MEng courses in mechanical engineering. You’ll study design, a central theme of the course, introduced through case-study and problem-based learning, materials, mechanics, thermo-fluids, electrical principles, business and mathematics. You’ll also gain practical experience through a hands-on module in manufacturing methods.

Core modules
-THER104 Introduction to Thermal Principles
-MECH119 Skills for Design and Engineering (Marine)
-BPIE115 Stage 1 Mechanical Placement Preparation
-MECH117 Mechanics
-MECH118 Basic Electrical Principles
-A5MFT1 Mech BEng 1 MFT Session
-MATH187 Engineering Mathematics
-MATS122 Manufacturing and Materials
-MECH121PP Team Engineering (Engineering Design in Action)

Year 2
In your second year you’ll study structures, fluids and thermodynamics, control, mathematics and business. You’ll learn about the stability and propulsion of marine craft, and about the marine environment. You’ll advance your existing design skills through application within a marine context.

Core modules
-BPIE215 Stage 2 Mechanical Placement Preparation
-CONT221 Engineering Mathematics and Control
-HYFM230 Fluid Mechanics 1
-STRC203 Engineering Structures
-MECH232 Engineering Design
-THER207 Applied Thermodynamics
-STO208 Business for Engineers
-MARN203 Stability and Hydrodynamics

Optional placement year
Taking an optional placement year will provide you with valuable, paid, professional experience. A placement could lead to a company sponsoring your final year project and provide opportunities for your future employment. We’ll support you in finding a suitable position.

Core modules
-BPIE335 Mechanical Engineering Related Placement

Year 3
During this year you’ll use industry typical software and use design and computational methods to further develop your design skills. You’ll specialise in your chosen discipline of naval architecture, marine engineering and marine systems. Finally, you’ll carry out an in-depth investigation into a specialist topic of personal interest as part of your individual honours project.

Core modules
-HYFM322 Computational Fluid Dynamics
-MARN338 Naval Architecture
-MARN340 Marine Systems Engineering
-PRME307 Honours Project
-MECH340 Engineering Design
-MARN306 Marine Engineering

Final year
Your final year refines the skills you have developed over the course of your studies, and includes additional technical modules. Finally, you'll work on an interdisciplinary project, drawing on your design and engineering abilities.

Core modules
-MECH532 Applied Computer Aided Engineering
-MECH533 Robotics and Control
-MECH534 Product Development and Evaluation
-MAR528 Mechanics of MRE Structures
-PRCE513 Interdisciplinary Design
-MECH544 Data Processing, Simulation and Optimisation of Engineering Systems

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
See the department website - http://www.rit.edu/kgcoe/mechanical/program/graduate-ms/overview. The master of science degree in mechanical engineering consists of a minimum of 30 credit hours (24 credit hours of course work and 6 credit hours of thesis). Read more
See the department website - http://www.rit.edu/kgcoe/mechanical/program/graduate-ms/overview

The master of science degree in mechanical engineering consists of a minimum of 30 credit hours (24 credit hours of course work and 6 credit hours of thesis). A limited number of credit hours may be transferred from graduate courses taken outside the university, provided such courses complement a student’s proposed graduate program in the mechanical engineering department. An adviser will review course work for possible transfer credit. Upon matriculation into the MS program, the student should formulate a plan of study in consultation with an adviser.

Plan of study

The program includes core courses, focus area courses, elective courses, and a thesis. All full-time and full-time equivalent students are required to attend the weekly graduate seminar each semester they are on campus.

- Focus area courses

All students must develop a focus area of study, with prior approval from their adviser and the department head. The focus area should consist of at least 9 credit hours of graduate study in mechanical engineering and be related to the student’s technical and professional development interests. Examples of focus areas include controls, thermo/fluids, and mechanics/design/materials.

- Independent study

A student also may earn a limited number of credits by doing an independent study with guidance from a member of the graduate faculty. Areas for independent study include selected topics in applied mathematics, mechanics, thermo-fluids, and controls.

- Thesis

Students prepare and present a formal thesis proposal to their faculty adviser prior to completing their course work. An acceptable proposal – including a statement of work, extensive literature search, and proposed timeline, signed by the student and approved by their faculty adviser and department head – is required before students can register for MSMS Thesis (MECE-790). Students are required to submit a written thesis and orally present their thesis work.

International Students

International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS).

Curriculum

Engineering Analysis
Advanced Engineering Mathematics
Focus Area Courses
Electives
MSME Thesis
Graduate Seminar

Read less
The Master's Degree in Fluid Thermodynamics Engineering has a research track that focuses on the field of energy, its transformation, working fluids and processes. Read more
The Master's Degree in Fluid Thermodynamics Engineering has a research track that focuses on the field of energy, its transformation, working fluids and processes.

Student Profile

This master’s degree is designed for students with bachelor's or pre-EHEA degrees in chemical engineering, industrial engineering, chemistry, physics, chemical engineering, mechanical engineering, physical science, chemical science, etc. It is also open to graduates in fields related to thermodynamics engineering.

Applicants must have certain personal qualities in addition to the technical competencies required of the above qualifications. New students are expected to have a critical and open attitude towards knowledge, especially in the field of fluid thermodynamics engineering.

Career Opportunities

Graduates in the University Master's Degree in Fluid Thermodynamics Engineering are capable of working in research in industry, research and development laboratories, the efficiency and sustainability of technological development and the development of new fluids.

Read less
Biofluid Mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems, primarily in biology and medicine, but also in aerospace and robotics. Read more

Why this course?

Biofluid Mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems, primarily in biology and medicine, but also in aerospace and robotics.

This newly-launched MSc course is the first one-year taught course in the world dedicated to Biofluid Mechanics. It covers a wide range of multidisciplinary training on the kinematics and dynamics of fluids related to biological systems, medical science, cardiovascular devices, numerical modelling and computational fluid dynamics.

The one-year full-time programme offers you a unique opportunity to lead the next generation of highly-skilled postgraduates that will form a new model worldwide for academia – with world-class research knowledge, industry – with highly-competitive skills in both biomedical engineering and fluid dynamics, and for society – with better training to work with clinicians.

This course is taught by the Department of Biomedical Engineering, with input from other departments across the Faculty of Engineering and the wider University. You'll be supported throughout the course by a strong team of academics with global connections. You'll benefit from a unique training and an innovative teaching and learning environment.

You'll study

In Semesters 1 and 2, you'll take compulsory classes and a choice of optional classes. 
The remaining months are dedicated to project work, submitted as dissertation (Diploma students) or as a research thesis (MSc students).

Compulsory Classes

Biofluid Mechanics
Industrial Software
Medical Science for Engineering
Research Methodology
Professional Studies in Biomedical Engineering

Optional Classes

Haemodynamics for Engineers
Numerical Modelling in Biomedical Engineeirng
Cardiovascular Devices
The Medical Device Regulatory Process
Entrepreneurship and Commercialisation in Biomedical Engineering
Introduction to Biomechanics
Finite Element Methods for Boundary Value Problems and Approximation
Mathematical Biology and Marine Population Modelling
Design Management
Risk Management

Masters Research Project

The project provides MSc students with the opportunity to experience the challenges and rewards of independent study in a topic of their own choice; the project may involve an extended literature review, experimental and/or computational work.

Postgraduate Diploma Dissertation

The dissertation is likely to take the form of an extended literature review. Your project work will have been supported by a compulsory research methods module and specialist knowledge classes throughout the year designed to assist with technical aspects of methodology and analysis.

Industrial Partnerships

We have established strong partnerships with industrial companies that have offered their support through the provision of software licenses and/or teaching material.

Fees & funding

How much will my course cost?

All fees quoted are for full-time courses and per academic year unless stated otherwise.

Scotland/EU

2017/18 - £5,500
Rest of UK

2017/18 - £9,000
International

2017/18 - £19,100
How can I fund my course?

Scholarship search

Scottish and non-UK EU postgraduate students

Scottish and non-UK EU postgraduate students starting in 2017 can apply for support from the Student Awards Agency Scotland (SAAS). The support is in the form of a tuition fee loan and for eligible students a living cost loan. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Students coming from England

Students ordinarily resident in England can apply for Postgraduate support from Student Finance England. The support is a loan of up to £10,280 which can be used for both tuition fees and living costs. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Students coming from Wales

Postgraduate students starting in 2017 who are ordinarily resident in Wales can apply for support from Student Finance Wales. The support is a loan of up to £10,280 which can be used for both tuition fees and living costs. We are waiting on further information being released about this support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Students coming from Northern Ireland

Postgraduate students starting in 2017 who are ordinarily resident in Northern Ireland can apply for support from Student Finance NI. The support is a tuition fee loan of up to £5,500. We are waiting on further information being released about this support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

International students

We have a large range of scholarships available to help you fund your studies. Check our scholarship search for more help with fees and funding.

Please note

The fees shown are annual and may be subject to an increase each year. Find out more about fees.

Read less
Biofluid mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems primarily in biology and medicine, but also in aerospace and robotics. Read more

Research opportunities

Biofluid mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems primarily in biology and medicine, but also in aerospace and robotics.

Our new MRes course covers a wide range of multidisciplinary training on the kinematics and dynamics of fluids related to biological systems, medical science, cardiovascular devices, numerical modelling and computational fluid dynamics (CFD), focusing on research. The MRes differs from an MSc in that you'll have the opportunity to perform multidisciplinary research for a longer time, preparing you for a research career and equipping you with world-class research knowledge.

The course is taught by the Department of Biomedical Engineering, with input from other departments across the faculty and the University.

During the course, you'll be supported by a strong team of academics with worldwide connections and you'll be offered a unique training and innovative teaching and learning environment.

Course director: Dr Asimina Kazakidi

Lecturer in Biofluid Mechanics

Course co-director: Professor Dimitris Drikakis

Executive Dean of Engineering and Professor of Engineering Science

What you'll study

This one-year programme consists of compulsory and optional classes in the first two semesters. Each class has timetabled contact hours, delivered predominantly in lectures, laboratories and tutorials.

The MRes research project will be chosen and started in semester one with guidance from a supervisor. Throughout the year you'll be working on your project.

Compulsory classes

Professional Studies in Biomedical Engineering
Research Methodology
MRes project

Elective classes

Biofluid Mechanics
Industrial Software
Medical Science for Engineering
Haemodynamics for Engineers
Numerical Modelling in Biomedical Engineering
Cardiovascular Devices
The Medical Device Regulatory Process
Entrepreneurship & Commercialisation in Biomedical Engineering
Introduction to Biomechanics
Finite Element Methods for Boundary Value Problems and Approximation
Mathematical Biology & Marine Population Modelling
Design Management
Risk Management

Guest lectures

During the course, academics and industrial speakers will be invited as part of the training. You'll also benefit from departmental seminars and knowledge exchange events.

Fees & funding

Fees

All fees quoted are per academic year unless otherwise stated.

Here are our fees for 2017/18:

Scotland/ EU

£4,195
Rest of UK

£4,195
International students

£19,100
Funding

If you can't find what you're looking for, try our scholarship search instead.

The fees shown are annual and may be subject to an increase each year.

Support & development

Careers

The new MRes course aims to train students in the Biofluid Mechanics field, targeting primarily the academic research market, but also the Medical Devices and Simulation/Analysis software industries and other related and new emerging markets.

Our postgraduates will benefit from acquiring world-class training and competitive skills in both biomedical and fluid dynamics disciplines that will make them highly employable at the following markets and related sectors/companies:

academic research
medical device market
simulation & analysis software market
biosimulation market
NHS & the healthcare/medical simulation market
life science research tools & reagents market
We've identified the current key vendors in each of the above markets and aim to create links with the relevant industry and monitor the changing market and employability trends, in order to adjust teaching modules and approaches and to enhance employability of our graduates.

Industrial partnerships

We've already established strong partnerships with industrial companies that have offered their support through the provision of software licenses and/or teaching material.

Student support

From financial advice to our IT facilities, we have loads of different support for all students here at our University. Get all the information you need at Strathlife.

Read less
This MSc aims to equip students with the skills of analysis and design necessary for employment as professional civil engineers, and give them a solid academic background for becoming chartered engineers. Read more
This MSc aims to equip students with the skills of analysis and design necessary for employment as professional civil engineers, and give them a solid academic background for becoming chartered engineers. The programme combines traditional lectures with group projects and an individual research project in the student’s chosen specialist field. The Civil Engineering MSc at UCL now offers five additional routes.

Degree information

Students develop advanced knowledge of civil engineering and associated engineering and scientific disciplines (structure dynamics, sustainable building design, transport, fluids, geotechnics, water and drainage, environmental and coastal engineering, planning and construction). They gain awareness of the context in which engineering operates, in terms of design, construction and the environment, alongside transferable skills, which leads to careers in industry and research.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits), and a research project (60 credits).

Core modules
-Advanced Soil Mechanics
-Advanced Structures
-Roads and Underground Infrastructure
-Project Management (Professional Development Module)

Optional modules - students choose four from the following:
-Anatomy of a Railway
-Applied Building Information Modelling
-Building Engineering Physics
-Coastal Engineering
-Data Analysis
-Engineering and International Development
-Environmental Modelling
-Environmental Systems
-Finite Element Modelling and Numerical Methods
-GIS Principles and Technology
-Introduction to Seismic Design of Structures
-Natural and Environmental Disasters
-Principles and Practices of Surveying
-Roads and Underground Infrastructure
-Systems, Society and Sustainability
-Structural Dynamics
-Urban Flooding and Drainage

Please note: combinations of different modules will be limited and determined by timetable constraints.

Dissertation/report
All students undertake an independent research project, which culminates in a dissertation of approximately 12,000 words.

Teaching and learning
The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The design project includes collective and individual studio work, while the research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Careers

There are excellent employment prospects for our graduates. Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Why study this degree at UCL?

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting multidisciplinary department with a tradition of excellence in teaching and research, situated within the heart of London.

This MSc reflects the broad range of expertise available within the department and its strong links with the engineering industry and places emphasis on developing skills within a teamwork environment. The programme provides a clear route to a professional career in civil engineering.

In addition, students wishing to combine the general MSc in Civil Engineering can now apply to one of five specialist pathways in related disciplines (Seismic Design, Environmental Systems, GIS, Surveying and Integrated Design).

Read less
The Advanced Process Engineering programme advances students’ knowledge in process engineering by focusing on an in-depth understanding of the fundamentals of key chemical and industrial processes and on their application and translation to practice. Read more
The Advanced Process Engineering programme advances students’ knowledge in process engineering by focusing on an in-depth understanding of the fundamentals of key chemical and industrial processes and on their application and translation to practice.

You will encounter the latest technologies available to the process industries and will be exposed to a broad range of crucial operations. Hands-on exposure is our key to success.

The programme uses credit accumulation and offers advanced modules covering a broad range of modern process engineering, technical and management topics.

Core study areas include applied engineering practice, downstream processing, research and communication, applied heterogeneous catalysis and a research project.

The research project is conducted over two semesters and involves individual students working closely with a member of the academic staff on a topic of current interest. Recent examples, include water purification by advanced oxidation processes, affinity separation of metals, pesticides and organics from drinking water, biodiesel processing and liquid mixing in pharmaceutical reactors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-process-engineering/

Programme modules

Compulsory Modules
Semester 1:
- Applied Engineering Practice
- Downstream Processing
- Research and Communication

Semester 2:
- Applied Heterogeneous Catalysis

Semester 1 and 2:
- MSc Project

Optional Modules (select four)
Semester 1:
- Chemical Product Design
- Colloid Engineering and Nano-science
- Filtration
- Hazard Identification and Risk Management

Semester 2:
- Mixing of Fluids and Particles
- Advanced Computational Methods for Modelling

Careers and further study

Our graduates go on to work with companies such as 3M, GE Water, GL Noble Denton, GSK, Kraft Food, Tata Steel Group, Petroplus, Shell, Pharmaceutical World and Unilever. Some students further their studies by enrolling on a PhD programme.

Why choose chemical engineering at Loughborough?

The Department of Chemical Engineering at Loughborough University is a highly active, research intensive community comprising 21 full time academic staff, in addition to research students, postdoctoral research fellows and visitors, drawn from all over the world.

Our research impacts on current industrial and societal needs spanning, for example, the commercial production of stem cells, disinfection of hospital wards, novel drug delivery methods, advanced water treatment and continuous manufacturing of pharmaceutical products.

- Facilities
The Department has excellent quality laboratories and services for both bench and pilot scale work, complemented by first-rate computational and IT resources, and supported by mechanical and electronic workshops.

- Research
The Department has a strong and growing research programme with world-class research activities and facilities. Given the multidisciplinary nature of our research we work closely with other University departments across the campus as well as other institutions. The Departments research is divided into six key areas of interdisciplinary research and sharing of expertise amongst groups within the Department is commonplace.

- Career Prospects
The Department has close working relationships with AstraZeneca, BP, British Sugar, Carlsberg, E.ON, Exxon, GlaxoSmithKline, PepsiCo and Unilever to name but a few of the global organisations we work with and employ our graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-process-engineering/

Read less
Lead academic. Dr Martin Nicklin. This flexible course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies. Read more

About the course

Lead academic: Dr Martin Nicklin

This flexible course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies. Core modules cover the fundamentals. You choose specialist modules from the pathway that interests you most. We also give you practical lab training to prepare you for your research project. The project is five months of invaluable laboratory experience: planning, carrying out, recording and reporting your own research.

Recent graduates work in academic research science, pharmaceuticals and the biotech industry.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

From Genome to Gene Function; Human Gene Bioinformatics; Research Literature Review; Human Disease Genetics; Modulating Immunity; Laboratory Practice and Statistics.

You choose: six optional pathways

1. Genetic Mechanisms pathway:


Modelling Protein Interactions; Gene Networks: Models and Functions.

2. Microbes and Infection pathway:


Virulence Mechanisms of Viruses, Fungi and Protozoa; Mechanisms of Bacterial Pathogenicity; Characterisation of Bacterial Virulence Determinants.

3. Experimental Medicine pathway:


Molecular and Cellular Basis of Disease; Model Systems in Research; Novel Therapies.

4. Cancer pathway:

Molecular Basis of Tumourigenesis and Metastasis; Molecular Techniques in Cancer Research; Molecular Approaches to Cancer Diagnosis and Treatment.

5. Cardiovascular pathway:

Vascular Cell Biology; Experimental Models of Vascular Disease; Vascular Disease Therapy and Clinical Practice.

6. Clinical Applications pathway:

Apply directly to this pathway. Available only to medical graduates. Students are recruited to a specialist clinical team and pursue the taught programme (1-5) related to the attachment. They are then attached to a clinical team for 20 weeks, either for a clinical research project or for clinical observations. See website for more detail and current attachments.

Teaching and assessment

Lectures, seminars, tutorials, laboratory demonstrations, computer practicals and student presentations. Assessment is continuous. Most modules are assessed by written assignments and coursework, although there are some written exams. Two modules are assessed by verbal presentations.

Your research project is assessed by a thesis, possibly with a viva.

Read less

Show 10 15 30 per page



Cookie Policy    X