• Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
King’s College London Featured Masters Courses
EURECOM Featured Masters Courses
Cass Business School Featured Masters Courses
Cranfield University Featured Masters Courses
University of Nottingham Featured Masters Courses
"fluid" AND "mechanics"×
0 miles

Masters Degrees (Fluid Mechanics)

We have 115 Masters Degrees (Fluid Mechanics)

  • "fluid" AND "mechanics" ×
  • clear all
Showing 1 to 15 of 115
Order by 
This new MSc programme will educate future Engineers specialising in civil engineering fluid mechanics. The offshore, coastal and built environments represent a unique combination of areas, providing students with a well-rounded and broad knowledge of civil engineering fluid mechanics. Read more
This new MSc programme will educate future Engineers specialising in civil engineering fluid mechanics.

The offshore, coastal and built environments represent a unique combination of areas, providing students with a well-rounded and broad knowledge of civil engineering fluid mechanics.

The students will have access to the world-class Hydrodynamics Laboratory at Imperial College London to perform and observe experimental investigations. This will allow students to cement principles taught during lectures, as well as inspiring the future crop of Engineers in Fluid Mechanics.

In addition, there is a strong design component to the programme in the shape of four projects to emphasise application and industry relevance.

Furthermore, students will also have the opportunity to undertake research with academics within the top-rated Civil and Environmental Engineering Department from recent research assessment exercises.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Erasmus Mundus Computational Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Erasmus Mundus Computational Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University has gained a significant international profile as one of the key international centres for research and training in computational mechanics and engineering. As a student on the Master's course in Erasmus Mundus Computational Mechanics, you will be provided with in-depth, multidisciplinary training in the application of the finite element method and related state-of-the-art numerical and computational techniques to the solution and simulation of highly challenging problems in engineering analysis and design.

Key Features of Erasmus Mundus Computational Mechanics MSc

The Zienkiewicz Centre for Computational Engineering is acknowledged internationally as the leading UK centre for computational engineering research. It represents an interdisciplinary group of researchers who are active in computational or applied mechanics. It is unrivalled concentration of knowledge and expertise in this field. Many numerical techniques currently in use in commercial simulation software have originated from Swansea University.

The Erasmus Mundus MSc Computational Mechanics course is a two-year postgraduate programme run by an international consortium of four leading European Universities, namely Swansea University, Universitat Politècnica de Catalunya (Spain), École Centrale de Nantes (France) and University of Stuttgart (Germany) in cooperation with the International Centre for Numerical Methods in Engineering (CIMNE, Spain).

As a student on the Erasmus Mundus MSc Computational Mechanics course, you will gain a general knowledge of the theory of computational mechanics, including the strengths and weaknesses of the approach, appreciate the worth of undertaking a computational simulation in an industrial context, and be provided with training in the development of new software for the improved simulation of current engineering problems.

In the first year of the Erasmus Mundus MSc Computational Mechanics course, you will follow an agreed common set of core modules leading to common examinations in Swansea or Barcelona. In addition, an industrial placement will take place during this year, where you will have the opportunity to be exposed to the use of computational mechanics within an industrial context. For the second year of the Erasmus Mundus MSc Computational Mechanics, you will move to one of the other Universities, depending upon your preferred specialisation, to complete a series of taught modules and the research thesis. There will be a wide choice of specialisation areas (i.e. fluids, structures, aerospace, biomedical) by incorporating modules from the four Universities. This allows you to experience postgraduate education in more than one European institution.

Modules

Modules on the Erasmus Mundus MSc Computational Mechanics course can vary each year but you could expect to study the following core modules (together with elective modules):

Numerical Methods for Partial Differential Equations

Continuum Mechanics

Advanced Fluid Mechanics

Industrial Project

Finite Element Computational Analysis

Entrepreneurship for Engineers

Finite Element in Fluids

Computational Plasticity

Fluid-Structure Interaction

Nonlinear Continuum Mechanics

Computational Fluid Dynamics

Dynamics and Transient Analysis

Reservoir Modelling and Simulation

Accreditation

The Erasmus Mundus Computational Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

See http://www.jbm.org.uk for further information.

This degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

On the Erasmus Mundus MSc Computational Mechanics course, you will have the opportunity to apply your skills and knowledge in computational mechanics in an industrial context.

As a student on the Erasmus Mundus MSc Computational Mechanics course you will be placed in engineering industries, consultancies or research institutions that have an interest and expertise in computational mechanics. Typically, you will be trained by the relevant industry in the use of their in-house or commercial computational mechanics software.

You will also gain knowledge and expertise on the use of the particular range of commercial software used in the industry where you are placed.

Careers

The next decade will experience an explosive growth in the demand for accurate and reliable numerical simulation and optimisation of engineering systems.

Computational mechanics will become even more multidisciplinary than in the past and many technological tools will be, for instance, integrated to explore biological systems and submicron devices. This will have a major impact in our everyday lives.

Employment can be found in a broad range of engineering industries as this course provides the skills for the modelling, formulation, analysis and implementation of simulation tools for advanced engineering problems.

Student Quotes

“I gained immensely from the high quality coursework, extensive research support, confluence of cultures and unforgettable friendship.”

Prabhu Muthuganeisan, MSc Computational Mechanics



Read less
The Thermal Power and Fluid Engineering MSc is a highly successful course which has been offered here for almost forty years. Read more

The Thermal Power and Fluid Engineering MSc is a highly successful course which has been offered here for almost forty years. The aim of this postgraduate course is to train and educate thermofluid engineers to enable them to meet present and future demands of the industry and to equip them with the necessary skills to engage in employment or further research.

The course is suitable for engineering/science graduates and professionals who not only wish to enhance their expertise in thermofluids but also to develop their competence in the use of state-of-the-art analytical, computational and experimental methods; advanced methods which are specifically designed for the analysis of heat and fluid flow in both industrial and research applications.

The objectives of this course are to produce postgraduate specialists with:

  • advanced understanding of heat and fluid flow processes and their role in modern methods of power generation
  • in-depth understanding of numerical and experimental techniques in heat and fluid flow

Teaching on the course is delivered by academics from our world-leading research group in the field of turbulence modelling and heat transfer.

Special features

Thermal Power and Fluid Engineering Merit Award

The three students who achieve the highest performance in this MSc course in 2016-17 will receive an award.

The winners of the Thermal Power and Fluid Engineering Merit Award are presented with a certificate by the Head of the School, Prof Andy Gibson, and are awarded a cash prize. The awards are £3,000 for the top student, £2,000 for the second and £1,000 for the third student in each semester.

The winners of the award this semester were: Aseem Bhavnesh Desai (1st), Robert O'Donoghue (2nd) and Luca Cappellone (3rd).

Teaching and learning

This is a full-time course studied over 12 months with one start date each year in September. Every year this MSc course in Thermal Power and Fluid Engineering attracts a large number of applications from all around the world, which allows us to select only the best candidates.

Throughout the course, alongside the teaching, special emphasis is placed on both computational and experimental work; the aim is to provide insight through experimentally observed phenomena, and also to provide practical/computational experience of a wide range of measurement and data analysis techniques. Thus, the course has a strong practical orientation which is supported by our School laboratories and facilities and it aims to produce engineers who are able to engage in the design, development and testing of internal combustion engines, turbines or power producing devices. Whilst on the course, students have the opportunity to participate in a number of industrial visits. Relevant companies sometimes offer projects to our students as a result of these visits.

The MSc is continually reviewed and now includes course units such as research and experimental methods, advanced fluid mechanics, advanced heat transfer, engineering thermodynamics, power engineering and computational fluid dynamics. Students are assessed based upon a combination of coursework, laboratory calculations, exams and projects. Upon successful completion of taught modules the students are required to do a research dissertation .

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

The MSc in Thermal Power and Fluid Engineering trains graduates in the theory and practice of a broad range of industrially relevant topics within the fields of thermodynamics and fluid mechanics. It is specifically designed to meet the needs of the modern engineer both in industry and in research. Most of our research is derived and funded by industry, and we have always been proud of maintaining strong links with our industrial partners. Teaching staff on this course have research-based collaborations with multinational companies such as Boeing, Airbus, Rolls Royce, Jaguar Land rover, Électricité de France, Procter and Gamble, Unilever, Dyson, Alstom and many others.

Each year Manchester careers fairs, workshops and presentations attract more than 600 exhibitors and 20,000 visitors illustrating how employers target Manchester graduates.

Our recent graduates have gone on to work in internationally renowned companies including:

  • Airbus, UK
  • Électricité de France, UK
  • Jaguar Land Rover, UK
  • Dassault Systèmes, France
  • Honda Motors, UK
  • Doosan Global, UK
  • ExxonMobil, UK
  • Saudi Aramco, KSA
  • Engro Chemicals, Pakistan
  • Abu Dhabi National Oil Company, UAE
  • ANSYS, UK
  • ABB Group, UK
  • Exa GmbH, UK

Please see our Alumni profiles to find out more about some of our graduates.

Accrediting organisations

This Masters Course is accredited by the IMechE, the Institution of Mechanical Engineers which is the UK's professional body of Mechanical Engineers. This means that graduates from this course are recognised by the IMechE as having the academic qualifications required of candidates for the status of Chartered Engineer.



Read less
This course will appeal to you if you wish to develop the versatility and depth of knowledge to deal with new and unusual challenges across a wide range of disciplines within engineering and beyond. Read more
This course will appeal to you if you wish to develop the versatility and depth of knowledge to deal with new and unusual challenges across a wide range of disciplines within engineering and beyond. The programme consists of five core modules including essential advanced level aspects of solid and fluid mechanics, precision engineering, modelling and simulation.

You can tailor the course to your interests through your individual project and by choosing three optional modules drawing in subjects such as biomechanics, heat transfer, renewable energy, energy storage technologies, mathematical and computational modelling, or further advanced fluid dynamics. Along the way you’ll develop skills in the understanding and modelling of a range of complex systems.

You’ll be based within a forward-thinking learning environment addressing industry focused research activities. Our activities include: automotive systems; biomedical engineering; solid and fluid mechanics; electrical and thermal energy systems, energy conversion and storage, and sustainable cities.

Recent graduates are now working in senior technical engineering, academic research, global consultancy, management positions, and roles in business, finance and accountancy.

Course structure

The MSc degree (totalling 180 credits) comprises:
-Eight taught modules (15 credits each)
-A research project (60 credits)

The five core modules of the course focus on essential advanced level aspects of solid and fluid mechanics, precision engineering, modelling and simulation. These topics develop skills in understanding and modelling a range of complex systems, developing the theories of interaction and representing these with mathematical formulae. Solution of these models is covered through analytical solution, writing computer code and using proprietary (industry standard) software. These skills are useful in all areas of mechanical engineering and are associated with the application of computers in engineering practice.

Three optional modules allow a focused study of topics directed towards the students’ own interests and provide students with a knowledge and understanding of the ‘state-of-the-art’ in one or more of the many areas of mechanical engineering in which the School has acknowledged expertise. The optional modules are run in subject areas for which Warwick has a very strong research background and are led by academics who are experts in the field.

Projects can be chosen in any available subject area. The project allows students to specialise further in their chosen field of interest, gaining substantial expertise in one particular area. Although the School offers a broad range of project topics, the individual project is usually associated with current research activity or industrial consultancy. Students therefore benefit from working at the cutting edge of their chosen field, doing work that is of direct relevance to society or industry.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University has been at the forefront of international research in the area of computational engineering. Internationally renowned engineers at Swansea pioneered the development of numerical techniques, such as the finite element method, and associated computational procedures that have enabled the solution of many complex engineering problems. As a student on the Master's course in Computer Modelling and Finite Elements in Engineering Mechanics, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Key Features: Computer Modelling and Finite Elements in Engineering Mechanics

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Using mathematical modelling as the basis, computational methods provide procedures which, with the aid of the computer, allow complex problems to be solved. The techniques play an ever-increasing role in industry and there is further emphasis to apply the methodology to other important areas such as medicine and the life sciences.

This Computer Modelling and Finite Elements in Engineering Mechanics course provides a solid foundation in computer modelling and the finite element method in particular.

The Zienkiewicz Centre for Computational Engineering, within which this course is run, has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

Modules

Modules on the Computer Modelling and Finite Elements in Engineering Mechanics course can vary each year but you could expect to study:

Reservoir Modelling and Simulation

Solid Mechanics

Finite Element Computational Analysis

Advanced Fluid Mechanics

Computational Plasticity

Fluid-Structure Interaction

Nonlinear Continuum Mechanics

Computational Fluid Dynamics

Dynamics and Transient Analysis

Computational Case Study

Communication Skills for Research Engineers

Numerical Methods for Partial Differential Equations

Accreditation

The MSc Computer Modelling and Finite Elements in Engineering Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

The Zienkiewicz Centre for Computational Engineering has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Careers

Employment in a wide range of industries, which require the skills developed during the Computer Modelling and Finite Elements in Engineering Mechanics course, from aerospace to the medical sector. Computational modelling techniques have developed in importance to provide solutions to complex problems and as a graduate of this course in Computer Modelling and Finite Elements in Engineering Mechanics, you will be able to utilise your highly sought-after skills in industry or research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
Could you see yourself designing high performance bikes, working with racing car teams or producing ground breaking medical components? You could follow in the footsteps of some of our graduates and begin shaping your own exciting career in mechanical engineering. Read more
Could you see yourself designing high performance bikes, working with racing car teams or producing ground breaking medical components? You could follow in the footsteps of some of our graduates and begin shaping your own exciting career in mechanical engineering.

You will distinguish yourself professionally with a degree accredited by the Institution of Mechanical Engineers (IMechE) and the Institute of Materials, Minerals and Mining (IoM3) for Chartered Engineer status. You can apply to either of these institutions for membership as a Chartered Engineer.

Key features

-Open the door to a successful future. Our graduates have gone on to work for Ferrari, Honda, British Cycling, Rolls-Royce, Williams Grand Prix Engineering, Activa, Babcock Marine, Princess Yachts and more.
-Primed for your career: 82 per cent of our students are in a professional or managerial job six months after graduation. (Source: unistats)
-Benefit from an optional 48 week paid work placement.
-Distinguish yourself professionally with a degree accredited by the Institution of Mechanical Engineers (IMechE) and the Institute of Materials, Minerals and Mining (IoM3) for Chartered Engineer status. You can apply to either of these institutions for membership as a Chartered Engineer.
-Develop a strong foundation in mechanical engineering principles and materials science.
-Choose from specialist modules in composites engineering, design and manufacture.
-Experience modern laboratory facilities for practical work which is a core part of the degree.
-Benefit from working on industrially relevant problems within composite materials and design of composite structures.

Course details

Year 1
In Year 1, you’ll acquire a sound foundation in design, mechanics, materials, electrical principles, thermo-fluids, mathematics and business, learning by active involvement in real engineering problems. You‘ll undertake a popular hands-on module in manufacturing methods. Modules are shared with the MEng and BEng (Hons) in Mechanical Engineering and the MEng and BEng (Hons) Marine Technology.

Core modules
-MECH120 Skills for Design and Engineering (Mechanical)
-THER104 Introduction to Thermal Principles
-BPIE115 Stage 1 Mechanical Placement Preparation
-MECH117 Mechanics
-MECH118 Basic Electrical Principles
-A5MFT1 Mech BEng 1 MFT Session
-MATH187 Engineering Mathematics
-MATS122 Manufacturing and Materials
-MECH121PP Team Engineering (Engineering Design in Action)

Year 2
In Year 2, you’ll build your knowledge of composite materials in preparation for specialist modules in the final year. The central role of design integrates with other modules like structures and materials. You'll also study modules on thermodynamics, fluid mechanics, business dynamics, mathematics and control and quality management.

Core modules
-BPIE215 Stage 2 Mechanical Placement Preparation
-CONT221 Engineering Mathematics and Control
-HYFM230 Fluid Mechanics 1
-STRC203 Engineering Structures
-MECH232 Engineering Design
-MFRG208 Quality Management l
-MATS234 Materials
-THER207 Applied Thermodynamics
-STO208 Business for Engineers

Optional placement year
In Year 3, you're strongly encouraged to do a year’s work placement to gain valuable paid professional experience. We will support you to find a placement that is right for you. Our students have worked for a variety of companies from BMW Mini, Bentley, Babcock Marine to NASA. A successful placement could lead to sponsorship in your final year, an industrially relevant final year project, and opportunities for future employment.

Optional modules
-BPIE335 Mechanical Engineering Related Placement

Year 4
In Year 4, you’ll specialise in composites design, engineering and manufacture. You’ll undertake an group design project. Additional modules of study include statistics and quality management. You'll also develop your knowledge and skills through an in-depth project on a topic of your choice.

Core modules
-HYFM322 Computational Fluid Dynamics
-MFRG311 Quality Management II
-MATS347 Composites Design and Manufacture
-PRME307 Honours Project
-MATS348 Composites Engineering
-MECH340 Engineering Design

Final year
In your final year, you'll extend your existing skills in engineering design, analysis and control theory. Broaden your knowledge by studying subjects such as entrepreneurship, advanced information technology, robotics and marine renewable energy. You’ll also work in a design team with students from other engineering disciplines working on projects such as design, materials and environmental issues related to bioenergy production, gas/nuclear power stations, energy from the sea and eco villages.

Core modules
-MECH532 Applied Computer Aided Engineering
-MECH533 Robotics and Control
-MECH534 Product Development and Evaluation
-MAR528 Mechanics of MRE Structures
-PRCE513 Interdisciplinary Design
-MECH544 Data Processing, Simulation and Optimisation of Engineering Systems

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
The Department of Mechanical Engineering. Mechanical Engineering is a thriving multi-disciplinary field with significant impact on industry and society all over the world. Read more

The Department of Mechanical Engineering

Mechanical Engineering is a thriving multi-disciplinary field with significant impact on industry and society all over the world. The Department of Mechanical Engineering at Ben-Gurion University of the Negev, established 50 years ago, has since then been the home to many scientific breakthroughs and technological achievements. The department offers both undergraduate and graduate programs in a wide range of subjects that encompass both practical and theoretical aspects of Mechanical Engineering.

The Department has a student enrollment of over 800 students pursuing B.Sc., M.Sc. and Ph.D. degrees.

At present, the Department employs 25 full-time senior faculty members who teach and conduct cutting-edge research in all major areas of Mechanical Engineering, including robotics, control and autonomous systems, solid mechanics, bio-inspired materials and systems, fluid mechanics, micro- and nano-electromechanical systems, heat transfer, system design and monitoring, thermodynamics, energy technologies and particulate materials technology.

M.Sc. Degree in Mechanical Engineering

The Department of Mechanical Engineering offers a Master of Science (M.Sc.) graduate program in Mechanical Engineering. The aim of the Program is to provide students with expertise and advanced knowledge in a selected field of specialization. The M.Sc. degree requirements include the successful completion of 8 courses aimed at establishing the necessary advanced background, as well as carrying out a research project culminating in a full M.Sc. thesis. The thesis is supervised by a senior faculty member with expertise in the field of specialization. Students graduating with a M.Sc. degree are equipped to assume senior research and development positions in industry, and may continue towards Ph.D. studies.

M.Sc. studies Mechanical Engineering at BGU can be extended into a combined Ph.D. track, such that the M.Sc. thesis exam serves also as the Ph.D. candidacy exam. The M.Sc. degree is typically completed within 2 academic years (4 semesters). Area of specialization in the ME Master’s program include: robotics |control | autonomous systems | solid mechanics |thermodynamics | heat transfer | fluid mechanics | energy technologies | bio-inspired materials and systems | micro and nano-electromechanical systems| system design and monitoring | particulate materials technology.

M.Sc. Thesis

The research leading to the M.Sc. thesis is conducted throughout the two years of studies. The student is expected to publish and present the research results in leading international journals and conferences. The thesis is evaluated through a written report and an oral examination.

How to Apply

Please visit our online application site at: https://apps4cloud.bgu.ac.il/engrg/

Applications are accepted on a rolling basis. Please check website for scholarships application deadline.

Tuition Fees

Tuition is approximately $ 5,000 (US) per year. Outstanding students may be eligible for scholarships, which cover tuition fees and provide living expenses. Most ME faculty can provide additional substantial financial support through their research grants. Additionally, some teaching assistantship positions are also open to Master’s student, providing additional funding, on a competitive basis.

Further Details

The Department of Mechanical Engineering at BGU: http://in.bgu.ac.il/en/engn/mater/Pages/default.aspx

Director of Graduate Studies: Prof. Haim Kalman, email:

BGU International - http://www.bgu.ac.il/international



Read less
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems. Read more
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems.

As a broad-based Mechanical Engineering degree this programme provides a wide variety of career options in the engineering sector.

Core study areas include experimental mechanics, simulation of advanced materials and processes structural analysis, computer aided engineering, engineering design methods, sustainable development: the engineering context, the innovation process and project management, thermofluids and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Programme modules

- Experimental Mechanics
This module introduces the following elements: experimental techniques for analysis and characterisation of various engineering materials and full-field, non-contact optical methods for deformation and strain measurements. Students will learn to identify the most appropriate experimental techniques for evaluating material response in a specific setting and for different types of materials.

- Simulation of Advanced Materials and Processes
The objective of this module is to introduce students to the concepts in numerical simulation of advanced materials and processes. To enable students to gain theoretical and practical experience in simulating mechanical behaviour of advanced materials and modelling processes related to these materials using finite element modelling techniques.

- Structural Analysis
Students will gain an understanding of modern concepts of structural analysis. They will gain practical experience in analyses of structures using finite-element modelling and understand the need for structural analysis in design.

- Computer Aided Engineering
Students will learn how to evaluate, choose and implement CAE systems. Students will learn to select and apply appropriate computer based methods and systems for modelling engineering products; analysing engineering problems; and assisting in the product design process.

- Engineering Design Methods
The aims of this module are to provide students with a working understanding of some of the main methods which may be employed in the design of products and systems. Students will learn to identify appropriate methods and techniques for use at different times and situations within a project.

- Sustainable Development: The Engineering Context
The objective of this module are to provide students with an understanding of the principles and practices of sustainable development and to provide them with an understanding of how engineers can help manufacturing businesses develop into more sustainable enterprises.

- The Innovation Process and Project Management
This module allows students to gain a clear overview of the innovation process and an understanding of the essential elements within it. Students will learn strategies for planning and carrying out innovative projects in any field.

- Thermofluids
In this module students study the fundamentals of combustion processes and understand key aspects relating to performance and emissions. Students develop knowledge and skills required by engineers entering industries involved in the design and use of combustion equipment.

- Project
In addition to the taught modules, all students undertake an individual major project. Part-time students normally undertake a major project that is based on the needs of their employing company.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling and independent research.

The programme consists of eight, week-long, taught lecture modules plus project work. Each taught module is self-contained and covers a complete target. This programme is available in both full-time and part-time forms. Full-time students commence their studies on the first Monday in October for a period of 12 months. Part-time students may commence their registration at any time between October and the following March, and take 3 years (typical) to complete the programme.

On completion of this programme, students should be able to:
- Plan and monitor multi-disciplinary projects;
- appreciate the central role of design within engineering;
- demonstrate competence in using computer based engineering techniques;
- analyse and understand complex engineering problems; and
- use team working skills and communicate effectively at an advanced technical level.

Facilities

As a student within the School of Mechanical and Manufacturing Engineering you will have access to a range of state-of-the-art equipment. Our computer labs are open 24/7 and use some of the latest industry standard software including STAR-CCM and CAD.

We have high-tech laboratories devoted to:
- Dynamics and control
- Electronics
- Fluid mechanics
- Materials
- Mechatronics
- Metrology
- Optical engineering
- Structural integrity
- Thermodynamics

Careers and further study

The programme will allow students to acquire the technical and transferable skills required to succeed in a career in industry or academic research. Graduates may also study for an MPhil or PhD with the School.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a country outside the European Union. These scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Read less
Offered through the . Department of Mechanical and Aerospace Engineering. , the Master of Science in Mechanical and Aerospace Engineering prepares students to become leaders in their field across a wide variety of technical industries. Read more

Offered through the Department of Mechanical and Aerospace Engineering, the Master of Science in Mechanical and Aerospace Engineering prepares students to become leaders in their field across a wide variety of technical industries. From fluid mechanics to ultrasound imaging, students open themselves to being taught by world-class faculty and professional and research opportunities found only in the nation's capital.

Students may choose from the following areas of focus to tailor their coursework:

  • Aerospace engineering
  • Design of mechanical engineering systems
  • Fluid mechanics, thermal sciences and energy
  • Industrial engineering
  • Solid mechanics and materials science
  • Structures and dynamics
  • Robotics, mechatronics and controls

Course Structure

  • Credit hours:
  • With thesis: 24 credit hours of coursework + 6 credit hours of thesis research
  • Without thesis: 33 credit hours of coursework
  • Duration: Two years (full-time) or three years (part-time)


Read less
The Masters in Mathematics/Applied Mathematics offers courses, taught by experts, across a wide range. Mathematics is highly developed yet continually growing, providing new insights and applications. Read more

The Masters in Mathematics/Applied Mathematics offers courses, taught by experts, across a wide range. Mathematics is highly developed yet continually growing, providing new insights and applications. It is the medium for expressing knowledge about many physical phenomena and is concerned with patterns, systems, and structures unrestricted by any specific application, but also allows for applications across many disciplines.

Why this programme

  • Mathematics at the University of Glasgow is ranked 3rd in Scotland (Complete University Guide 2017).
  • The School has a strong international reputation in pure and applied mathematics research and our PGT programmes in Mathematics offer a large range of courses ranging from pure algebra and analysis to courses on mathematical biology and fluids.
  • You will be taught by experts across a wide range of pure and applied mathematics and you will develop a mature understanding of fundamental theories and analytical skills applicable to many situations.
  • You will participate in an extensive and varied seminar programme, are taught by internationally renowned lecturers and experience a wide variety of projects.
  • Our students graduate with a varied skill set, including core professional skills, and a portfolio of substantive applied and practical work.

Programme structure

Modes of delivery of the Masters in Mathematics/Applied Mathematics include lectures, laboratory classes, seminars and tutorials and allow students the opportunity to take part in project work.

If you are studying for the MSc you will take a total of 120 credits from a mixture of Level-4 Honours courses, Level-M courses and courses delivered by the Scottish Mathematical Sciences Training Centre (SMSTC).

You will take courses worth a minimum of 90 credits from Level-M courses and those delivered by the SMSTC. The remaining 30 credits may be chosen from final-year Level-H courses. The Level-M courses offered in a particular session will depend on student demand. Below are courses currently offered at these levels, but the options may vary from year to year.

Level-H courses (10 or 20 credits)

  • Algebraic & geometric topology
  • Continuum mechanics & elasticity
  • Differential geometry
  • Fluid mechanics
  • Functional analysis
  • Further complex analysis
  • Galois theory
  • Mathematical biology
  • Mathematical physics
  • Numerical methods
  • Number theory
  • Partial differential equations
  • Topics in algebra.

Level-M courses (20 credits)

  • Advanced algebraic & geometric topology
  • Advanced differential geometry & topology
  • Advanced functional analysis
  • Advanced methods in differential equations
  • Advanced numerical methods
  • Biological & physiological fluid mechanics
  • Commutative algebra & algebraic geometry
  • Elasticity
  • Further topics in group theory
  • Lie groups, lie algebras & their representations
  • Magnetohydrodynamics
  • Operator algebras 
  • Solitons
  • Special relativity & classical field theory.

SMSTC courses (20 credits)

  • Advanced Functional Analysis
  • Advanced Mathematical Methods

The project titles are offered each year by academic staff and so change annually.

Career prospects

Career opportunities are diverse and varied and include academia, teaching, industry and finance.

Graduates of this programme have gone on to positions such as:

Maths Tutor at a university.



Read less
Our course will deepen and widen your knowledge and understanding of mechanical engineering specialist topics. Read more

Our course will deepen and widen your knowledge and understanding of mechanical engineering specialist topics.

You will study a wide range of core modules that advance the core knowledge base of the disciplines and provides the necessary and continuing development of appropriate interpersonal and transferable skills at a level that a Mechanical Engineer would be expected to have, allowing you to function in an advanced engineering environment as senior engineers and managers.

While the main focus of our course is on taught modules, you will have the opportunity to explore a specific subject in more detail through the dissertation.

Our graduates will have developed expertise to improve their employability within design and development of the automotive, aerospace, offshore, oil and gas and all main stream mechanical engineering industry sectors.

Course Details

Our Mechanical Engineering course is for engineering graduates aspiring to responsible positions within aerospace, automotive and general mechanical engineering companies. It is also ideal if you are an engineer holding a BEng degree that requires a further learning element to qualify for Chartered Engineer registration.

A key component of our course is the research based dissertation. This will give you the opportunity to investigate a project in your chosen field of interest.

Core modules that you will study include:

  • Advanced Structural Integrity
  • Advanced Fluid Mechanics
  • Computational Fluid Mechanics
  • Advanced Finite Element Methods and Analysis
  • Instrumentation and Measurement
  • Advanced CAD/CAM
  • Advanced Heat Transfer
  • Composites Design and Analysis
  • Project Management and Research Methods

Teaching & Assessment

Our Mechanical Engineering course is taught by highly-qualified and experienced members of the School’s teaching staff through a combination of:

  • lectures
  • tutorials
  • practical classes
  • laboratories
  • case studies
  • specialist guest lectures

You will be assessed principally by:

  • coursework assignments
  • laboratory investigations
  • examinations

You will also be expected to present your work to internal staff and external industrialists as part of the learning and assessment process.

Career Prospects

Jobs

You will have developed the expertise to improve your employability within design and development of the following industry sectors:

  • automotive
  • aerospace
  • offshore
  • oil and gas
  • all main stream mechanical engineering industry sectors

It is expected that you will obtain professional employment with reputable companies such as:

  • Rolls Royce
  • Howdens
  • Doosan Babcock
  • Babcock International
  • Spirit AeroSystems
  • BAE Systems
  • Thales Optronics

Further Study

Upon completion of our course, you will have attained a Masters level qualification and may pursue additional postgraduate study or doctoral level



Read less
The master's degree in Space and Aeronautical Engineering is aimed at graduates in aerospace engineering or related physical sciences and engineering who wish to improve their skills and knowledge. Read more

The master's degree in Space and Aeronautical Engineering is aimed at graduates in aerospace engineering or related physical sciences and engineering who wish to improve their skills and knowledge. It provides advanced training in the field of space systems and aeronautical engineering that is scientific, technical and practical in nature and will allow students to work towards a professional and/or research career in the aerospace industry. The master's degree is aimed graduates who will go on to seek employment in the aerospace industry or to pursue a research career in this field.

Professional opportunities

The master's degree allows students to plan their training and to focus their professional careers in the aerospace industry on areas such as space missions, space propulsion, aircraft propulsion, aircraft design, aircraft maintenance, fluid mechanics, materials research, airport infrastructure , air traffic management, wind energy, aerodynamics, civil engineering aerodynamics, automotive engineering and the design and civil applications of UAVs.

The training graduates receive will enable them to join R&D departments in the aerospace industry and related industries.

Competencies

Generic competencies

Generic competencies are the skills that graduates acquire regardless of the specific course or field of study. The generic competencies established by the UPC are capacity for innovation and entrepreneurship, sustainability and social commitment, knowledge of a foreign language (preferably English), teamwork and proper use of information resources.

Specific competencies

  • The ability to manage activities that involve projects and/or operations in which technology and organization have interacted effectively and efficiently.
  • The ability to plan, organize and control projects in the aerospace industry, especially innovation (R&D) and process improvement projects.
  • The ability to develop and submit a research proposal according to the criteria of the international scientific community.
  • The ability to analyze and synthesize cross-disciplinary aerospace knowledge applied to aeronautical projects.
  • The ability to use knowledge of applied computational fluid mechanics appropriately in solving compressible aerodynamics problems.
  • The ability to identify the laws of aerodynamics with regard to external flow and flight regimes and apply them in numerical and experimental aerodynamics.
  • The ability to apply knowledge appropriately in processing large quantities of results of numerical calculations applied to analysis and design of aeroelasticity and aerodynamics.
  • The ability to apply knowledge appropriately in the areas of advanced aerodynamics and aeroelasticity applied to analysis and design of aerospace structures.
  • The ability to write a master's thesis and present and defend it to an examination committee.


Read less
This programme develops mathematical modelling skills and provides mathematical techniques required by industry. The period October to June is devoted to lectures, tutorials and practical sessions comprising the core modules. Read more
This programme develops mathematical modelling skills and provides mathematical techniques required by industry.

The period October to June is devoted to lectures, tutorials and practical sessions comprising the core modules.

This is followed by a period of about 14 weeks devoted to an individual project either in an industrial or engineering company or at the University.

Core study areas include mathematical modelling, regular and chaotic dynamics, programming and numerical methods, advanced reliability, availability and maintainability, elements of partial differential equations, static and dynamic optimisation and fluid mechanics.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mathematics/industrial-maths-modelling/

Programme modules

Compulsory Modules:
Semester 1
- Mathematical Modelling I
- Regular and Chaotic Dynamics
- Programming and Numerical Methods
- Advanced Reliability, Availability and Maintainability

Semester 2
- Mathematical Modelling II
- Elements of Partial Differential Equations
- Static and Dynamic Optimisation
- Fluid Mechanics

Assessment

A combination of written examinations, reports, individual and group projects, and verbal presentations.

Careers and further Study

Graduate employment over a wide range of industries encompassing aerospace, automotive electronics, and computer interests as well as software houses, insurance companies, and research establishments and institutions.

Scholarships and sponsorships

A limited number of scholarships are available for this programme as well as the loyalty bonus scheme which reduces fees for Loughborough graduates.

Why choose mathematics at Loughborough?

Mathematics at Loughborough has a long history of innovation in teaching, and we have a firm research base with strengths in both pure and applied mathematics as well as mathematics education.

The Department comprises more than 34 academic staff, whose work is complemented and underpinned by senior visiting academics, research associates and a large support team.

The programmes on offer reflect our acknowledged strengths in pure and applied research in mathematics, and in some cases represent established collaborative training ventures with industrial partners.

- Mathematics Education Centre (MEC)
The Mathematics Education Centre (MEC) at Loughborough University is an internationally renowned centre of research, teaching, learning and support. It is a key player in many high-profile national initiatives.
With a growing number of academic staff and research students, the MEC provides a vibrant, supportive community with a wealth of experience upon which to draw.
We encourage inquiries from students who are interested in engaging in research into aspects of learning and teaching mathematics at Masters, PhD and Post Doc levels. Career prospects With 100% of our graduates in employment and/or further study six months after graduating, career prospects are excellent. Graduates go on to work with companies such as BAE Systems, Citigroup, Experian, GE Aviation, Mercedes Benz, Nuclear Labs USA and PwC.

- Career prospects
With 100% of our graduates in employment and/or further study six months after graduating, career prospects are excellent. Graduates
go on to work with companies such as BAE Systems, Citigroup, Experian, GE Aviation, Mercedes Benz, Nuclear Labs USA and PwC.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mathematics/industrial-maths-modelling/

Read less
The MSc in New and Renewable Energy is designed to equip our graduates with the skills required to meet the growing challenge to achieve energy and environmental sustainability through the application of new and renewable energy technologies. Read more

The MSc in New and Renewable Energy is designed to equip our graduates with the skills required to meet the growing challenge to achieve energy and environmental sustainability through the application of new and renewable energy technologies. The programme aims to enable students to develop the capacity to solve problems across the traditional Engineering boundaries and to have an appreciation of complete energy systems from source to end user, to have knowledge of the relevant technologies and to understand the interactions between them. The programme also provides students with the opportunity to develop skills in research, development, design and project management through individual and team-based project work.

Course Structure

The programme consists of four core modules to provide an advanced engineering education in New and Renewable Energy technologies alongside an optional module that allows students to increase their understanding in a core area suited to their interests and needs. The modules include lecture courses, laboratory experiments, a group design project and a major, individual research and development project.

Core Modules

  • Low Carbon Technologies
  • Energy Conversion and Delivery
  • Group Design Project
  • Research and Development Project.

Optional modules

Students select one optional module. In previous years optional modules have included:

  • Electrical Engineering 3
  • Thermodynamics and Fluid Mechanics 3.

Course Learning and Teaching

This is a 12-month full time programme beginning at the start of the academic year and finishing with students submitting a report and completing an oral examination on their chosen research and development project. The programme consists of four core modules to provide a solid education in a broad range of New and Renewable Energy technologies. A choice of one from two optional modules allows students to choose a study programme most suited to their interests and needs. The modules include lecture courses, a group design project and an individual research and development project.

Students select one of two optional modules. These modules typically include 38 hours of lectures in addition to coursework and laboratory experiments, allowing students to develop research skills in parallel with lectures. The modules are designed to increase a student’s understanding in either thermodynamics and fluid mechanics or electrical engineering. Students are advised to select the module which they feel would best support their learning needs.

The core lecture modules typically involve 38 hours of lectures and cover topics such as electricity generation from renewable and conventional sources, transmission and distribution (including smart networks), electricity markets and optimisation, and low carbon technologies (including electrical vehicles).

The third core module is a group design project focused on a realistic application of renewable energy technology. Students gain experience of teamwork, presentation skills and project management, as well as the technical aspects of engineering design. Students also benefit from this opportunity to develop their research skills in preparation for their individual research and development project.

A major individual research and development project completes the core modules. This provides an open-ended challenge to each individual student, in collaboration with a staff supervisor. Regular meetings are held with the supervisor to discuss project progress and planning issues. A mid-term assessment is carried out to ensure project is on track. At the end of the project students are required to submit a final report on their work, in the style of a research paper. They are also required to prepare and present a poster to encourage further development of their ability to present their work to staff and their peers. An oral examination is held to allow detailed questions to be put to the student regarding the technical aspects of their project. Students should expect to have up to 15 hours of contact time with their supervisors plus over 500 hours of research work and preparation, supported by the School’s technicians and other research workers, over the course of their research projects.



Read less
This course aims to produce graduates with qualities and transferable skills for demanding employment in the engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level. Read more

About the course

This course aims to produce graduates with qualities and transferable skills for demanding employment in the engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Students may elect to follow one of two streams: Thermofluids or Solid Body Mechanics.

Engineering courses within the Department are underpinned by research activities in aerospace engineering, automotive/motorsport engineering, solid and fluid mechanics, and energy and the environment. Staff generate numerous publications, conference presentations and patents, and have links with a wide range of institutions both within and outside the UK.

Aims

Mechanical engineers apply their scientific knowledge to solve problems and design machines that help us enjoy a better lifestyle. They have an enviable choice of industries open to them and this advanced course helps you develop the versatility to deal with complex challenges faced by senior engineers.

On this course you will:
Develop the versatility and depth to deal with new and unusual challenges across a range of engineering areas
Develop imagination and creativity to enable you to follow a successful engineering career with national and international companies and organisations
Continue your professional development to Chartered Engineer status with confidence and acquire new skills at the highest level.

Brunel offer a number of mechanical engineering MSc courses, all accredited by professional institutes as appropriate additional academic study (further learning) for thos seeking to become qualified to register as Chartered Engineers (CEng).

Our collaborative research with numerous outside organisations includes major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Accrediting professional institutes vary by course and include The Institute of Mechanical Engineers (IMechE),The Energy Institute (EI) and The Chartered Institute of Building Services Engineers (CIBSE).

Course Content

During the first two terms (September - March) you will take eight modules, out of which:
Four are the same for both streams (compulsory modules - 15 credits each)
The other four (15 credits each) are different for the two streams.

In May the final examinations for the taught modules will take place and in their third term (June - September) students will complete the final dissertation.

You have the option to choose one of two specialisations, or ‘streams,’ for your dissertation:
Thermofluids, or
Solid Body Mechanics.

Compulsory Modules

Strategic Management, Innovation and Enterprise
Research Methods and Sustainable Engineering
Advanced Modelling and Design
Computer Aided Engineering 1
Dissertation (Individual project)

Optional Modules

Choose one of the two themes below:

Theme 1 – Thermofluids
Advanced Thermofluids
Advanced Heat and Mass Transfer
Energy Conversion Technologies
Renewable Energy Technologies

Theme 2 – Solid Body Mechanics
Advanced Solid Body Mechanics
Dynamics and Modal Analysis
Structural Design and FEA
Human Factors in Design

Special Features

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students

The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Accreditation

Advanced Mechanical Engineering is accredited by the Institution of Mechanical Engineering (IMechE). This will provide a route to Chartered Engineer status in the UK.
At Brunel we provide many opportunities and experiences within your degree programme and beyond – work-based learning, professional support services, volunteering, mentoring, sports, arts, clubs, societies, and much, much more – and we encourage you to make the most of them, so that you can make the most of yourself.

Read less

Show 10 15 30 per page



Cookie Policy    X