• University of Bristol Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Cass Business School Featured Masters Courses
Imperial College London Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Bath Spa University Featured Masters Courses
"flow" AND "cytometry"×
0 miles

Masters Degrees (Flow Cytometry)

We have 29 Masters Degrees (Flow Cytometry)

  • "flow" AND "cytometry" ×
  • clear all
Showing 1 to 15 of 29
Order by 
This course is suitable if you. wish to pursue research into molecular and cell biology or disease mechanisms at PhD level. want to improve your knowledge and skills to be competitive in the life science jobs market. Read more

This course is suitable if you

  • wish to pursue research into molecular and cell biology or disease mechanisms at PhD level
  • want to improve your knowledge and skills to be competitive in the life science jobs market
  • are currently employed and seeking to improve your career prospects

Most of your practical work is carried out in our teaching laboratories which contain industry standard equipment for cell culture, quantitative nucleic acid and protein analysis and a sophisticated suite of analytical equipment such as HPLC and gas chromatography. In addition many of our research facilities such as flow cytometry, confocal microscopy and mass spectrometry are used in taught modules and research projects and our tutors are experts in these techniques.

You gain

  • a detailed and up-to-date understanding of molecular biology and cell biology
  • knowledge of how alterations or defects in cellular processes may lead to disease, such as cellular dysfunction leading to degenerative diseases, cell cycle dys-regulation in cancer, and how mutations result in genetic diseases
  • hands-on expertise in the latest techniques including cell culture, flow cytometry, real-time PCR, immuno-histochemistry and recombinant DNA technology
  • professional skills to further your career in research or the life science industry

The teaching on the course is split between formal lectures and tutorials, and laboratory-based work. A third of the course is a laboratory-based research project, where students are assigned to a tutor who is an active researcher in the biomedical research centre. Typically, taught modules have a mixture of lectures and tutorials and involve a significant amount of laboratory time. Other modules are tutorial-led with considerable input from the course leader who acts as personal tutor.

Tutors complete research within the Biomolecular Sciences Research Centre into cancer, musculoskeletal diseases, human reproduction, neurological disease, medical microbiology and immunological basis of disease. Their work is regularly published in international peer-reviewed journals, showing that the course is underpinned by relevant quality research.

Course structure

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits. 

Core modules:

  • Biomedical laboratory techniques (15 credits)
  • Cell biology (15 credits)
  • Molecular biology (15 credits)
  • Professional development (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Optional modules:

  • Biotechnology (15 credits)
  • Applied biomedical techniques (15 credits)
  • Cellular and molecular basis of cancer (15 credits)
  • Human genomics and proteomics (15 credits)

Assessment

Assessment methods include written examinations and coursework including

  • problem-solving exercises
  • case studies
  • reports from practical work.

Research project assessment includes a written report and viva voce. 

Employability

As a graduate you can find work in the expanding area of life sciences or enter a career in research. You can find careers in areas such as • medical research in universities hospital laboratories or research institutes • private industry.

The course also provides the skills and knowledge for those wishing to do research at PhD level.



Read less
Why study at Roehampton. Develop advanced research skills required in preparation for your career within biomedical research, a clinical environment, or in the health industry. Read more

Why study at Roehampton

  • Develop advanced research skills required in preparation for your career within biomedical research, a clinical environment, or in the health industry.
  • Collaborate with leading, internationally renowned experts in the field who will teach topical and current issues in biomedicine.
  • Conduct your own research project in our state-of-the-art molecular biology laboratories equipped with microscopy analysers, autoradiography, flow cytometry, high sensitivity HPLC and LC-MS, and neural stem cell and tissue culture facilities.
  • We are the most research-intensive modern university in the UK (Research Excellence Framework 2014).
  • Roehampton is ranked best modern university in London (Sunday Times Good University Guide 2016).

Course summary

This innovative degree offers a fascinating opportunity to study modern and topical research areas in Cell Biomedicine. You will gain the essential skills required to prepare for your career in either biomedical research, a clinical setting or within the health industry.

This postgraduate degree will provide you with advanced research training in medical aspects of cell biology and pathology and you will conduct your own lab based research project. With a focus on research methods, you will take you research methods to the next level in producing your own research design, understanding ethics in research projects and best practice in handling statistical data-sets. The programme includes a variety of subject-specific lectures, seminars, tutorials and practical work that will give keep you up-to-date with the current advances in the field. You will learn the theoretical and technological aspects of cellular biomedicine and their practical applications within industry.

You will be taught by enthusiastic, research active experts in the field who conduct research in a diverse range of topics that you can choose to study such as cellular and molecular mechanisms of cancer, microbial resistance to antibiotics, immune mechanisms of disease, stem cell research and molecular modelling in cell biology.

You will conduct your research project in our state-of-the-art laboratories equipped with microscopy analysers, autoradiography, flow cytometry, high sensitivity HPLC and LC-MS, and neural stem cell and tissue culture facilities.

You will automatically be a part of our Health Sciences Research Centre, a community of leading experts who are currently investigating a range of topical issues. You will participate in engaging discussions within research seminars on the latest developments within neuroscience and the health sciences.

Content

In this postgraduate programme, you will be trained in medical aspects of cell biology and pathology with a focus on the lab based research project. The programme has a strong focus on research methods and will provide you with necessary skills in research design, ethics and statistical methods.

You will learn the most recent advances in cellular biomedicine by being part of engaging subject-specific lectures, seminars, tutorials and conducting your own research. You will study the theoretical and technological and their practical applications in cellular biomedicine.

Modules:

  • Research Project
  • Research Methods
  • Cells, Disease and Therapy
  • Communication

Career options

This postgraduate programme provides both a solid academic basis and practical hands-on experience in the area of cellular biomedical sciences. It will prepare you for careers in academia, clinical research, the health industry or within government organisations.

Email Now



Read less
Lead academic. Dr Martin Nicklin. This flexible course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies. Read more

About the course

Lead academic: Dr Martin Nicklin

This flexible course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies. Core modules cover the fundamentals. You choose specialist modules from the pathway that interests you most. We also give you practical lab training to prepare you for your research project. The project is five months of invaluable laboratory experience: planning, carrying out, recording and reporting your own research.

Recent graduates work in academic research science, pharmaceuticals and the biotech industry.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

From Genome to Gene Function; Human Gene Bioinformatics; Research Literature Review; Human Disease Genetics; Modulating Immunity; Laboratory Practice and Statistics.

You choose: six optional pathways

1. Genetic Mechanisms pathway:


Modelling Protein Interactions; Gene Networks: Models and Functions.

2. Microbes and Infection pathway:


Virulence Mechanisms of Viruses, Fungi and Protozoa; Mechanisms of Bacterial Pathogenicity; Characterisation of Bacterial Virulence Determinants.

3. Experimental Medicine pathway:


Molecular and Cellular Basis of Disease; Model Systems in Research; Novel Therapies.

4. Cancer pathway:

Molecular Basis of Tumourigenesis and Metastasis; Molecular Techniques in Cancer Research; Molecular Approaches to Cancer Diagnosis and Treatment.

5. Cardiovascular pathway:

Vascular Cell Biology; Experimental Models of Vascular Disease; Vascular Disease Therapy and Clinical Practice.

6. Clinical Applications pathway:

Apply directly to this pathway. Available only to medical graduates. Students are recruited to a specialist clinical team and pursue the taught programme (1-5) related to the attachment. They are then attached to a clinical team for 20 weeks, either for a clinical research project or for clinical observations. See website for more detail and current attachments.

Teaching and assessment

Lectures, seminars, tutorials, laboratory demonstrations, computer practicals and student presentations. Assessment is continuous. Most modules are assessed by written assignments and coursework, although there are some written exams. Two modules are assessed by verbal presentations.

Your research project is assessed by a thesis, possibly with a viva.

Read less
Your programme of study. Immunology is linked to our ability to remain healthy and free of disease - fighting off infections and disease and understanding our genetic factors and risk factors in inheriting disease. Read more

Your programme of study

Immunology is linked to our ability to remain healthy and free of disease - fighting off infections and disease and understanding our genetic factors and risk factors in inheriting disease. You look at behavioural factors and their links to disease to understand protection methods and you go into the detail of bioinformatics and genomics to understand DNA and analyse within practical research when you test for specific issues such as stress, hunger and so on and responses in the body.

The programme is designed for you to develop your academic knowledge of immunology and its relevance to disease with analysis and research skills designed to enhance your career prospects, or continue to PhD. You can use your training within educational establishments to apply training, work in patents, science outreach and public engagement.

Focusing on the relevance of the immune response in the maintenance of health and development of disease, graduates will be able to attain the intellectual and practical skills needed to address both theoretical and technical aspects of modern biomedical research.

In common with the other molecular biosciences Masters courses, the MSc in Immunology & Immunotherapy builds on recent advances in genomics to understand the generation of immunological diversity at a cellular level, how this imparts variability in immune responses at the individual and population level and the relevance of the immune system in disease areas such as autoimmunity, cancer, allergy and microbial infections.

You may also be interested in the Scottish Innovation Centres research and enterprise work with companies in Scotland to find out more about the possibilities in this area of health science and spin-out research going on from Aberdeen and other universities:

Courses listed for the programme

Semester 1

  • Basic Skills Induction
  • Generic Skills
  • Current Topics in Immunology
  • Introductory Immunology
  • Applied Statistics

Semester 2

  • Host-Pathogen Interactions
  • Genome - Enabled Medicines
  • Research Tutorials
  • Immunogenetics

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You will be taught by world leading researchers in immunology and bioscience with practical training in Flow Cytometry analysis
  • You study at one of the largest health campuses in Europe with a teaching hospital, Medical School, and Institute of Medical Sciences plus Rowett Institute on one campus
  • The university ranked 9th in the world and 5th in Europe for international research collaboration (Leiden 2015)

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • 12 Months Full Time or 24 Months Part Time
  • September start

International Student Fees 2017/2018

Find out about fees:

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs



Read less
Lead academic 2016. Dr Peter Grabowski. Accredited by the Association for Nutrition. This course will give you a good understanding of the fundamentals of human nutrition. Read more

About the course

Lead academic 2016: Dr Peter Grabowski
Accredited by the Association for Nutrition

This course will give you a good understanding of the fundamentals of human nutrition. You’ll learn research skills and techniques. It will prepare you for a career in research, the food industry, academia, community nutrition and nutrition consultancy.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Epidemiology and Community Nutrition; Nutritional Biochemistry; Molecular Nutrition; Nutritional Physiology; Nutrition for Developing Countries; Clinical Nutrition. The Diploma follows the same taught structure as the masters and students must complete all modules.

Masters students complete an original Research Project and a literature review. PG Diploma students complete a library-based research project.

Teaching and assessment

You’ll learn through lectures and seminars, practical sessions, workshops, group debates, self-study units and individual presentations. The taught modules include research skills tutorials. You’ll work independently on the research and library projects, with guidance from an academic.

You’re assessed on written reports, laboratory practical classes and group and individual assignments, which may involve oral presentations. There is a written examination at the end of each module with an original research project for the MSc and a library-based project for the Diploma. The research project is assessed by a written dissertation and an oral presentation. The library project is assessed by written dissertation.

Read less
Lead academic 2016. Dr Charlotte Codina. This is a part-time distance learning course for practising Orthoptists and other eye care professionals. Read more

About the course

Lead academic 2016: Dr Charlotte Codina

This is a part-time distance learning course for practising Orthoptists and other eye care professionals. It’s taught online so you can study for a higher degree without having to leave your current post.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Course content

Concomitance and Incomitance in Depth or Stroke; Insight into Disease or Low Vision; Eye to Vision; Research Methods (option for Postgraduate Diploma); Dissertation (Postgraduate Diploma only); Research Project (MMedSci only).

Teaching

Teaching is by distance learning, supported 
by four weekend residentials.

Read less
This unique specialist course gives you practical experience in human embryonic stem cell techniques, helping you develop the professional skills employers want. Read more

About the course

This unique specialist course gives you practical experience in human embryonic stem cell techniques, helping you develop the professional skills employers want. You’ll also spend time in seminars considering the ethical and legal issues associated with the field.

Where your masters can take you

Graduates with skills in stem cell and regenerative medicine are in demand. Your degree will prepare you for a career in research in academia or industry, or in a clinical-related field. Our graduates are working all over the world – from the UK to China, India and the USA – and over half go on to doctoral study.

Learn from the experts

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research in this field. Our international reputation attracts highly motivated staff and students. Sheffield is a vibrant place to take a masters based on pioneering research.

Regular seminars from distinguished international experts help you to connect your studies to the latest developments. We’re also part of collaborative research groups for developmental biology, cell biology, physiology, pharmacology, neuroscience, models of human disease, stem cell science and regenerative medicine.

Our three research centres focus on translating laboratory research to the clinical environment: Bateson Centre, the Centre for Stem Cell Biology, and the Centre for Membrane Interactions and Dynamics.

Leaders in our field

We have a long track record of groundbreaking discoveries. These include breakthroughs in human stem cells for hearing repair, and the generation of animal models for Parkinson’s disease, schizophrenia, muscular dystrophies and their use for therapeutic studies.

Labs and equipment

We have purpose-built facilities for drosophila, zebrafish, chick and mouse genetics and for molecular physiology. Other facilities provide all the tools you’ll need to examine and analyse a range of cellular structures. We have an electron and a light microscopy centre, a PCR robotics facility, a flow cytometry unit and an RNAi screening facility.

Teaching and assessment

There are lectures, practical classes, tutorials and seminars. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics. Laboratory placements within the department provide you with one-to-one attention, training and support to do your individual research project. Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

Our teaching covers ethics, practical scientific skills and an overview of the current literature. You’ll also develop useful career skills such as presentation, communication and time management.

Core modules

Literature Review; Practical Research Project; Analysis of Current Science; Ethics and Public Understanding.

Examples of optional modules

Stem Cell Techniques; Practical Cell Biology; Practical Developmental Genetics; Bionanomaterials; Modelling Human Diseases; Stem Cell Biology.

Read less
Neuroscience is a discipline concerned with the scientific study of the nervous system in health and disease. Research in the neurosciences is of considerable clinical impact considering the debilitating and costly effects of neurological and psychiatric disease. Read more
Neuroscience is a discipline concerned with the scientific study of the nervous system in health and disease. Research in the neurosciences is of considerable clinical impact considering the debilitating and costly effects of neurological and psychiatric disease. In this regard, a major goal of modern neuroscience research is to elucidate the underlying causes (genetic or environmental) of major brain diseases, and to produce more effective treatments for major psychiatric disorders such as schizophrenia and depression, and neurological disorders such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, motor neurone disease and epilepsy. Improved treatment strategies for brain disorders relies entirely on increased understanding gained from research which integrates molecular, cellular and clinical aspects of disease. In this regard it is clear that interdisciplinary approaches are necessary to understand the complex processes which underlie brain function in health and disease. This interdisciplinary philosophy is adopted in the delivery of our M.Sc. programme in Neuroscience, which is underpinned by the diverse research expertise available within Trinity College Institute of Neuroscience (TCIN).

Course Content:

This one-year M.Sc. course aims to provide a multidisciplinary training in the neurosciences, in topics ranging from molecular to behavioural. The course is ideal for students wishing to extend their specialised knowledge, and for those wishing to convert from their original degree discipline. The programme will equip participants with the skills necessary to progress into a career in biomedical, pharmaceutical or neuropsychological research. Instruction for the course consists of approximately 200 contact hours over two academic Terms to include lectures, laboratory practical sessions, journal club workshops and student-based seminars. Modules are assessed by a mixture of in course assessment and written examinations.

Specialist modules covered include:

Form and Function of the Nervous System, Biochemical Basis of Neuropharmacology, Neuropharmacology, Drug Development, Advanced Neuroimmunology, Experimental Neuroscience, Scientific Literature Skills, Neural Engineering, Neuroimaging Technology, Current Topics in Neuroscience, Cellular Neuroscience, and Research Skills.

The third Term consists of a research project on novel aspects of Neuroscience. Trinity College Institute of Neuroscience is a dynamic research environment with research spanning molecular/cellular neuroscience to clinical/translational neuroscience. Projects across these research areas may be undertaken in consultation with an expert supervisor. For students interested in a project in cellular/molecular neuroscience a range of cellular techniques such as tissue culture, immunocytochemistry, western immunobloting and immunoprecipitation, confocal microscopy, Immunoassays, flow cytometry, Real-time PCR, and high performance liquid chromatography are available. In addition, some projects will involve assessing behavioural, electrophysiological and neurochemical endpoints using in vivo models of neurological and psychiatric disease. For those with an interest in experimentation on human subjects, projects will be offered utilizing techniques such as functional magnetic resonance imaging and neurocognitive testing. A selection of national and international projects is also available, which involve collaboration with other academic institutes and pharmaceutical companies, in Ireland, UK and across Europe.

Read less
Do you want to focus your scientific career on one of the fastest moving sectors of science? The UK has hundreds of biotech companies and is a leader in innovating specialist products from living organisms. Read more
Do you want to focus your scientific career on one of the fastest moving sectors of science? The UK has hundreds of biotech companies and is a leader in innovating specialist products from living organisms. Biotech applications are enhancing food production, treating medical conditions, and having a significant impact on the global future.

Given the common expectation for job candidates to have some form of postgraduate qualification, this Masters course offers a route to careers in biotechnology as well as the broader life sciences industry. If your first degree included the study of genetics and molecular biology, and a research module, you’re well-placed to join us.

This course can also be started in January (full time 21 months) - for more information please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/biotechnology-dtfbty6/

Learn From The Best

The quality of teaching in life sciences at Northumbria has been recognised by strong performance in student-led awards, Further evidence of academic excellence is the number of invitations to members of our team to join the editorial boards of scientific journals.

Our teaching team maintains close links with biotech companies and research labs, including via on-going roles as consultants, which helps ensure an up-to-date understanding of the latest technical and commercial developments. Several academics are involved in biotech ventures that make use of the University’s facilities: Nzomics Biocatalysis develops enzyme alternatives to chemical processes, and Nu-omics offers DNA sequencing services.

Teaching And Assessment

We aim for interactive teaching sessions and you will engage in discussions, problem-solving exercises and other activities. Teaching can start in the lab or classroom and then you make the material your own by exploring and applying it. Technology Enhanced Learning makes this easier; each module has an electronic blackboard site with relevant information including electronic reading lists and access to websites, videos and other study materials that are available anytime, anywhere.

You will undertake assignments within small groups and we provide training in communication skills relevant for scientific communication. The course aims to foster your ability to work at a professional standard both individually and as part of a team.

Module Overview
AP0700 - Graduate Science Research Methods (Core, 20 Credits)
AP0701 - Molecular Biology (Core, 20 Credits)
AP0702 - Bioinformatics (Core, 20 Credits)
AP0703 - Subject Exploration (Core, 20 Credits)
AP0704 - Industrial Biotechnology (Core, 20 Credits)
AP0705 - Current Topics in Biotechnology (Core, 20 Credits)
AP0708 - Applied Sciences Research Project (Core, 60 Credits)

Learning Environment

The technical facilities at Northumbria University are excellent. We are fully equipped for molecular biology manipulations and imaging – techniques include RT-PCR to show whether or not a specific gene is being expressed in a given sample. We also have pilot scale bioreactors so that we can scale up experiments and processes.

For cell biology and immunology, we have two multi-user laboratories. Technologies include assays for measuring immune responses at the single-cell level, and for monitoring the functioning of cells in real time. Further capabilities include biomarker analysis, flow cytometry, chemical imaging and fluorescence microscopy. For genomics, proteomics and metabolomics, our capabilities include genomic sequencing, mass spectrometry, 2D protein electrophoresis and nanoflow liquid chromatography.

All our equipment is supported up by highly skilled technical staff who will help you make the best use of all the facilities that are available.

Research-Rich Learning

In fast-moving fields like biotechnology, it’s particularly important for teaching to take account of the latest research. Many of our staff are conducting research in areas such as molecular biology, bio-informatics, gene expression and micro-biology of extreme environments. They bring all this experience and expertise into their teaching.

As a student, you will be heavily engaged in analysing recent insights from the scientific literature. You will undertake a major individual project in molecular and cellular science that will encompass all aspects of a scientific study. These include evaluation of relevant literature, design and set-up of experiments, collection and processing of data, analysis of results, preparation of a report and presentation of findings in a seminar.

Give Your Career An Edge

Many recruiters in the biotech industry expect candidates to have studied at postgraduate level so our Masters qualification will help you get through the door of the interview room. Once there, your major project and other assignments will help ensure there is plenty to catch their attention. Employers are looking for the ability to solve problems, think critically, work with others and function independently – which are exactly the attributes that our course develops to a higher level.

During your time at Northumbria, we encourage you to participate in the activities organised by the Career Development Service. We also encourage you to apply for associate membership of the Royal Society of Biology, with full membership becoming possible once you have at least three years’ postgraduate experience in study or work.

Your Future

The biotech industry has made huge progress in the last few decades and the years ahead promise to be even more transformational. With an MSc Biotechnology, you will be ready to contribute to the changes ahead through a rigorous scientific approach and your grasp of the fundamental knowledge, insights and skills that underlie modern biotechnology.

Scientific research is at the heart of the course and you will strengthen pivotal skills that will enhance your employability in any research-rich environment. By developing the practices, standards and principles relevant to becoming a bioscience professional, you will also prepare yourself for success in other sectors of the life sciences industry and beyond.

Read less
This course blends theory and practice to help you develop the skills required for a career in molecular and cellular biology. Our teaching focuses on integrated mammalian biology and animal models of human disease, drawing on our pioneering biomedical research. Read more

About the course

This course blends theory and practice to help you develop the skills required for a career in molecular and cellular biology. Our teaching focuses on integrated mammalian biology and animal models of human disease, drawing on our pioneering biomedical research.

Where your masters can take you

Graduates with skills in stem cell and regenerative medicine are in demand. Your degree will prepare you for a career in research in academia or industry, or in a clinical-related field. Our graduates are working all over the world – from the UK to China, India and the USA – and over half go on to doctoral study.

Learn from the experts

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research in this field. Our international reputation attracts highly motivated staff and students. Sheffield is a vibrant place to take a masters based on pioneering research.

Regular seminars from distinguished international experts help you to connect your studies to the latest developments. We’re also part of collaborative research groups for developmental biology, cell biology, physiology, pharmacology, neuroscience, models of human disease, stem cell science and regenerative medicine.

Our three research centres focus on translating laboratory research to the clinical environment: Bateson Centre, the Centre for Stem Cell Biology, and the Centre for Membrane Interactions and Dynamics.

Leaders in our field

We have a long track record of groundbreaking discoveries. These include breakthroughs in human stem cells for hearing repair, and the generation of animal models for Parkinson’s disease, schizophrenia, muscular dystrophies and their use for therapeutic studies.

Labs and equipment

We have purpose-built facilities for drosophila, zebrafish, chick and mouse genetics and for molecular physiology. Other facilities provide all the tools you’ll need to examine and analyse a range of cellular structures. We have an electron and a light microscopy centre, a PCR robotics facility, a flow cytometry unit and an RNAi screening facility.

Teaching and assessment

There are lectures, practical classes, tutorials and seminars. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics. Laboratory placements within the department provide you with one-to-one attention, training and support to do your individual research project. Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

Our teaching covers ethics, practical scientific skills and an overview of the current literature. You’ll also develop useful career skills such as presentation, communication and time management.

Core modules

Literature Review; Practical Research Project; Analysis of Current Science; Ethics and Public Understanding.

Examples of optional modules

Integrated Mammalian Biology; Practical Cell Biology; Practical Developmental Genetics; Cancer Biology; Modelling Human Diseases; Epithelia in Health and Disease.

Read less
If you have a background in biomedical science, biology, medicine and life sciences, this course allows you to develop your knowledge in selected areas of biomedical science. Read more

If you have a background in biomedical science, biology, medicine and life sciences, this course allows you to develop your knowledge in selected areas of biomedical science.

You gain advanced knowledge and understanding of the scientific basis of disease, with focus on the underlying cellular processes that lead to disease. You also learn about the current methods used in disease diagnosis and develop practical skills in our well-equipped teaching laboratories.

As well as studying the fundamentals of pathology, you can choose one specialist subject from • cellular pathology • microbiology and immunology • blood sciences. Your work focuses on the in vitro diagnosis of disease. You develop the professional skills needed to further your career. These skills include • research methods and statistics • problem solving • the role of professional bodies and accreditation • regulation and communication.

This course is taught by active researchers in the biomedical sciences who have on-going programmes of research in the Biomolecular Sciences Research Centre together with experts from hospital pathology laboratories.

Most of your practical work is carried out in our teaching laboratories which contain industry standard equipment for cell culture, quantitative nucleic acid and protein analysis and a sophisticated suite of analytical equipment such as HPLC and gas chromatography.

Many of our research facilities including flow cytometry, confocal microscopy and mass spectrometry are also used in taught modules and projects and our tutors are experts in these techniques.

The teaching on the course is split between formal lectures and tutorials, and laboratory-based work. A third of the course is a laboratory-based research project, where full-time students are assigned to a tutor who is an active research in the biomedical research centre. Part-time students carry out their research project within the workplace under the guidance of a workplace and university supervisor.

Three core modules each have two full-day laboratory sessions and the optional module applied biomedical techniques is almost entirely lab-based. Typically taught modules have a mixture of lectures and tutorials. The research methods and statistics modules are tutorial-led with considerable input from the course leader who acts as personal tutor.

The course content is underpinned by relevant high quality research. Our teaching staff regularly publish research articles in international peer-reviewed journals and are actively engaged in research into • cancer • musculoskeletal diseases • human reproduction • neurological disease • hospital acquired infection • immunological basis of disease.

Professional recognition

This course is accredited by the Institute of Biomedical Science (IBMS) who commended us on

  • the excellent scientific content of our courses
  • the supportive nature of the staff which provides a positive student experience
  • the laboratory and teaching facilities, which provide an excellent learning environment

Course structure

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules

  • Biomedical laboratory techniques (15 credits)
  • Evidence based laboratory medicine (15 credits)
  • Cell biology (15 credits)
  • Molecular diagnostics (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Optional modules

  • Applied biomedical techniques (15 credits)
  • Cellular and molecular basis of disease (15 credits)
  • Cellular and molecular basis of cancer (15 credits)
  • Human genomics and proteomics (15 credits)
  • Blood sciences (30 credits)
  • Cellular pathology (30 credits)
  • Microbiology and immunology (30 credits)

Assessment

Assessment methods include written examinations and coursework such as

  • problem solving exercises
  • case studies
  • reports from practical work
  • presentations.

Research project assessment includes a written report, presentation and portfolio. 

Employability

This course enables you to start to develop your career in various applications of biomedical science including pathology, government funded research labs or the life sciences industry. It is also for scientists working in hospital or bioscience-related laboratories particularly as biomedical scientists who want to expand their knowledge and expertise in this area.



Read less
Lead academic 2016. Dr Jonathan Wood. Translational Neuroscience looks at how laboratory research relating to brain structure and function informs the development of new therapies for diseases of the nervous system. Read more

About the course

Lead academic 2016: Dr Jonathan Wood

Translational Neuroscience looks at how laboratory research relating to brain structure and function informs the development of new therapies for diseases of the nervous system.

Combining the research strengths from the Faculty of Medicine, Dentistry and Health and the Faculty of Science, leading international basic and clinical scientists will provide an innovative and progressive programme. You’ll study basic neurobiology and molecular biology through to neuroimaging and applied clinical practice.

The MSc will provide you with up-to-date knowledge of advances in the field, research experience with internationally renowned research groups and transferable skills to provide a springboard for your future career.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Molecular Neuroscience; CNS Structure and Function; Genetics and Modelling of Neurodegenerative Disease; Mechanisms of Neurodegenerative Disease; Applied Neuroimaging; Neurophysiology and Psychiatry. A 20 week Research Project will be undertaken in the Summer Term.

Examples of optional modules

Option one: Literature Review and Critical Analysis of Science; Ethics and Public Awareness of Science.

Option two: Computational Neuroscience: Neurons and Neuronal Codes; Mathematical Modelling and Research Skills.

Teaching and assessment

Lectures, seminars, tutorials, laboratory demonstrations, computer practicals and student-led group work. Assessment is primarily by written assignments and coursework, although there are some written examinations and oral presentations. The research project is assessed by a thesis 
and presentation.

Read less
Lead academic 2016. Dr Trevor Austin. This course provides the opportunity for doctors with a developing interest in medical education to explore the theoretical principles underpinning medical education and consider how this relates to their practice. Read more

About the course

Lead academic 2016: Dr Trevor Austin

This course provides the opportunity for doctors with a developing interest in medical education to explore the theoretical principles underpinning medical education and consider how this relates to their practice.

The course aims to develop medical educators who are informed and understand the core principles and issues in medical education.

It is coordinated through the Academic Unit of Medical Education and delivered in collaboration with the Academic Unit of Primary Medical Care.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

The Principles of Learning; Teaching and Learning in the Clinical Setting; Curriculum Design, Implementation and Monitoring; Assessing the Learner.

Teaching and assessment

Seminars, workshops, practical activities 
and tutorial group discussions. Each module is assessed via a reflective portfolio.
You can go on to study for a PG Diploma or Masters in Teaching and Learning in Higher Education.

Read less
Lead academic 2016. Dr Thomas Jenkins. Read more

About the course

Lead academic 2016: Dr Thomas Jenkins

This course, offering practical clinical exposure, enables you to apply the fundamentals of neuroanatomy and physiology to better understand the clinical features of patients with neurological disease and learn how insights from the laboratory are translated into benefits for patients.

In small group teaching sessions and clinics, you’ll have the opportunity to apply theoretical knowledge to patients with neurological disease. In the final term you may take a research option (Route A) or a Clinical Neurology Experiential Learning Module (Route B).

Students opting for Route A will choose from a range of clinical research projects based at SITraN or within the Royal Hallamshire Hospital. Students opting for Route B will attend additional specialist clinics with patient-centred teaching from experts in the field who will emphasise recent advances in clinical practice.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

During the autumn and spring terms, you’ll take four taught modules worth 30 credits each: Applied Neuroanatomy and Clinical Neuroscience; Cerebrovascular Disease and Disorders of Consciousness; Neuroinflammation (CNS) and diseases of the PNS; Neurodegeneration.

Complementing the taught modules is a comprehensive programme of clinical demonstrations, integrated learning activities, themed clinics and neuro-anatomy dissection (autumn term) where students will be able to apply the taught theory and further substantiate their understanding of the topic area being studied.

Examples of optional modules

Either a research project (Route A) or a Clinical Neurology Experiential Learning Module (CNELM) (Route B) worth 60 credits is completed in the summer term.

Teaching and assessment

The taught component of the MSc is delivered through lectures, seminars, tutorials, practical demonstrations and student-led group work. Each of the 30-credit modules is assessed using a formal examination (15 credits) and ongoing assessments during the module (15 credits), including essays and oral presentations.

The research project (Route A) is assessed from the written dissertation and research presentation examination. The CNELM (Route B) is assessed by means of a portfolio (30 credits) and a 6,000-word dissertation (30 credits) on an aspect of the sub-speciality chosen for the module. The portfolio will contain a reflective log, anonymised details of cases seen, and work-based assessments.

Read less
Lead academic 2016. Dr Carolyn Staton. Translational oncology is the process by which laboratory research informs the development of new treatments for cancer. Read more

About the course

Lead academic 2016: Dr Carolyn Staton

Translational oncology is the process by which laboratory research informs the development of new treatments for cancer. It’s a rapidly advancing field with massive therapeutic and commercial potential.

Our MSc(Res) is taught by leading research scientists and clinicians. The course offers training in the theory and practice of translational oncology and provides you with transferable skills for your future career. It includes a six-month research project for which you’ll work as part of a team within the oncology research community at Sheffield.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Cellular and Molecular Basis of Cancer; Cancer Epidemiology; Cancer Diagnosis and Treatment; Tumour Microenvironment; Cancer Technologies and Clinical Research; Literature Review; Research Project.

Teaching and assessment

Teaching is by lectures, seminars, class discussions/workshops, interactive tutorials, practical demonstrations, student-led group work and patient encounters.

Alongside the taught modules students attend the Sheffield Cancer Research seminars which include question and answer sessions with the experts, and a series of professional skills development tutorials.

Assessment is by a combination of written seen exams, oral and poster presentations, case studies and written assignments. The research project is assessed by an oral presentation and a written dissertation.

Read less

Show 10 15 30 per page



Cookie Policy    X