• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Birmingham City University Featured Masters Courses
London Metropolitan University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Coventry University Featured Masters Courses
Imperial College London Featured Masters Courses
University of Bath Featured Masters Courses
"flooding"×
0 miles

Masters Degrees (Flooding)

We have 28 Masters Degrees (Flooding)

  • "flooding" ×
  • clear all
Showing 1 to 15 of 28
Order by 
This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes. Read more

Why take this course?

This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes.

You will be fully trained by internationally recognised experts in hazard identification, terrain evaluation techniques as well as hazard modelling and risk assessment techniques. Providing you with the essential skills to monitor, warn and help control the consequences of natural hazards.

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, hazard modelling and mapping, soil mechanics and rock mechanics, contaminated land, flooding and slope stability.

Here are the units you will study:

Natural Hazard Processes: The topic of this unit forms the backbone of the course and give you an advanced knowledge of a broad range of geological and environmental hazards, including floods, landslides, collapsible ground, volcanoes, earthquakes, tsunamis, hydro-meteorological and anthropogenic hazards. External speakers are used to provide insights and expertise from an industry, regulatory and research perspective.

Numerical Hazard Modelling and Simulation: This forms an important part of the course, whereby you are trained in the application of computer models to the simulation of a range of geological and environmental hazards. You will develop skills in computer programming languages and use them to develop numerical models that are then used to simulate different natural hazard scenarios.

Catastrophe Modelling: On this unit you will cover the application of natural hazard modelling to better understand the insurance sector exposure to a range of geological and environmental hazards. It includes external speakers and sessions on the application of models for this type of catastrophe modelling.

Volcanology and Seismology: You will gain an in-depth knowledge of the nature of volcanism and associated hazards and seismology, associated seismo-tectonics and earthquake hazards. This unit is underpinned by a residential field course in the Mediterranean region that examines the field expression of volcanic, seismic and other natural hazards.

Flooding and Hydrological Hazards: These are a significant global problem that affect urban environments, one that is likely to increase with climate change. This unit will give you an in-depth background to these hazards and opportunities to simulate flooding in order to model the flood hazard and calculate the risk.

Hazard and Risk Assessment: This unit gives you the chance to study the techniques that are employed once a hazard has been identified and its likely impact needs to be measured. You will have advanced training in the application of qualitative and quantitative approaches to hazard and risk assessment and their use in the study of different natural hazards.

Field Reconnaissance and Geomorphological Mapping: These techniques are integral to the course and an essential skill for any graduate wishing to work in this area of natural hazard assessment. On this unit you will have fieldwork training in hazard recognition using techniques such as geomorphological mapping and walk-over surveys, combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn how to acquire and interpret aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS – all key tools for hazard specialists.

Geo-mechanical Behaviour of Earth Materials: You will train in geotechnical testing and description of soils and rocks to the British and international standards used by industry.

Landslides and Slope Instability: This unit will give you an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Impacts and Remediation of Natural Hazards: You will cover a growing area of study, including the impact of hazardous events on society and the environment, and potential mitigation and remediation methods that can be employed.

Independent Research Project: This provides you with an opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Student Destinations

This course provides vocational skills designed to enable you to enter this specialist environmental field. These skills include field mapping, report writing, meeting deadlines, team working, presentation skills, advanced data modelling and communication.

You will be fully equipped to gain employment in the insurance industry, government agencies and specialist geoscience companies, all of which are tasked with identifying and dealing with natural hazards. Previous destinations of our graduates have included major re-insurance companies, geological and geotechnical consultancies, local government and government agencies.

It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
Master's specialisation in Water and Environment. If Environmental Sciences is your passion, the specialisation in Water and Environment would be a great choice. Read more

Master's specialisation in Water and Environment

If Environmental Sciences is your passion, the specialisation in Water and Environment would be a great choice. This specialisation aims at the insight needed to tackle problems such as climate change, flooding, eutrophication, chemical pollution, habitat fragmentation and bio-invasions. We provide you with the laboratory, field and assessment tools needed to protect ecosystem and human health in the context of multiple environmental pressures. After completing the Water and Environment specialisation you will have the qualifications needed for positions at research institutes, industry, consultancies, universities, governments and other scientific and management oriented organisations.

See the website http://www.ru.nl/masters/waterandenvironment

Admission requirements for international students

1. A completed Bachelor's degree in Biology or related area

2. Proficiency in English

In order to take part in this programme, you need to have fluency in both written and spoken English. Non-native speakers of English* without a Dutch Bachelor's degree or VWO diploma need one of the following:

- A TOEFL score of >575 (paper based) or >90 (internet based)

- A IELTS score of ≥6.5

- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE), with a mark of C or higher

Career prospects

After completing the Water and Environment specialisation you will have the qualifications needed for positions at research institutes, industry, consultancies, universities, governments and other scientific and management oriented organisations.

Our approach to this field

If Environmental Sciences is your passion, the specialisation in Water and Environment would be a great choice. This specialisation aims at the insight needed to tackle problems such as climate change, flooding, eutrophication, chemical pollution, habitat fragmentation and bio-invasions. We provide you with the laboratory, field and assessment tools needed to protect ecosystem and human health in the context of multiple environmental pressures. After completing the Water and Environment specialisation, you will have the qualifications needed for positions at research institutes, industry, consultancies, universities, governments and other scientific and management oriented organisations.

Our research in this field

- Rich programme

This M.Sc. programme not only puts the interactions between organisms into context, it also integrates all levels of organisation from the molecule and the cell up to ecosystems and the landscape. This combination of experience results in a rich and coherent MSc. programme of Master's courses and exciting internships with state-of-the-art research. It prepares you for a career in science, both fundamental and applied, but also provides the necessary knowledge for innovative evidence-based applications in nature and water management.

- Personal tutor

Our top scientist are looking forward to take you with them on a challenging and inspiring scientific journey. This programme offers you many opportunities to follow your own interests under the guidance of a personal tutor. Radboud University offers you a multitude of research fields to choose from in close collaboration with the

- academic hospital UMCN St. Radboud;

- Institute for Water and Wetlands Research;

- Nijmegen Centre for Molecular Life Sciences;

- Donders Institute.

This allows you to specialise in a field of personal interest.

See the website http://www.ru.nl/masters/waterandenvironment



Read less
Flooding affects millions worldwide. It ruins homes, destroys livelihoods and threatens lives. Read more

About the course

Flooding affects millions worldwide. It ruins homes, destroys livelihoods and threatens lives.

Our new Flood and Coastal Engineering MSc has been developed with the Environment Agency to maintain and enhance the skills and experience of professionals to deliver successful flood management to protect communities from flooding. The course is sponsored by the Environment Agency, supported by local authorities across the UK, and is delivered in cooperation with HR Wallingford, a renowned independent civil engineering and environmental hydraulics organisation with expertise in flood risk assessment and management.

On the course you’ll develop your knowledge of structural design, geotechnics and how to manage and mitigate risk against extreme flood events through environmental assessment and strategic management. You’ll also develop your skills in hydraulic modelling, flood estimation and engineering design.

This course is for graduates who have usually studied engineering, mathematics, environmental science, geography or geology and are now looking to become chartered engineers. The course engages students in knowledge, understanding and application of engineering solutions, and is closely aligned to environmental, social and climatic issues affecting our world today.

Course Content

Advanced River and Coastal Science
Advanced River and Coastal Engineering
Flood and Coastal Management, Governance and Risk
Mathematical Methods, Data and GIS
Design Projects
Structures, Soil Mechanics and Design

Special Features

The Flood and Coastal Engineering MSc provides the basis for developing a career as a professional engineer, and is pending accreditation by the Joint Board of Moderators (representing the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation, and the Institute of Highway Engineers) and the Chartered Institution of Water and Environmental Management.

Brunel University London is ranked a UK top 10 engineering university (U.S. News & World Report, Best Global Universities 2016).

The course sits alongside our other well-established and fully-accredited Civil Engineering degree programmes, which were ranked fourth in London (Complete University Guide 2017).

You’ll benefit from our strong links with industry through the Environment Agency and HR Wallingford, the world-leading hydraulics and engineering research organisation, who work closely with Brunel University London and the Environment Agency.

Teaching

You’ll be introduced to subject material including key concepts, information and approaches through lectures and seminars, laboratory practicals, field work, self-study and individual research reports. A personal tutor will be allocated to you to support you during your time at Brunel.

Assessment

You’ll be assessed in a variety of ways including assignments, lab and design reports, project work, presentations, posters and examinations.

Read less
In recent years, there has been a growing world-wide concern about environmental water management issues, including concerns about coastal and estuarine water pollution, river flooding and urban drainage, wetland and mangrove management, and ecological aspects of lakes and reservoirs, to mention but a few. Read more
In recent years, there has been a growing world-wide concern about environmental water management issues, including concerns about coastal and estuarine water pollution, river flooding and urban drainage, wetland and mangrove management, and ecological aspects of lakes and reservoirs, to mention but a few. In addressing these and other environmental challenges, engineers and environmental managers are using sophisticated numerical models for predicting complex hydrodynamic, water quality and sediment transport processes. These models are increasingly complemented with decision support software systems and a wide range of related hydroinformatics software tools.

The MSc in Civil and Water Engineering will offer you the knowledge and expertise that you need for a career as a consulting water engineer within this specialist professional area of civil engineering. The course aims to complement a relevant undergraduate degree by introducing you to hydroinformatics, computational hydraulics and environmental hydraulics, including water quality indicators and sediment transport processes in coastal, estuarine and inland waters.

The MSc is aimed at graduates in Civil Engineering, Earth Sciences, Environmental Sciences and Bio-Sciences. Good mathematical skills are an advantage. The degree programme is also aimed at engineers/scientists working in relevant areas wishing to upgrade or refresh their qualifications.

Distinctive features

• The School of Engineering received the highest rating in the UK for its research and its research impact in the Government’s latest Research Excellence Framework (REF 2014).

• The course lecturers have considerable experience of working on a wide range of practical environmental hydraulics project and their models have been mounted by over 35 companies for over 80 world-wide EIA projects and by over 45 universities in 17 countries.

• The MSc in Civil and Water Engineering is accredited by the ICE, IStructE, IHT and IHIE, as meeting the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng accredited BEng (Hons) undergraduate first degree or an IEng accredited BSc (Hons) undergraduate first degree.

Structure

The MSc in Civil and Water Engineering is run by the School of Engineering and is designed to provide specialised, postgraduate training in environmental water engineering whilst having a measure of flexibility to permit some study of related subjects in Civil and Geoenvironmental Engineering.

The aim of the programme is to enhance your engineering skills and the completion of an extended project within one of the water engineering fields forms a major part of the programme. Thus, the MSc in Civil and Water Engineering aims to complement an undergraduate degree in Civil Engineering, or similar, by introducing you to hydroinformatics, computational hydraulics and environmental hydraulics, including water quality indicator and sediment transport processes in coastal, estuarine and inland waters. You will have the opportunity to work with some of these models in an extended project. The degree programme is available on a one-year full-time basis or on a three-year part-time basis.

For a list of modules for the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-water-engineering-msc

For a list of the modules for the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-water-engineering-msc-part-time

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme. You will attend lectures and participate in examples classes. You must complete 120 credits in Stage 1 in order to progress to the dissertation, for which you will be allocated a supervisor from among the teaching staff. Dissertation topics are normally chosen from a range of project titles proposed by academic staff, usually in areas of current research interest, although you will be encouraged to put forward your own project ideas.

Assessment

Assessment is conducted via coursework and examinations.

You will be required to undertake an individual research project in a specialist area of Water Engineering, leading to the preparation of a dissertation. Project work is undertaken under the direct supervision of a member of staff in one of the three participating departments.

Career prospects

The record of employment of graduates of the Cardiff University MSc in Civil and Water Engineering is excellent, with the majority of graduates joining engineering consultancies. A small number of graduates each year go on to further study, typically a PhD.

Read less
This course focuses on both the scientific knowledge of hazards and modern strategies of emergency planning. Its interdisciplinary approach combines traditional classroom and field-based teaching and learning techniques with modern ICT-based learning support. Read more
This course focuses on both the scientific knowledge of hazards and modern strategies of emergency planning. Its interdisciplinary approach combines traditional classroom and field-based teaching and learning techniques with modern ICT-based learning support. A strong emphasis is placed on research-led teaching, student-centred learning and team-based activities, all of which develop the necessary skills required by practitioners in the field of hazard and disaster management.

-This course is ideal if you want to start or advance a career in hazard or risk management, environmental monitoring, emergency planning or catastrophe-related mitigation.
-Small student numbers allow us to modify the emphasis of the course content from year to year to cater to individual needs.
-Our unique approach to focusing on both the scientific knowledge of hazards and modern strategies of emergency planning make graduates of this course highly employable.
-The independent research project gives you the chance to specialise further by studying an area of interest in greater depth and gain valuable research skills. Our students often find this an excellent selling point when looking for a job or promotion.
-We have strong links with industry and practitioners in the emergency and disaster management field, including Search And Rescue Assistance In Disasters (SARAID), RNLI, Tearfund, Community Resilience and Surrey County Council Emergency Planning Unit.

Assessment

Written examinations, coursework (incorporating scenario-based hazard management exercises, ICT-based and paper-based practical exercises, role-play exercises, oral presentations, field reports, essays).

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Fieldwork opportunities

Fieldwork is an essential part of the Hazard and Disaster Management MSc. You will undertake a supervised week-long visit to a European field destination affected by multi-hazards (usually to Tenerife in June). You will conduct hazard, risk and vulnerability assessment of the area and evaluate existing hazard management strategies by the regional/local authorities. Find out more...

Course structure

You will study the underpinning scientific principles of both natural hazards (eg hurricanes, storms and tornadoes, flooding, landslides, volcanic eruptions, earthquakes, tsunamis and radon gas emissions) and human-induced disasters (eg terrorism, explosions and oil tanker accidents).

You will also cover modern disaster management strategies and planning techniques for the mitigation (eg structural measures and education), preparation (eg early warning), response (eg search and rescue) and recovery (eg insurance) phases.

You will also undertake active research in one or more of your chosen hazard areas.

Please note that this is an indicative list of modules and is not intended as a definitive list.

Modules
-Natural Hazards: Science and Society
-Managing Disasters
-GIS for Hazards and Emergency Planning
-Research Methods and Techniques
-Research Project (Dissertation)

Read less
Major emergencies in the UK, such as the fuel shortages, the foot and mouth epidemic of 2000, repeated widespread flooding, and the London bombings of 2005 have made clear the need for enhanced levels of resilience in the UK. Read more
Major emergencies in the UK, such as the fuel shortages, the foot and mouth epidemic of 2000, repeated widespread flooding, and the London bombings of 2005 have made clear the need for enhanced levels of resilience in the UK.

The MSc in Emergency Planning and Management is a taught course designed to provide students with an advanced level of understanding of concepts and evolving best practice in emergency planning and management.

WHY CHOOSE THIS COURSE?

Courses in disaster management have been offered at Coventry University for over ten years.
-Gain the knowledge and skills necessary to develop and implement strategies required by the Civil Contingencies Act 2004 and other UK civil contingencies legislation
-Designed both for professionals who have current responsibilities in the field of emergency planning and management and for individuals who wish to enter into this field
-Examine selected examples of disaster management in other countries, giving students an opportunity to consider UK policy and practice within a comparative international perspective
-Evaluate issues in emergency planning and management and their practical implications, with a view to improving current practice
-May be taken on either a full-time or part-time basis, in order to accommodate the ongoing professional commitments of practitioners

WHAT WILL I LEARN?

Increased levels of preparedness and more effective responses to realised risks and threats also require an understanding of the issues that underlie many of the day-to-day problems faced by practitioners in the field of emergency planning and management.

This understanding, including how such issues may be addressed in practice, is necessary in order to increase the level of resilience of individual organisations, as well as the effectiveness of the integrated emergency management of disruptive challenges to the UK economy, society and security.

The course covers a range of subject areas such as:
-Disaster and emergency planning
-Integrated emergency management, practice and issues
-Communities - approaches to resilience and engagement
-Risk, crisis and continuity management
-Management of natural and environmental hazards
-Technology for disaster and emergency management
-Research design and methods
-Dissertation

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

The MSc in Emergency Planning and Management is ideal for students seeking career advancement within either the public or private sectors, or for those wishing to pursue an academic or research-oriented career.

Both current concerns with enhancing resilience to emergencies in the UK and specific organisational duties arising from UK legislation have created a strong demand for qualified emergency planning and management professionals.

Our graduates are much sought after by a range of organisations, including local and regional government, the uniformed services, health and other public sector agencies, and many private sector companies.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
Despite the phenomenal technological progress of the 20th century, most people still live with the acute and chronic consequences of age-old hazards such as floods and earthquakes. Read more

Despite the phenomenal technological progress of the 20th century, most people still live with the acute and chronic consequences of age-old hazards such as floods and earthquakes. This MSc is aimed at students interested in engaging with the natural and social dimensions of environmental hazards, including disasters and climate related risk. Students receive specialised scientific training in the physical hazards that pose large risks to communities living throughout the world, from climate change and meteorological risks to flooding, earthquakes and landslides. Students on this programme will receive theoretical and practical training for understanding and quantifying risks and hazards. They will learn about how hazards persist over long periods of time instead of merely as single events, but are composed of many smaller sub-events or how their effects are widespread. 

Course Structure 

Students take the following core modules, and a selection of elective modules, which, when combined, add up to 180 credits:

Core Modules:

  • Understanding Risk (30 credits)
  • Risk Frontiers (15 credits)
  • Risk, Science and Communication (15 credits)
  • Dissertation by Research (or) Vocational Dissertation (60 credits)

Elective Modules available in previous years include:

  • Hydrological Hazards (30 credits)
  • Spatial and Temporal Dimensions of Hazard (30 credits)
  • Social Dimensions of Risk and Resilience (30 credits)
  • International Relations and Security in the Middle East (15 credits)
  • Strategic Asia: Policy and Analysis (15 credits)
  • European Security (15 credits)
  • Social Policy and Society (30 credits) 

Course Learning and Teaching

Understanding and managing risk is ultimately about choice. All elements of society, from individuals to governments, must make decisions – conscious or not – about the ways in which they perceive, interpret, balance, and mitigate risk. Risk permeates our day-to-day lives in ways that are now recognised to be much more complex than the hazard-vulnerability paradigm, which dominated risk research until the 1990s, recognised. A deeper understanding of the nature of risk, its emergence, and its interface and position within societies, has emphasised the need to take a much more complex view in which a general understanding of the ways in which risk is generated, experienced and managed needs to be combined with a specific understanding of particular science or policy areas.

The primary aim of this Masters programme is to equip students with a general understanding of risk, whilst simultaneously providing specific training in elements of risk-related research. The MSc supports students in developing a strong social science perspective on risk. This will be achieved through an interdisciplinary framework for understanding risk from a variety of perspectives. Students will learn theoretical and practical approaches to identifying and framing risk, as well as the underlying physical and social mechanisms that generate it. They will also examine the relationship of risk to knowledge and policy, and will be made aware of the array of advanced tools and techniques to assess the physical and social dimensions of risk under conditions of uncertainty. They will also be trained in the substance and methods associated with a range of science and policy areas, and be expected to demonstrate that they can combine their general training in risk with their specific understanding of the substance and method associated with the chosen area, through either a research-based or a vocational dissertation.

All students will undertake a suite of core modules (120 credits) which provide students with a range of skills and knowledge which result in a unique focus in risk combined with training in interdisciplinary research methods. These modules are Understanding Risk, Risk, Science and Communication, Risk Frontiers and the Dissertation.

Students then also select a suite of elective modules (another 60 credits). Students can choose to receive specialised scientific training in:

  • the social dimensions of risk and resilience, and/or
  • a combination of approaches to risk.

Electives can be selected from: Hydrological Hazards, Spatial Temporal Dimensions of Hazards, Social Dimensions of Risk and Resilience. 

The Risk Masters (both in its MA and MSc forms) is taught jointly between Durham University’s Geography Department, the School of Government & International Affairs, and the School of Applied Social Sciences. The programme’s interdisciplinary approach encourages students to combine science and social science perspectives. Students have a broad range of modules to choose from, and in this way develop an individualized set of professional skills that, depending on the student’s preferences, speak more to either the natural sciences (e.g. via scientific modelling, GIS or science and communication) or the social sciences (e.g. via social science research methodologies and engagements with social policy and international relations). The programme is delivered in close collaboration with Durham University’s Institute of Hazard, Risk and Resilience (IHRR), and through IHRR’s activities students get permanent exposure to both practitioner and academic perspectives at the forefront of risk thinking and practice.



Read less
The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. Read more

The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. This interdisciplinary Master's programme presents environmental issues and technologies within a systems engineering context. Graduates will understand interactions between the natural environment, people, processes and technologies to develop sustainable solutions.

About this degree

Students will develop an understanding of systems engineering and environmental engineering. Environmental engineering is a multidisciplinary branch of engineering concerned with devising, implementing and managing solutions to protect and restore the environment within an overall framework of sustainable development. Systems engineering is the branch of engineering concerned with the development and management of large complex systems.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), a collaborative environmental systems project (30 credits), two optional modules (30 credits) and an individual environmental systems dissertation (60 credits).

A Postgraduate Diploma (120 credits) is offered.

Core modules

  • Collaborative Environmental Systems Project
  • Environmental Systems
  • Systems Engineering and Management
  • Systems Society and Sustainability
  • Environmental Modelling

Optional modules

Options may include the following:

  • Engineering and International Development
  • Industrial Symbiosis
  • Politics of Climate Change
  • Project Management
  • Water and Wastewater Treatment
  • Urban Flooding and Drainage
  • Offshore and Coastal Engineering
  • Natural and Environmental Disasters
  • Energy Systems Modelling
  • Smart Energy Systems: Theory, Practice and Implementation
  • Indoor Air Quality in Buildings
  • Light, Lighting and Wellbeing in Buildings
  • Building Acoustics
  • Science, Technology and Engineering Advice in Practice
  • Energy Systems and Sustainability
  • Waste and Resource Efficiency

Dissertation/report

All MSc students undertake an independent research project addressing a problem of systems research, design or analysis, which culminates in a dissertation of 10,000 words.

Teaching and learning

The programme is delivered through lectures, seminars, tutorials, laboratory classes and projects. The individual and group projects in the synthesis element involve interaction with industrial partners, giving students real-life experience and contacts for the future. Assessment is through written examination, coursework, presentations, and group and individual projects.

Further information on modules and degree structure is available on the department website: Environmental Systems Engineering MSc

Careers

Career paths for environmental systems engineers are diverse, expanding and challenging, with the pressures of increasing population, desire for improved standards of living and the need to protect the environmental systems. There are local UK and international opportunities in all areas of industry: in government planning and regulation, with regional and municipal authorities, consultants and contracting engineers, research and development organisations, and in education and technology transfer. Example of recent career destinations include Ford, KPMG, EDF Energy, Brookfield Multiplex, and the Thames Tideway Tunnel Project.

Recent career destinations for this degree

  • Air Quality Engineer, National Environment Agency
  • Environmental Engineering Consultant, DOGO
  • Nuclear Analyst, EDF Energy
  • Graduate Flood Risk Engineer, Pell Frischmann
  • Project Manager, Veolia Environmental Services

Employability

The discipline of environmental systems engineering is growing rapidly with international demand for multi-skilled, solutions-focussed professionals who can take an integrated approach to complex problems.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The discipline of environmental systems engineering is growing rapidly with an international demand for multi-skilled professionals who can take an integrated approach to solving complex environmental problems (e.g. urban water systems, technologies to minimise industrial pollution). Environmental engineers work closely with a range of other environmental professionals, and the community.

Skills may be used to:

  • design, construct and operate urban water systems
  • develop and implement cleaner production technologies to minimise industrial pollution
  • recycle waste materials into new products and generate energy
  • evaluate and minimise the environmental impact of engineering projects
  • develop and implement sound environmental management strategies and procedures.

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting environment in which to explore environmental systems engineering. Students have the advantages of studying in a multi-faculty institution with a long tradition of excellence in teaching and research, situated at the heart of one of the world's greatest cities.

Accreditation

The progamme is accredited by the Joint Boad of Moderators, which is made up of the Institution of Civil Engineers, The Institution of Structural Engineers, the Chartered Institutions of Highways and Transportation, and the Institute of Highway Engineers.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The programme in Flood Risk Management integrates the complementary topics of global changes and monitoring natural processes, modelling their behavior and interaction, formulating the decisions based on interrogation of these integrated models and implementing these decisions in the context of socio-economic and institutional framework. Read more

The programme in Flood Risk Management integrates the complementary topics of global changes and monitoring natural processes, modelling their behavior and interaction, formulating the decisions based on interrogation of these integrated models and implementing these decisions in the context of socio-economic and institutional framework.

The subjects covered include hydrology, meteorology, monitoring, hydroinformatics, modelling, various types of flooding (fluvial, urban and coastal), risk management, spatial planning and socio-economic and institutional framework.

The Erasmus Mundus Programme in Flood Risk Management is offered by a consortium consisting of:

•IHE Delft Institute for Water Education (the Netherlands)

•Technical University of Dresden (Germany)

•Technical University of Catalonia (Spain)

•University of Ljubljana (Slovenia)



Read less
EXPLORE PROCESSES AT OR NEAR THE EARTH'S SURFACE. The Master’s programme in Earth Surface and Water involves the study of natural and human-induced physical and geochemical processes, patterns, and dynamics of the Earth’s continental and coastal systems. Read more

EXPLORE PROCESSES AT OR NEAR THE EARTH'S SURFACE

The Master’s programme in Earth Surface and Water involves the study of natural and human-induced physical and geochemical processes, patterns, and dynamics of the Earth’s continental and coastal systems. This two-year programme provides you with knowledge that is essential to manage the planet sustainably, guarantee the availability of natural resources for future generations, and understand and avert natural hazards.

The main subject areas you will study consist of the dynamics of coastal and river systems, (geo-)hydrological processes, groundwater remediation, land degradation in dry lands and mountainous regions, natural hazards, and delta evolution on centennial and longer time scales.

You can choose one of four http://www.uu.nl/masters/en/earth-surface-and-water/tracks" target="_blank">tracks based on your interests in the field:

CORE AREAS OF RESEARCH

The Earth Surface and Water programme trains students to quantitatively study the natural and human-induced physical and chemical processes, patterns, and dynamics of Earth’s continental and coastal systems as well as their responses to global change. Students explore and understand the modelling capabilities of the past, present, and future as well as the evolution of Earth’s environment, including human impact on this evolution.

In the programme, you will address questions such as:

  • How do river floods affect delta systems and their inhabitants?
  • How can we use natural processes under climate change to maintain safe - yet attractive and dynamic - coastlines?
  • How can satellite images be used to estimate erosion losses?
  • Will we have enough water to sustain the world’s rapidly increasing population in 2050?
  • What is the most efficient way to clean an oil spill that enters the soil and groundwater? 

The programme trains students to combine field observations and laboratory experiments with the latest developments in remote sensing and computational methods. Research developed by our staff and students has a strong international profile, encompasses scales ranging from microscopic to global, and concerns both past and contemporary processes.

PROGRAMME OBJECTIVE

Physical geographers, geochemists, and hydrologists are necessary to identify nature’s actions in our modern world, especially with society’s ever-increasing pressure on the natural environment. The Earth Surface and Water programme therefore focusses on imminent societal problems, such as society’s increased vulnerability to climate and environmental changes and to natural hazards such as flooding, storms, and mass movements. It also addresses the threats and opportunities resulting from human activity on our physical environment, including the hydrological cycle.



Read less
This course will examine the interactions between climate, hydrology, geomorphology, ecology, biogeochemical cycling, water and habitat quality and biodiversity. Read more

This course will examine the interactions between climate, hydrology, geomorphology, ecology, biogeochemical cycling, water and habitat quality and biodiversity.

Using a combination of lectures, fieldwork, tutorials, laboratory classes, group projects and an individual research-based thesis, you will be provided with the necessary training and skills for a career in the successful environmental management of rivers.

Course details

River systems are under ever increasing pressure through the growing demands of water abstraction and hydroelectric power generation, and suffer recurrent disturbance through diffuse and point source pollutants, drought, flooding and channel modification.

The environmental management of rivers is required to mitigate the effects of these pressures. This requires a holistic understanding of how river systems are structured and function, and of how these systems have been altered by anthropogenic activities. To this end, the course will examine the interactions between climate, hydrology, geomorphology, ecology, biogeochemical cycling, water and habitat quality and biodiversity.

An important aspect of the training will be an understanding of how these interactions act at different spatial and temporal scales to influence the structure and function of ecosystems in running waters. This scientific and technical corpus will allow you to understand and quantify the consequences of natural and anthropogenic disturbance on river systems.

Using a combination of lectures, fieldwork, tutorials, laboratory classes, group projects and an individual research-based thesis, you will be provided with the necessary training and skills for a career in the successful environmental management of rivers, including techniques on assessing their status and approaches to rehabilitate and restore the condition of these globally threatened environments.

This degree will provide direct postgraduate training for students interested in this career direction, as well as providing advanced-level training suitable for further PhD studies in water science.

We are fortunate at Birmingham in having a wide variety of staff within the Water Sciences Research Group with interests in rivers, particularly in the arena of hydroecology, and it is this expertise that will inform the teaching of the modules in River Environments and their Management. 

Learning and teaching

Course Activities

The River Environments and their Management programme involves a core of lectures, tutorials and laboratory classes. This core material is backed up by supplementary material designed to deepen the comprehension of the basic processes, to understand their application in environmental management and industry and to develop an appreciation of both the industrial and environmental management environment.

Examples of activities include:

  • Seminars by external lecturers to broaden knowledge of the water industry and river environmental management
  • Seminars by course participants to improve communication skills and knowledge of current trends in river environmental management
  • Fieldwork and visits to river monitoring sites, river restoration sites, the River Laboratory of the Freshwater Biological Association and research organizations.
  • Computing and practical projects to develop information technology, modeling and field skills
  • Group management projects and industrially related projects to develop research, problem solving and management skills

Using a combination of lectures, fieldwork, tutorials, laboratory classes, group projects and an individual research-based thesis, you will be provided with the necessary training and skills for a career in the successful environmental management of rivers, including techniques on assessing their status and approaches to rehabilitate and restore the condition of these globally threatened environments. You will also gain training in legislation that drives the environmental management of rivers worldwide. 

Fieldwork

There are also a number of day-long field trips connected with a variety of modules, in particular Surface Water Hydrology, River Ecology and River Restoration, including a day of learning measurement techniques at the BIFOR field site.

Employability

The course is of considerable value if you wish to pursue a career in the river environmental management field or the water industry. It also provides advanced level training if you wish progress on to a PhD.

Currently, due to the large national demand for Water Managers, we have a 100% employment success rate for all our home/EU students, with graduates obtaining employment in the consultancy sector, typically with jobs secured before graduation. Additionally, Environmental Scientists who have spent some time in a branch of the water industry often feel the need for a postgraduate course to give them an overall understanding of their profession. The River Environments and their Management programme is so structured as to satisfy the requirements of both of these groups of potential students, the latter includes many International students who choose to retrain here in Birmingham.



Read less
PLEASE NOTE. This course is not currently open for new applications. If you'd like to be kept up to date, let us know using the Register Interest button. Read more
PLEASE NOTE: This course is not currently open for new applications. If you'd like to be kept up to date, let us know using the Register Interest button.

Water is a key resource globally, nationally and regionally. As the world's population increases governments are increasingly forced to act to protect and manage water resources more effectively, creating demand for scientists and managers to understand, monitor and manage natural and regulated water systems.

Why study Catchment Hydrology and Management at Dundee?

We offer an authoritative source of training for national and international students seeking to pursue careers within environmental and regulatory industries. Through a mixture of theory and practice this programme will provide you with training in aspects of applied hydrology, catchment management, environmental modelling (including risks such as flooding and water scarcity) and water law.

Facilities

The School of the Environment has recently completed a major investment in upgrading its hydrometric field equipment for use by SCM students. In addition to our already strong resource base in flow measurement equipment, covering ADCP, ADV, radar and more traditional impeller based instruments, we have now expanded our water level monitoring equipment to 25 instruments.

Fieldwork and problem-solving aspects of the course are being extended in 2012, with students being responsible for selecting, installing and operating their own sites and analysing the data from them. We have three experimental catchment facilites in Scotland, in the Cairngorms and the Scottish Borders, and students will gain valuable insights and experience through becoming directly involved in these projects.

Research-led teaching

Our experienced team of staff all engage in contemporary research and have considerable expertise in the science and regulatory frameworks affecting water management. Many of the academic staff on the programme are involved in the UNESCO Centre for Water Law, Policy & Science - the UK's only UNESCO Centre, based at the University of Dundee. The Centre is an exciting interdisciplinary centre providing many opportunities for water-related research in projects worldwide.

Field trips

We also provide you with many opportunities to put theory into practice with field trips to local catchments.

Aims of the Programme

This postgraduate degree programme will provide you with understanding and hands-on training in applied hydrology and catchment management. You will develop skills appropriate to a career within the water and environmental sectors, including technical skills in the use of hydrological and environmental modelling software, field skills in acquiring and subsequent analysis of hydrological data. You will also gain an awareness of the linkages between hydrology, ecology, legal and planning practice.

The programme will encourage you to think critically about the ways in which river catchments are managed. You will be trained in legal and regulatory aspects and management approaches balancing multiple stakeholders using case studies from around the world, part of a global network of basins built up by the IHP-UNESCO Centre for Water law, Policy and Science HELP programme. This management knowledge will be underpinned by an understanding of catchment hydrology, monitoring and modelling.

The course starts in September each year. The MSc lasts for 12 months on a full time basis and the PGDip for 9 months on a full time basis.

How you will be taught

Teaching on the course is delivered through a combination of lecture material and informal seminar-style discussion, which will encourage you to explore taught materials and interpret ideas individually.

Field classes are held in order to study monitoring and management strategies in realistic situations, with opportunities to meet the people involved in these activities.

What you will study

There are core modules (all 20 credits) in:

Research Training (Semesters 1 and 2)
Hydrological Monitoring and Modelling (Semester 1)
Catchment Management principlies (Semester 1)
Hydrological applications (Semester 2)


Plus you can choose two of the following option modules (20 credits):

Research in Practice (work placement) (Semester 2)
Applied GIS and Geospatial Data Analysis (Semester 2)
Fieldcourse (Semester 2)


Students enrolled on the MSc programme also complete a Dissertation (worth 60 credits) over the summer period. The research project may be completed in partnership with external environmental agencies.


All modules aim to provide you with as much application and hands-on practice as possible, both within the field and laboratory environments, as well as encouraging you to develop a wider range of research methods and skills.

How you will be assessed

Learning is assessed through a mixture of oral and written presentations, problem-solving assignments, feedback and a major research based project or dissertation.

Careers

Career prospects are good, due to a current shortage reported by environmental recruiters. A rising workload has been noted within Europe stemming from increased regulation in the water sector.

Globally, catchment hydrological management for meeting food security and water quality needs in the face of climate change is a major and growing issue. These drivers will increase substantially increase employment opportunities both nationally and internationally.

This course builds upon a previous course (MSc in Sustainable Catchment Management), which had an excellent record of students entering work in environmental agencies, consultancies and policy related areas upon graduation. The course also provides an excellent platform for further postgraduate study.

Contacts with employers

Dissertations may be organised using contacts within organisations employing graduate water specialists, and participants will have other opportunities during the year to make direct contact with employers. Staff are able to provide advice on many organisations within which graduates of other Dundee programmes are already employed, in conjunction with the University's Careers Service.

Read less
The Civil Engineering MSc at UCL now offers five additional specialist routes which reflect the expertise within the department and the expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers five additional specialist routes which reflect the expertise within the department and the expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of environmental systems.

About this degree

The programme aims to provide students with a solid academic background in a broad range of civil engineering topics and advanced skills in problem-solving necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of environmental systems and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules including three specialist modules and one professional development module (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, four core modules (60 credits), four optional modules (60 credits) is also offered.

Core modules

  • Systems, Society and Sustainability
  • Environmental Systems
  • Waste and Wastewater Treatment
  • Project Management (Professional Development Module)

Optional modules

Students choose four from the following:

  • Environmental Systems
  • Roads and Underground Infrastructure
  • Advanced Soil Mechanics
  • Introduction to Seismic Design of Structures
  • Water and Wastewater Treatment
  • Offshore and Coastal Engineering
  • Natural and Environmental Disasters
  • Principles & Practices of Surveying
  • Finite Element Modelling and Numerical Methods
  • Urban Flooding and Drainage
  • Structural Dynamics
  • Data analysis
  • GIS Principles & Technology
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Design and Analysis of Structural Systems
  • Advanced Civil Engineering Materials
  • Engineering Study of Rail Systems and Infrastructure
  • Building Engineering Physics
  • Financial Aspects of Project Engineering and Contracting

Please note: combinations of different modules will be determined by timetable constraints

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Environmental Systems) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated in the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design.

This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond. There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of geographic information science.

About this degree

The programme provides students with a strong academic background in a broad range of civil engineering topics and advanced skills in problem-solving, which are necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of geographic information science and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules including three specialist modules and one professional development module (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, four core modules (60 credits), four optional modules (60 credits) is also offered.

Core modules

  • GIS Principles and Technology
  • Principles of Spatial Analysis
  • Web and Mobile GIS
  • Project Management (Professional Development Module)

Optional modules

Students choose four from the following:

  • Environmental Systems
  • Roads and Underground Infrastructure
  • Advanced Soil Mechanics
  • Introduction to Seismic Design of Structures
  • Water and Wastewater Treatment
  • Offshore and Coastal Engineering
  • Natural and Environmental Disasters
  • Principles & Practices of Surveying
  • Finite Element Modelling and Numerical Methods
  • Urban Flooding and Drainage
  • Structural Dynamics
  • Data analysis
  • GIS Principles & Technology
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Design and Analysis of Structural Systems
  • Advanced Civil Engineering Materials
  • Engineering Study of Rail Systems and Infrastructure
  • Building Engineering Physics
  • Financial Aspects of Project Engineering and Contracting

Please note: combinations of different modules will be determined by timetable constraints.

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Geographic Information Science) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated in the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design. This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond.

There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Accreditation

This degree is accredited, as a Technical MSc, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. See http://www.jbm.org.uk for further information.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
There is an international need for professionals who can provide sustainable and resilient infrastructure to help alleviate poverty in low- to middle-income countries. Read more

There is an international need for professionals who can provide sustainable and resilient infrastructure to help alleviate poverty in low- to middle-income countries. This programme will create future engineers who can work in a global context and with the skills and understanding to address the challenges of poverty worldwide.

About this degree

Students gain understanding of infrastructure design and delivery processes in resource-limited settings, and learn how to mobilise technical expertise to develop solutions with local stakeholders in a global context. The wide range of taught modules also provides opportunity to critically engage with the complexities and ethical dilemmas of working as an engineer internationally.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), a collaborative project (30 credits). three optional modules (45 credits), and a dissertation/report (60 credits).

A Postgraduate Diploma (120 credits), full-time nine months, part-time two years, flexible up to five years is offered

Core modules

  • Appropriate Technologies in Practice
  • Collaborative Project International Development
  • Engineering and International Development
  • Conflict, Humanitarianism and Disaster Risk Reduction

Optional modules

  • Students choose a minimum of two* and a maximum of three optional modules from the following (subject to availability):
  • Environmental GIS
  • Environmental Modelling
  • Environmental Systems Engineering
  • GIS Principles and Technology
  • Natural and Environmental Disasters
  • Urban Flooding and Drainage
  • Water and Wastewater Treatment
  • *Students who choose two optional modules may choose one elective module in addition from the following:
  • Critical Urbanism Studio I – Learning from Informality: Case Studies and Alternatives
  • Critical Urbanism Studio II – Learning from Informality: Investigative Design
  • Disaster Risk Reduction in Cities
  • Food and the City
  • Post Disaster Recovery: Policies, Practicies and Alternatives
  • Sustainable Infrastructure and Services in Development
  • Urban Water and Sanitation, Planning and Politics
  • Clean Energy and Development
  • Water and Development in Africa
  • Housing as Urbanism
  • Urban and Peri-Urban Agriculture

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000 to 15,000 words.

Teaching and learning

This programme will be delivered by a selection of taught modules, collaborative project with overseas clients and practical activities, including a site visit to the Centre for Alternative Technologies in Wales. While most of the field trip costs are met by the department, students are required to pay £300 towards the trip which contributes to accommodation and food. Assessment will range from group project presentations, coursework, and examinations to essays and a compulsory dissertation over the last term.

Further information on modules and degree structure is available on the department website: Engineering for International Development MSc

Careers

Graduates can expect to find employment in the following areas:

  • the Department for International Development
  • international development agencies and engineering consultancies
  • organisations such as the United Nations, the World Bank, and the European Union
  • non-governmental agencies worldwide, such as Practical Action, WaterAid, and Water & Sanitation for the Urban Poor.

Employability

MSc Engineering for International Development graduates will be able to pursue a career in the field of engineering, working on projects in low-middle income, developing countries, as well as the broader international development sector in different capacities and within various organisations currently operating in the field, such as the UN, the EU or NGOs such as WaterAid, Practical Action, Habitat for Humanity and more.

Why study this degree at UCL?

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting department with well-established research projects and networks in environmental engineering, transportation, urban resilience, wastewater provision, human settlements and renewable energy.

UCL is also home to Engineers Without Borders UCL, the international development organisation's largest UK branch and the Engineering for International Development which is an umbrella entity for student activities in relation to international development. A self-financed summer school can be organized to Ethiopia to gain exposure to the water supply, sanitation and hygiene (WASH) programme of the UN.

Students benefit from UCL's strong links with industry-leading partners in the heart of London, through collaborative projects with businesses, charities and utility companies who work in low-middle income regions such as Water Aid, and renewable energy start-ups such as BBOXX.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less

Show 10 15 30 per page



Cookie Policy    X