• Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University College London Featured Masters Courses
University of Bedfordshire Featured Masters Courses
Imperial College London Featured Masters Courses
Durham University Featured Masters Courses
London School of Economics and Political Science Featured Masters Courses
"flight"×
0 miles

Masters Degrees (Flight)

We have 63 Masters Degrees (Flight)

  • "flight" ×
  • clear all
Showing 1 to 15 of 63
Order by 
The MSc in Aerospace Dynamics aims to provide both fundamental and applied knowledge applicable to the understanding of air flows, vehicle dynamics and control and methods for computational modelling. Read more

The MSc in Aerospace Dynamics aims to provide both fundamental and applied knowledge applicable to the understanding of air flows, vehicle dynamics and control and methods for computational modelling. The course will provide students with practical experience in the measurement, analysis, modelling and simulation of airflows and aerial vehicles. The MSc in Aerospace Dynamics stems from the programme in Aerodynamics which was one of the first masters courses offered by Cranfield and is an important part of our heritage. The integration of Aerodynamics with Flight Dynamics reflects the long-term link with the aircraft flight test activity established by Cranfield. Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which hold a number of networking and social events throughout the year.

Who is it for?

Suitable if you have an interest in aerodynamic design, flow control, flow measurement, flight dynamics and flight control. Choose your specialist option once you commence your studies.

  • Flight Dynamics option: if you want to develop a career in flight physics and aircraft stability and control, more specifically in the fields of flight control system design, flight simulation and flight testing.
  • Aerodynamics option: if you want to develop a career in flight physics and specifically in the fields of flow simulation, flow measurement and flow control.

Why this course?

The aerospace industry in the UK is the largest in the world, outside of the USA. Aerodynamics and flight dynamics will remain a key element in the development of future aircraft and in reducing civil transport environmental issues, making significant contributions to the next generation of aircraft configurations. 

In the military arena, aerodynamic modelling and flight dynamics play an important role in the design and development of combat aircraft and unmanned air vehicles (UAVs). The continuing search for aerodynamic refinement and performance optimisation for the next generation of aircraft and surface vehicles creates the need for specialist knowledge of fluid flow behaviour.

Cranfield University has been at the forefront of postgraduate education in aerospace engineering since 1946. The MSc in Aerospace Dynamics stems from the programme in Aerodynamics which was one of the first masters' courses offered by Cranfield and is an important part of our heritage. The integration of aerodynamics with flight dynamics reflects the long-term link with the aircraft flight test activity established by Cranfield. 

Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which holds a number of networking and social events throughout the year.

Informed by Industry

The Industrial Advisory Panel, comprising senior industry professionals, provides input into the curriculum in order to improve the employment prospects of our graduates. Panel members include:

  • Adrian Gaylord, Jaguar Land Rover (JLR)
  • Trevor Birch, Defence, Science and Technology Laboratory (DSTL)
  • Chris Fielding, BAE Systems
  • Anastassios Kokkalis, Voith
  • Stephen Rolson, European Aeronautic Defence and Space Company (EADS)
  • Clyde Warsop, BAE Systems




Read less
IN BRIEF. Emphasis on feedback control, robotics, flight control and discrete event manufacturing control. Real opportunities for career progression in to the automation industry. Read more

IN BRIEF:

  • Emphasis on feedback control, robotics, flight control and discrete event manufacturing control
  • Real opportunities for career progression in to the automation industry
  • Programme designed using Engineering Council benchmarks
  • Part-time study option
  • International students can apply

COURSE SUMMARY

The overall objective of this course is to add value to your first degree and previous relevant experience by developing a focused, integrated and critically aware understanding of underlying theory and current policy and practice in the field of control systems engineering.

The course is control systems focused, with the emphasis on control systems theory together with a range of control applications including industrial control (SCADA), intelligent control, flight control and robotic control. The control systems approach provides continuity in learning throughout the one year of study.

COURSE DETAILS

This course has been awarded accredited status by both the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE) for 2010 to 2014 intake cohorts as meeting the exemplifying academic benchmark for registration as a Chartered Engineer (CEng) for students who also hold an accredited BEng Honours degree. Candidates who do not hold an appropriately accredited BEng Honours degree will gain partial exemption for CEng status; these candidates will need to have their first qualification individually assessed if they wish to progress onto CEng registration.

Professional registration and Institution membership will enhance your career in the following ways:

  • Access to continuous professional development
  • Careers advice and employment opportunities
  • Increased earning potential over the length of your career
  • International recognition of your qualifications, skills and experience
  • Evidence of your motivation, drive and commitment to the profession
  • Networking opportunities

On completion of the course you should have a critical awareness and understanding of current problems in control engineering, techniques applicable to research in the field of control systems and how established techniques of research and enquiry are used to create and interpret knowledge in the field of control systems. You should also be able to deal with complex issues both systematically and creatively, make sound judgments in the absence of complete data, and communicate your conclusions clearly to specialist and non-specialists.

TEACHING

Teaching will be delivered through a combination of lectures, tutorials, computer workshops and laboratory activities.

ASSESSMENT

  • 35% examinations
  • 65% coursework (labs, reports, dissertation)

FACILITIES

Mechanical Lab – This lab is used to understand material behaviour under different loading conditions and contains a tensile test machine and static loading experiments – typical laboratory sessions would include tensile testing of materials and investigation into the bending and buckling behaviour of beams.

Aerodynamics Lab – Contains low speed and supersonic wind tunnels – typical laboratory experiments would include determining the aerodynamic properties of an aerofoil section and influence of wing sweep on the lift and drag characteristics of a tapered wing section.

Composite Material Lab – This lab contains wet lay-up and pre-preg facilities for fabrication of composite material test sections. The facility is particularly utilised for final year project work.

Control & Dynamics Lab – Contains flight simulators (see details below) and programmable control experiments – typical laboratory sessions would include studying the effects of damping and short period oscillation analysis, forced vibration due to rotating imbalance, and understanding the design and performance of proportional and integral controllers.

Flight Simulators

Merlin MP520-T Engineering Simulator    

  • This simulator is used to support engineering design modules, such as those involving aerodynamics and control systems by giving a more practical experience of aircraft design than a traditional theory and laboratory approach. As a student, you'll design and input your own aircraft parameters into the simulator before then assessing the flight characteristics.
  • The simulator is a fully-enclosed single seat capsule mounted on a moving 2-degree of freedom platform which incorporates cockpit controls, integrated main head-up display and two secondary instrumentation display panels.
  • An external instructor console also accompanies the simulator and is equipped with a comprehensive set of displays, override facilities and a two-way voice link to the pilot.

Elite Flight Training System    

  • The Elite is a fixed base Piper PA-34 Seneca III aircraft simulator used for flight operations training and is certified by the CAA as a FNPT II-MCC Multi-Crew Cockpit training environment. It has two seats, each with a full set of instrumentation and controls, and European Visuals, so you see a projection of the terrain that you're flying through, based on real geographic models of general terrain and specific airports in Europe.

EMPLOYABILITY

A wide range of control and automation opportunities in manufacturing and engineering companies, opportunities in the aerospace sector.

FURTHER STUDY

There are opportunities to go on to further research study within our CASE control and Intelligent Systems Research Centre.

Research themes in the Centre include:

  • Control Engineering
  • Railway/Automotive Research
  • Computational Intelligence and Robotics
  • Biomedical Research
  • Energy and Electrical Engineering


Read less
IN BRIEF. Great employer demand for graduates of this course. Access to excellent facilities including over 20 wind tunnels and a DC10 jet engine. Read more

IN BRIEF:

  • Great employer demand for graduates of this course
  • Access to excellent facilities including over 20 wind tunnels and a DC10 jet engine
  • Accredited course by the Institute of Mechanical Engineers, giving you the opportunity to achieve chartered engineer status
  • International students can apply

COURSE SUMMARY

The aerospace industry is at the forefront of modern engineering and manufacturing technology and there is an expanding need for highly skilled chartered Aerospace Engineers.

If you are looking to pursue a career in aerospace engineering this course will enable you to apply your skills and knowledge of engineering devices and associated components used in the production of civil and military aircraft, spacecraft and weapons systems.

This module has been accredited by the Institution of Mechanical Engineers. On graduation you be able to work towards Chartered Aerospace Engineer status which is an independent verification of your skills and demonstrates to your colleagues and employers your commitment and credentials as an engineering professional.

TEACHING

The course will be taught by a series of lectures, tutorials, computer workshops and laboratory activities.

Some modules will include a structured factory visit to illustrate the processes and techniques and to enable investigations to be conducted.

Engineers from the industry will contribute to the specialist areas of the syllabus as guest lecturers.

ASSESSMENT

The coursework consists of one assignment, and two laboratory exercises.

  • Assignment 1: Control design skills. (30%)
  • Laboratory 1: Feedback control design skills and system modelling skills. (10%)
  • Laboratory 2: Flight dynamics (10%)
  • The first 5 assignments are of equal weighting of 10%, assignment 6 has a weighting of 20%
  • Assignment1: Matlab programming skills assessed.
  • Assignment2: Simulink/ Matlab for control programming skills assessed.
  • Assignment3: Matlab simulation skills assessed.
  • Assignment4: Matlab integration skills assessed.
  • Assignment5: Matlab matrix manipulation knowledge assessed.
  • Assignment 6: Aerospace assembly techniques.

FACILITIES

Mechanical Lab – This lab is used to understand material behaviour under different loading conditions and contains a tensile test machine and static loading experiments – typical laboratory sessions would include tensile testing of materials and investigation into the bending and buckling behaviour of beams.

Aerodynamics Lab – Contains low speed and supersonic wind tunnels – typical laboratory experiments would include determining the aerodynamic properties of an aerofoil section and influence of wing sweep on the lift and drag characteristics of a tapered wing section.

Composite Material Lab – This lab contains wet lay-up and pre-preg facilities for fabrication of composite material test sections. The facility is particularly utilised for final year project work.

Control Dynamics Lab – Contains flight simulators (see details below) and programmable control experiments – typical laboratory sessions would include studying the effects of damping and short period oscillation analysis, forced vibration due to rotating imbalance, and understanding the design and performance of proportional and integral controllers.

Flight Simulators

Merlin MP520-T Engineering Simulator    

  • This simulator is used to support engineering design modules, such as those involving aerodynamics and control systems by giving a more practical experience of aircraft design than a traditional theory and laboratory approach. As a student, you'll design and input your own aircraft parameters into the simulator before then assessing the flight characteristics.
  • The simulator is a fully-enclosed single seat capsule mounted on a moving 2-degree of freedom platform which incorporates cockpit controls, integrated main head-up display and two secondary instrumentation display panels.
  • An external instructor console also accompanies the simulator and is equipped with a comprehensive set of displays, override facilities and a two-way voice link to the pilot.

Elite Flight Training System    

  • The Elite is a fixed base Piper PA-34 Seneca III aircraft simulator used for flight operations training and is certified by the CAA as a FNPT II-MCC Multi-Crew Cockpit training environment. It has two seats, each with a full set of instrumentation and controls, and European Visuals, so you see a projection of the terrain that you're flying through, based on real geographic models of general terrain and specific airports in Europe.

EMPLOYABILITY

This is a highly valued qualification and as a graduate you can expect to pursue careers in a range of organizations around the world such as in aerospace companies and their suppliers, governments and research institutions.

FURTHER STUDY

You may consider going on to further study in our Engineering 2050 Research Centre which brings together a wealth of expertise and international reputation in three focussed subject areas.

Research at the centre is well funded, with support from EPSRC, TSB, DoH, MoD, Royal Society, European Commission, as well as excellent links with and direct funding from industry. Our research excellence means that we have not only the highest calibre academics but also the first class facilities to support the leading edge research projects for both post-graduate studies and post-doctoral research.

Visit http://www.cse.salford.ac.uk/research/engineering-2050/ for further details.




Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Aerospace Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Aerospace Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Aerospace Engineering at Swansea University has a distinguished history of working with aerospace companies around the world. As a student on the MSc Aerospace Engineering, you will be provided with a systematic understanding of the advanced knowledge, critical awareness and new insights required by effective practising aerospace engineers.

The MSc Aerospace Engineering degree is based on the world-class expertise available in the Materials Engineering Centre and the Zienkiewicz Centre for Computational Engineering.

At Swansea, world-class aerospace research drives excellent teaching within a cutting-edge learning environment with state-of-the-art facilities. The MSc Aerospace Engineering course prepares you for the design, analysis, testing and flight of the full range of aeronautical vehicles, including propeller-driven and jet-powered planes, helicopters and gliders.

Students on the Aerospace Engineering course will gain hands-on experience through access to one of the world’s most advanced engineering flight simulators housed within the College of Engineering. The MSc Aerospace Engineering course at Swansea University is accredited by the Institution of Mechanical Engineers (IMechE), the Royal Aeronautical Society (RAeS), and the Institution of Engineering Designers (IED).

Modules on the Aerospace Engineering course typically include:

Finite Element Computational Analysis

Composite Materials

Flight Dynamics and Control

Advanced Airframe Structure

Advanced Aerodynamics

Numerical Methods for Partial Differential Equations

Aerospace Materials Engineering

Group Project

Research Dissertation

MSc Dissertation - Aerospace Engineering

Student Quotes

“After passing all the modules on the MSc Aerospace Engineering course, I had the possibility to develop my final thesis in an industrial environment. I learnt about avionics and electronic equipment and developed team work and communication skills.

My favourite memory of the MSc Aerospace Engineering course is our team winning the International Aircraft Design and Handling competition. Our effort really paid off when we won the first prize!

Before starting my final thesis, I found a job as an Applications Engineer in one of the most important aerospace engineering companies, MTorres. Personally, I think obtaining a Master’s degree in a university with a great reputation such as Swansea University makes it much easier to find a job.

Swansea University provides a fantastic opportunity to study any field of engineering due to the professional and friendly staff.”

Roberto Morujo, MSc Aerospace Engineering

Links with Industry

Aerospace Engineering at Swansea University has a distinguished history of working with aerospace companies around the world, including:

BAE Systems

Rolls Royce

EADS

Airbus

We have also contributed to many exciting projects, from the super-jet Airbus A380 to the 1,000mph land-speed record breaking BLOODHOUND SSC.

Careers

The MSc Aerospace Engineering course is suitable for those who would like to gain comprehensive knowledge, understanding and skills that will enable them to contribute to the creation and maintenance of aerospace and aeronautical equipment.

The MSc Aerospace Engineering course covers the necessary aspects for a successful career in the growing aerospace industry.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Aerospace Engineering at Swansea University has a wide range of in-house facilities ranging from computer labs housing state-of-the-art PCs through to specialist equipment used almost exclusively by aerospace students.

Practical flying experience on the MSc Aerospace Engineering course is gained from the state-of-the-art Merlin MP521X engineering flight simulator mounted on a six axis hydraulic motion system and flying experience at a local airport.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Read more
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Particular prominence is given to Sustainable Aviation, Advanced Materials and Processes, Experimental Methods and Techniques, Computational Fluid Dynamics, Structural Analysis and Simulation, Flight Dynamics and Simulation, and Advanced Aircraft Systems, in particular Unmanned Aerial Vehicles.

An emphasis on applied technical work will strengthen the engineering development skills of students from an academic background. The programme is delivered by a specialist team of academics. Access to state of the art laboratory and computing facilities within the new Engineering and Computing building. Personal tutor support throughout the postgraduate study. Excellent links with a number of industrial organisations enable access to the latest technology and real-world applications.

WHY CHOOSE THIS COURSE?

The work carried out on this course will provide the demonstrable expertise necessary to help secure professional level employment in related industries.

The Aerospace Engineering MSc curriculum consists of eight mandatory core topics and a substantial MSc project. Successful completion of all elements leads to the award of MSc in Aerospace Engineering. Completion of the taught modules without a project leads to the award of a Post Graduate Diploma.

WHAT WILL I LEARN?

The mandatory study topics are as follows:
-Mathematical modelling in Aerospace Engineering
-Unmanned Aerial Vehicle Systems (UAV)
-Experimental Methods and Techniques
-Computational Fluid Dynamics (CFD)
-Advanced Materials and Processes
-Design and analysis of Aerospace structures
-Flight Dynamics and Simulation
-Project Management
-Individual Project

The substantial individual project gives students the opportunity to work on a detailed area of related technology alongside an experienced academic supervisor. Some projects are offered in conjunction with the work of the Faculty’s research centres or industry. Typical project titles include:
-Integration of Advanced Materials into Aircraft Structures
-Sustainable Aircraft Development and Design
-Intelligent Power Generation
-UAV SWARM Systems

You will have access to:
-Unique Flight Simulator Suite (3 flight simulators, 2 UAV ground control systems plus the associated UAV,1 Air Traffic Control unit);
Harrier Jump Jet;
-New bespoke Mercedes-Petronas low speed wind tunnel and associated measurement;
-Faculty workshop (metal/woodwork), Composites Laboratory, Metrology Laboratory, Electrical Laboratory, Communications and Signal Processing Laboratory, Cogent Wireless Intelligent Sensing Laboratory
-Faculty Open Access Computer Facilities

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

The specialist topics studied on the programme will prepare you for work in specialist companies involved with aeronautical engineering. There are also many roles in related industries that rely on the technology. Possible destinations include:
-Design, Development, Operations and Management;
-Projects/Systems/Structural/Avionics Engineers.

Typical student destinations include:
-BAE Systems
-Rolls-Royce
-Airbus
-Dassult

Opportunities also exist to complete a PhD research degree upon completion of the master’s course:
-Research at Coventry University
-Cogent Computing
-Control Theory and Applications Centre
-Distributed Systems and Modelling

Aerospace Engineering MSc has been developed to improve upon the fundamental undergraduate knowledge of aerospace/aeronautical students and help mechanical students learn more about the application of their subject to aircraft. The whole aerospace/aviation industry is committed to a more sustainable and a more efficient future. The techniques, methods and subjects covered in this degree explore the ever changing industrial environment in more detail.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
With the MSc Air Safety Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme. Read more
With the MSc Air Safety Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme.

Who is it for?

This programme is for those who have been working within the aviation industry (for at least two years), and have a primary interest in its safety. Current students include pilots, air traffic controllers, maintenance staff, engineers and the majority have a license/professional education. We also welcome students with a military background. This Air Safety Management MSc programme is tailored towards those working who cannot attend regular university schedules.

This course is compatible with The MoD's Enhanced Learning Credits Administration Service (ELCAS) - an initiative to promote lifelong learning amongst members of the UK Armed Forces. If you are/have been a member of the UK Armed Forces, you could be entitled to financial support to take this course.

Objectives

Airlines, airports and other aviation companies are mostly led by license holders, safety officers, pilots, aircraft engineers, air traffic controllers, dispatchers and many more. This means the demand for management knowledge is growing. Our programme gives students the opportunity to freshen their knowledge, learn the latest management techniques and build a lifelong network of peers.

With unexpected events affecting the aviation industry as well as increased competition and technological and regulatory changes, every organisation needs a core of up-to-date safety and risk managers ready to succeed into leadership positions.

The programme is designed to deliver individual success. First initiated by the Honourable Company of Airline Pilots (HCAP) to increase the career opportunities of aircrew, today the programme is recognised as a key resource within the aviation safety industry and as a benchmark for innovation.

Academic facilities

As a student you will benefit from learning within modern lecture theatres (equipped with the latest interactive AV systems) and modern IT laboratories.

A dynamic virtual learning environment (Moodle) gives you access to online assessment and communication tools as you study and you can work with specialist School facilities including:
-A flight deck and flight test course
-A320 procedure training
-Wind tunnels and micro turbines
-Optical compressors and fuel injection systems.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

A dissertation related to experience in the industry is required. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

This course gives you a recognised industry qualification, control of your own career and the ability to contribute to air safety management. The course is very flexible and you can study while you work.

At the end of the programme you will have improved your:
-Presentation/speaking skills - through regular opportunities within each module and the project.
-Report writing and analytical skills - through coursework and the project.
-Personal management skills - through the careful use of resources to complete assignments on time.

The successful MSc graduate will have:
-A good understanding of business analysis, crisis, human motivation, and management of the air safety industry.
-A sound understanding for the national and international regulatory and commercial business environment and the ability to prepare a sound business case.
-Knowledge of aspects of accident and incident investigation, human factors, safety risk management.
-A proven ability to research and write a substantial analytical report.

These include:
-Being able to assimilate core themes from the talks given by a number of industry speakers, some of whom may have different positions.
-Being able to write succinct and clear English.
-Preparing a valid business case for a company and, at least as important, to know when a potential case is not viable.
-Having a wider knowledge of the interfaces of any single organisation with others in the industry.
-Being able to make a short verbal presentation and to defend a project under examination.

Modules

We explore air safety management from a broad perspective so you will be exposed to areas as diverse as human resources, regulation, and crisis management. The academic framework has been created by the industry for the industry. This means you learn from the former British Airways human resources director in one module, and the industry's crisis management expert in safety or the chief executive officer of a major maintenance facility in another.

The course is based on completing the Induction Workshop plus eight modules over one to five years, which are taught over three-day periods. Teaching takes place across global locations including London, Dubai and Frankfurt. Students also take on a project/dissertation in an air transport related subject, which is usually completed within six to twelve months. From developing new safety measures to social media marketing in the aviation world, students choose their own research focus and often use the project as a way into a new career.

Students who choose not to do the project, or are unable to complete the programme within the five years, receive a Postgraduate Certificate on successful completion of four modules, including two core modules, or a Postgraduate Diploma on successful completion of eight modules.

Core modules
-Active Safety Management (EPM836)
-Crisis Management (EPM828)
-Safety Risk Management (EPM973)

To begin your MSc, you will be required to attend the Induction Workshop (IW), which gives you a thorough introduction into Higher Education and introduces all the tools and facilities available for your MSc. You will have to write a short essay after the IW, which will be your final assessment to be accepted into City, University of London.

Elective modules
-Airline Operations (EPM825)
-Air Transport Economics (EPM823)
-Airline Business (EPM831)
-Human Resource Management (EPM822)
-Psychology in Aviation Management (EPM966)
-Airline Marketing (EPM821)
-Airline Operational Regulatory Compliance (EPM825)
-Fleet Planning (EPM829)
-Developing a Business Plan (EPM969)
-Financial Accounting (EPM824)
-Sustainable Aviation (EPM975)
-Airports and Ground Handling (EPM968)
-Airworthiness (EPM897)
-Airline Maintenance (EPM906)
-Airline Revenue Management, Pricing and Distribution (EPM972)
-Safety Management - Tools and Methods (EPM833)
-Air Accident Investigation (EPM970)
-Leadership in Organisations (EPM971)
-Aviation Law (EPM978)
-Future Aviation (EPM980)

Dissertation - a dissertation related to experience in the industry is required. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

Career prospects

This is a professional programme recognised by the aviation industry and accredited by the Royal Aeronautical Society.

Airlines are increasingly expecting their managers to study the MSc from City, University of London, and our alumni network includes high-ranking individuals including safety managers, training captains, quality managers, flight safety officers, safety inspectors, safety consultants and accident investigators in civil aviation authorities, airlines and with other aircraft operators and defence forces worldwide.

Graduates may change or transform their careers as a result of the MSc.

Read less
This specialist course has been developed to equip graduate engineers with the skills required of a highly demanding aerospace industry. Read more

About the course

This specialist course has been developed to equip graduate engineers with the skills required of a highly demanding aerospace industry.

Taught modules are balanced with practical and challenging individual and group aerospace project work. You will learn about aircraft design aerodynamics, space mechanics, spacecraft design, propulsion systems and the role of flight simulation in aerospace at an
advanced level.

Practical projects typically include the design, build and testing of a scale aircraft, computational fluid dynamics and structural analysis modelling of a critical aerospace component and flight performance evaluation using a flight simulator.

MSc Aerospace Engineering is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Aims

Although the course has a distinct specialist and technical flavour, the MSc also seeks to provide graduates with a raft of non-technical skills to enable them to realise their professional potential to its fullest.

To this end, the course provides modules that cover topics in strategic management, enterprise, research and innovation, as well as exploring issues that are of special importance to the future of the aerospace industry, such as safety, security, and sustainability.

Course Content

The MSc Aerospace Engineering course consists of five taught modules, a group project, and an individual project and dissertation.

Compulsory Modules

Design and Analysis of Aerospace Vehicles
Advanced Aerodynamics, Propulsion Systems, and Space Mechanics
Current Topics in Aerospace
Strategic Management Innovation and Enterprise
Research Methodology and Sustainable Engineering
Group Project in Aerospace Engineering
Aircraft Structures, Loads and Aeroelasticity
Dissertation

Special Features

Highly rated by students

Mechanical Engineering at Brunel ranks highly in the Guardian league tables for UK universities, with a student satisfaction score of 86.4% in 2015. Postgraduate students can therefore expect to benefit from an experienced and supportive teaching base whilst having the opportunity to thrive in a dynamic and high-profile research environment.

Outstanding facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Strong links with industry

We regularly consult aerospace engineering experts to keep our programmes up to date with industry needs. Read more about how we integrated industrial expertise into an MEng Aerospace Engineering module.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

Aerospace Engineering is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Assessment

Modules are taught over eight months (from October to May) and are assessed by a balanced combination of examination and assignment.

Read less
Aerospace engineering has evolved and diversified since the early days of powered flight. Employers now require skills ranging from aerodynamics and flight control to space engineering simulation and design. Read more
Aerospace engineering has evolved and diversified since the early days of powered flight. Employers now require skills ranging from aerodynamics and flight control to space engineering simulation and design. This diversity means that engineers need to be able to operate and develop advanced devices, and understand complex theoretical and computational models.

* This programme will give you advanced skills in computational modelling, numerical techniques and an in-depth understanding in engineering approaches to aerospace problems
* After your degree, you will be well prepared to develop new computational and technological products for the aerospace industries
* You will join research groups working at the cutting edge of aerospace engineering, and computational modelling
* This is a well established course with variety and choice for students - there are a wide number of engineering modules, but also the chance to specialise on your own area

Why study with us?

The School of Engineering and Materials Science (SEMS) undertakes high quality research in a wide range of areas. This research feeds into our teaching at all levels, helping us to develop very well qualified graduates with opportunities for employment both in many leading industries as well as in research. Both Engineering and Materials are very well established at Queen Mary, with the Aerospace Department being the first established in the UK. Our aerospace teaching programmes were ranked number 2 in the UK in the 2011 National Student Survey.

Studying Engineering has taught me to think, plan, organise and execute tasks in a systematic and methodical manner. Osman Bawa

* This MSc programme is available to students from a variety of non-engineering backgrounds such as Physics, Maths, and Electronic Engineering
* It was the first of its kind in the country; offering some unique modules including, Aeroelasticity, Crash worthiness, and Space engineering
* Students will collaborate with researchers working in alternative fuels sources, so it is relevant and timely
* Aerospace Engineering is an employment related field which allows you to keep up-to-date with the latest developments in design, aerodynamics, propulsion and technology.

Facilities

You will have access to a range of facilities, including:

* Excellent computing resources such as a high-performance computing cluster, several high-performance PC clusters and parallel high-performance SGI computer clusters, an extensive unit of Linux and UNIX workstations.
* A wide range of experimental facilities from low speed wind tunnels with one of the lowest ever recorded turbulence level of 0.01% to supersonic wind tunnels, anechoic chamber dedicated to aeroacoustics problems, two new state-of-the-art electrospray technology laboratories, experimental propulsion, an advanced CueSim flight simulator and labs equipped with modern measurements techniques.
* Engineering and Materials Sciences postgraduates will also have access to the School's extensive experimental facilities used for materials, the latest electron microscopes and a brand new Nanovision centre.

Read less
This is an integrated degree programme that brings together the key generic skills of management and research methods with specific modules focusing on aerodynamics and flight mechanics. Read more
This is an integrated degree programme that brings together the key generic skills of management and research methods with specific modules focusing on aerodynamics and flight mechanics. This approach will help you to develop your critical thinking skills as a future engineering manager, or technical specialist enabling you effectively to analyse technical and or management issues. The programme aims to:
-Equip you with the theory and the practice of relevant subjects, technologies and analytical tools to provide solutions for aerospace and related manufacturing problems
-Provide a blend of knowledge and application experience through case studies and project work
-Focus on the links between analysis and design and the supporting skills of management
-Provide education and experience which enhances prospects of professional employment within the industry

Why choose this course?

-The School has over 50 years' experience of teaching aerospace, and has established an excellent international reputation in this field
-We offer extensive lab facilities for aerospace engineering students, including a flight simulator, the latest software packages and windtunnels
-This MSc combines analysis and design with management skills to produce highly-employable postgraduates.

Professional Accreditations

Accredited for Chartered Engineer (CEng) status by the Institution of Engineering and Technology (IET) and by the Royal Aeronautical Society (RAeS).

Careers

This programme will help you to develop your critical thinking skills as a future engineering manager or technical specialist as it will enable you to effectively analyse technical and management issues. This blend of technical and managerial content is invaluable in job applications as well as helping to fast-track your career in the industry.

Teaching methods

The School has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility. StudyNet allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Core Modules
-Aeroelasticity
-CFD Analysis for Aerospace Applications
-CFD Techniques
-Control of Engineering Systems
-FEA & Applications
-Flight Mechanics
-MSc Project
-Operations Management
-Operations Research

Read less
The Masters in Aerospace Engineering is a multi-disciplinary programme that covers all aspects of modern aircraft design. This involves developing essential knowledge and skills in advanced aerodynamics and aerospace systems. Read more

The Masters in Aerospace Engineering is a multi-disciplinary programme that covers all aspects of modern aircraft design. This involves developing essential knowledge and skills in advanced aerodynamics and aerospace systems. By choosing specific options in the second semester the degree programme can be tailored to provide specialisms in either Aeronautics or Systems.

Why this programme

  • The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having been internationally recognised expertise in all areas of Aeronautics and Aerospace Systems
  • The School of Engineering’s aeronautical engineering is consistently highly ranked among the top 10 in the UK and recently achieved 1st in Scotland (Complete University Guide 2017).

Programme structure

Modes of delivery of the MSc in Aerospace Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work. 

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project. 

Semester 1 core courses 

  • Aircraft flight dynamics 
  • Aerospace Control 1 
  • Navigation systems 
  • Simulation of aerospace systems 
  • Space flight dynamics 1 

Semester 2 optional courses

Select a team project from:

  • Aerospace Design Project M *
  • Aerospace Systems Team Design Project M 

Select five courses from the following:

  • Aeroelasticity 5 or Aircraft Vibration & Aeroelasticity 4 *
  • Autonomous vehicle guidance systems **
  • CFD 5 or CFD 4 *
  • Composite Airframe Structures *
  • Fault detection, isolation and reconfiguration **
  • High Speed Aerodynamics 4 *
  • Intro to Wind Engineering *
  • Radar and electro-optic systems **
  • Robust control 5 **
  • Rotorcraft Aeromechanics 5 *
  • Spacecraft Systems II **
  • Turbulent Flows 5 *
  • Aircraft Handling Qualities & Control 5 * (Enrolment on this course is subject to available numbers on flight test course and may require an additional charge)

* signifies courses that constitute the specialism in Aeronautics

** signifies courses that constitute the specialism in Systems



Read less
Aerospace systems are the future of the aerospace industry and constitute the major component of all modern aircraft. They are the essential onboard systems that ensure the safe and accurate operation of all aerospace vehicles, from civil passenger planes to sophisticated unmanned aerial vehicles. Read more
Aerospace systems are the future of the aerospace industry and constitute the major component of all modern aircraft. They are the essential onboard systems that ensure the safe and accurate operation of all aerospace vehicles, from civil passenger planes to sophisticated unmanned aerial vehicles.

Why this programme

◾The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
◾The University of Glasgow is one of the few institutions in the UK, and the only University in Scotland, to offer an Aerospace Systems MSc.
◾Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
◾If you are an aeronautical engineering or avionics graduate wanting to improve your skills and knowledge; a graduate of another engineering discipline, mathematics or physics and you want to change field; looking for a well-rounded postgraduate qualification in electronics & electrical engineering to enhance your career prospects; this programme is designed for you.
◾Students in this programme can benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories and computer labs for modelling and simulation.

Programme structure

Modes of delivery of the MSc in Aerospace Systems include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project.

Semester 1 core courses
◾Aircraft flight dynamics
◾Control M
◾Navigation systems
◾Simulation of aerospace systems
◾Space flight dynamics 1.

Semester 2 core courses
◾Autonomous vehicle guidance systems
◾Fault detection, isolation and reconfiguration
◾Radar and electro-optic systems
◾Robust control 5.
◾Aerospace systems team design project.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Aerospace Systems. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Accreditation

MSc Aerospace Systems is accredited by the Royal Aeronautical Society (RAeS)

Industry links and employability

◾You will be introduced to this exciting multi-disciplinary area of technology, gaining expertise in autonomous guidance and navigation, advanced aerospace control, simulation and simulators, fault detection and isolation, electro-optic and radar systems, and space systems.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, advising on projects, curriculum development, and panel discussion.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the aerospace industry.

Career prospects

Career opportunities include aerospace, defence, laser targeting systems, radar development, electro-optics, autonomous systems and systems modelling.

Graduates of this programme have gone on to positions such as:
Software Engineer at Hewlett-Packard
Avionic and Mission System Engineer at Qinetiq
Engineering Corporal & Driver at Hellenic Army.

Read less
With the MSc Aircraft Maintenance Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme. Read more
With the MSc Aircraft Maintenance Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme.

Who is it for?

This programme is for those who have been working within the aircraft maintenance industry (for at least two years). Current students include engineers, maintenance staff, the majority have a license/professional education. We also welcome students with a military background. This Aircraft Maintenance Management MSc programme is tailored towards those working who cannot attend regular university schedules.

This course is compatible with The MoD's Enhanced Learning Credits Administration Service (ELCAS) - an initiative to promote lifelong learning amongst members of the UK Armed Forces. If you are/have been a member of the UK Armed Forces, you could be entitled to financial support to take this course.

Objectives

Airlines, MRO and other aviation companies are mostly led by license holders, aircraft engineers and many more. This means the demand for management knowledge is growing. Our programme gives students the opportunity to freshen their knowledge, learn the latest management techniques and build a lifelong network of peers.

With unexpected events affecting the aviation industry as well as increased competition and technological and regulatory changes, every organisation needs a core of up-to-date managers ready to succeed into leadership positions.

The programme is designed to deliver individual success. First initiated by the AJ Walters (AJW) to increase the career opportunities of aircraft engineers, today the programme is recognised as a key resource within the aircraft maintenance industry and as a benchmark for innovation.

Academic facilities

As a student you will benefit from learning within modern lecture theatres (equipped with the latest interactive AV systems) and modern IT laboratories.

A dynamic virtual learning environment (Moodle) gives you access to online assessment and communication tools as you study and you can work with specialist School facilities including:
-A flight deck and flight test course
-A320 procedure training
-Wind tunnels and micro turbines
-Optical compressors and fuel injection systems.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

A dissertation related to experience in the industry is required. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

This course gives you a recognised industry qualification, control of your own career and the ability to contribute to aircraft maintenance management. The course is very flexible and you can study while you work.

At the end of the programme you will have improved your:
-Presentation/speaking skills - through regular opportunities within each module and the project.
-Report writing and analytical skills - through coursework and the project.
-Personal management skills - through the careful use of resources to complete assignments on time.

The successful MSc graduate will have:
-A good understanding of business analysis, crisis, human motivation, and management of the aircraft maintenance industry.
-A sound understanding for the national and international regulatory and commercial business environment and the ability to prepare a sound business case.
-Knowledge of aspects of accident and incident investigation, human factors, safety risk management.
-A proven ability to research and write a substantial analytical report.

These include:
-Being able to assimilate core themes from the talks given by a number of industry speakers, some of whom may have different positions.
-Being able to write succinct and clear English.
-Preparing a valid business case for a company and, at least as important, to know when a potential case is not viable.
-Having a wider knowledge of the interfaces of any single organisation with others in the industry.
-Being able to make a short verbal presentation and to defend a project under examination.

Assessment

Each elective is assessed by two pieces of coursework, the core modules are assessed by one piece of coursework and an examination. Each module comprises:

Part I: Prior reading before the onsite module where appropriate.
Part II: Attendance at the institution (or other locations) for the module over three days.
Part III: Examinations are held at the end of the core modules.
Part IV: Coursework for assessment. Coursework is required within six weeks of the onsite module.

Modules

We explore aircraft maintenance management from a broad perspective so you will be exposed to areas as diverse as human resources, regulation, and crisis management. The academic framework has been created by the industry for the industry. This means you learn from the former British Airways human resources director in one module, and the industry’s crisis management expert in safety or the chief executive officer of a major maintenance facility in another.

The course is based on completing the Induction Workshop plus eight modules over one to five years, which are taught over three-day periods. Teaching takes place across global locations including London, Dubai and Frankfurt.

Students also take on a project/dissertation in an aircraft maintenance related subject, which is usually completed within six to twelve months. From developing new safety measures to social media marketing in the aviation world, students choose their own research focus and often use the project as a way into a new career.

Students who choose not to do the project, or are unable to complete the programme within the five years, receive a Postgraduate Certificate on successful completion of four modules, including two core modules, or a Postgraduate Diploma on successful completion of eight modules.

Core modules
-Airline Maintenance (EPM906)
-Airworthiness (EPM897)
-Airline Operational Regulatory Compliance (EPM825)

To begin your MSc, you will be required to attend the Induction Workshop (IW), which gives you a thorough introduction into Higher Education and introduces all the tools and facilities available for your MSc. You will have to write a short essay after the IW, which will be your final assessment to be accepted into City, University of London.

Elective modules
-Airline Operations (EPM825)
-Air Transport Economics (EPM823)
-Airline Business (EPM831)
-Human Resource Management (EPM822)
-Psychology in Aviation Management (EPM966)
-Active Safety Management (EPM836)
-Airline Marketing (EPM821)
-Fleet Planning (EPM829)
-Developing a Business Plan (EPM969)
-Crisis Management (EPM828)
-Financial Accounting (EPM824)
-Sustainable Aviation (EPM975)
-Airports and Ground Handling (EPM968)
-Airline Revenue Management, Pricing and Distribution (EPM972)
-Safety Management - Tools and Methods (EPM833)
-Air Accident Investigation (EPM970)
-Leadership in Organisations (EPM971)
-Safety Risk Management (EPM973)
-Aviation Law (EPM978)
-Future Aviation (EPM980)

Dissertation - a dissertation related to experience in the industry is required. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

Career prospects

This is a professional programme recognised by the aviation industry and accredited by the Royal Aeronautical Society.

Airlines are increasingly expecting their managers to study the MSc from City, University of London, and our alumni network includes high-ranking individuals including safety managers, training captains, quality managers, flight safety officers, safety inspectors, safety consultants and accident investigators in civil aviation authorities, airlines and with other aircraft operators and defence forces worldwide.

Graduates may change or transform their careers as a result of the MSc.

Read less
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. Read more
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. On completion of these courses students acquire a broad understanding of Engineering with a focus on aerospace engineering.

The School has over 50 years' experience of teaching aerospace, and has established an excellent international reputation in this field. We offer extensive lab facilities for aerospace engineering students, including a flight simulator, the latest software packages and wind tunnels. This MSc combines analysis and design with management skills to produce highly-employable postgraduates.

The development of skills and advancement of knowledge focus on:
-Dynamic structural and aeroelastic analysis of aerospace vehicles, flight dynamics, stability and control and the implications for the design and construction of aerospace vehicles
-The construction of CFD models and to assess implications of results, the limitations of present techniques and the potential future direction of developments in the CFD and aerodynamics field
-Appreciation of the need for process, product development and quality and reliability issues relevant to the introduction of products in a cost effective and timely manner

Critical review of the present knowledge base, its applicability, usage and relevance to enhance product and enterprise performance.

Why choose this course?

This pioneering programme consists of a number of “specialist” Masters awards with an expectation that students will have studied a STEM related discipline to a Bachelor’s level or equivalent, as opposed to a “traditional” masters philosophy aimed at students from an engineering background. The programme offers options with separate entry routes for candidates transitioning from ‘Near STEM’ and ‘Far STEM’ disciplines:The Far STEM route is for first degrees where statistical analysis was a dominant feature of their analytical studies. Students will spend one to two semesters studying appropriate Level 4/5 modules in the first year then joining the Near STEM cohort (e.g., chemistry or biology).

The Far STEM route is for first degrees where statistical analysis was a dominant feature of their analytical studies. Students will spend one to two semesters studying appropriate Level 4/5 modules in the first year then joining the Near STEM cohort (e.g., chemistry or biology).

Careers

The successful postgraduates of the programme will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering through a combination of experimental, simulation, research methods and case studies. They can expect to gain work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Teaching methods

The School has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility.
The online StudyNet is accessible 24/7 and allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Year 1
Core Modules
-CFD Techniques
-Computing for Business and Technology
-Control of Engineering Systems
-Dynamics
-Engineering Application of Mathematics
-Mechanical Experimental Engineering
-Mechanical Science
-Operations Management

Year 2
Core Modules
-Aerodynamics
-Aeroelasticity
-CFD Analysis for Aerospace Applications
-Flight Mechanics
-Individual Masters Project
-Integrated Product Engineering
-Operations Research

Read less
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. Read more
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. On completion of these courses students acquire a broad understanding of Engineering with a focus on aerospace engineering.

The School has over 50 years' experience of teaching aerospace, and has established an excellent international reputation in this field. We offer extensive lab facilities for aerospace engineering students, including a flight simulator, the latest software packages and wind tunnels. This MSc combines analysis and design with management skills to produce highly-employable postgraduates.

The development of skills and advancement of knowledge focus on:
-Dynamic structural and aeroelastic analysis of aerospace vehicles, flight dynamics, stability and control and the implications for the design and construction of aerospace vehicles
-The construction of CFD models and to assess implications of results, the limitations of present techniques and the potential future direction of developments in the CFD and aerodynamics field
-Appreciation of the need for process, product development and quality and reliability issues relevant to the introduction of products in a cost effective and timely manner

Critical review of the present knowledge base, its applicability, usage and relevance to enhance product and enterprise performance.

Why choose this course?

This pioneering programme consists of a number of “specialist” Masters awards with an expectation that students will have studied a STEM related discipline to a Bachelor’s level or equivalent, as opposed to a “traditional” masters philosophy aimed at students from an engineering background. The programme offers options with separate entry routes for candidates transitioning from ‘Near STEM’ and ‘Far STEM’ disciplines:

The Near STEM route is for admission of relevant first degree candidates and whose programme would have made extensive use of applied mathematics to design and explain engineering and/or scientific concepts (e.g., physics or maths).

Careers

The successful postgraduates of the programme will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering through a combination of experimental, simulation, research methods and case studies. They can expect to gain work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Teaching methods

The School has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility.
The online StudyNet is accessible 24/7 and allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Year 1
Core Modules
-Aerodynamics
-CFD Analysis for Aerospace Applications
-Control of Engineering Systems
-Dynamics
-Flight Mechanics
-Operations Management
-Operations Research
-Vehicle Aerodynamics and Design

Year 2
Core Modules
-Individual Masters Project

Read less
The Department of Aerospace Engineering and Mechanics offers a Master of Science in aerospace engineering and mechanics degree via an on-campus program and an off-campus (distance learning - http://bamabydistance.ua.edu/) program through the College of Continuing Studies (http://continuingstudies.ua.edu/). Read more
The Department of Aerospace Engineering and Mechanics offers a Master of Science in aerospace engineering and mechanics degree via an on-campus program and an off-campus (distance learning - http://bamabydistance.ua.edu/) program through the College of Continuing Studies (http://continuingstudies.ua.edu/).

An MSAEM can be earned by coursework only or by a combination of coursework and an approved thesis. Most distance learning students elect to complete the coursework only degree option. On-campus students supported by assistantships are expected to complete an approved thesis. Learn more about admission requirements (http://aem.eng.ua.edu/graduate/admissions-and-financial-assistance/).

Visit the website http://aem.eng.ua.edu/graduate/ms-program/

MSAEM – THESIS (PLAN I) OPTION

Credit Hours
A total of 30 semester credit hours is required for a masters of science in aerospace engineering and mechanics degree. For the MSAEM Plan I option, these credit hours consist of:

- 6 hours of Core coursework
- 6 hours of Mathematics coursework, including GES 554
- 12 hours of Elective coursework
- 6 hours of AEM 599 Thesis Research

Elective coursework must be approved by the student’s advisor. Of the 24 coursework credit hours, at least 18 must have an AEM designation.

- Core Course Requirements -

All students must complete a minimum of one (1) class from the Aerospace Core listing of classes and one (1) class from the Mechanics Core listing of classes.

Aerospace Core:
AEM 567 Orbital Mechanics
AEM 582 Space Systems
AEM 614 Airfoil and Wing Theory
AEM 668 Advanced Dynamics of Flight*

Mechanics Core:
AEM 500 Intermediate Fluid Mechanics
AEM 530 Continuum Mechanics
AEM 562 Intermediate Dynamics
AEM 637 Theory of Elasticity

* For those without a BSAE degree, this course has the pre-requisite of AEM 568.

- Mathematics Requirement -

A total of six credit hours of mathematics is required. GES 554 Partial Differential Equations, which is 3 credit hours, is required and counts toward the six-credit hour mathematics requirement. The remaining three credit hours of mathematics coursework must be approved by the advisor.

- Elective Coursework Requirement -

A student must complete at least 12 hours of elective coursework. These courses are typically AEM courses, but other approved courses are acceptable. The specific courses must be approved by the student’s advisor.

- Thesis Requirement -

The student is required to submit a written thesis and defend in front of a thesis committee for approval by the committee and the graduate school.

- Test Pilot School -

Students that seek credit for Test Pilot School completed through the United States Air Force may send official transcripts from the TPS to the UA Graduate School for transfer credit. The student must receive a grade of at least a B in TPS for the credit to transfer. Additionally, the transfer of credit from TPS is subject to the restrictions placed on the transfer of credit by the Graduate School and the AEM Department. A maximum of six hours may be transferred. For additional information, view the transfer credit policy at the UA Graduate School website (http://graduate.ua.edu/admin/policy/transfercredit.html).

- Transfer Credit -

With approval of the UA Graduate School, a maximum of 12 hours of graduate credit for coursework completed at another institution may be applied toward the 24 credit hour coursework requirement for the MSAEM Plan I degree. The maximum of 12 hours of graduate transfer credit includes the six hours of credit transferred from TPS, if applicable.

All credit toward the MSAEM degree, including transfer credit, must have been earned during the six years (18 fall, spring and summer semesters) immediately preceding the date on which the MSAEM degree is to be awarded. Students who have earned post-baccalaureate course credit are encouraged to explore transfer credit opportunities. For additional information, view the transfer credit policy at the UA Graduate School website (http://graduate.ua.edu/admin/policy/transfercredit.html).

MSAEM – NON-THESIS (PLAN II) OPTION

Credit Hours
A total of 30 semester credit hours is required for a Master of Science in aerospace engineering and mechanics degree. For the MSAEM Plan II option, these credit hours consist of:

- 6 hours of Core coursework
- 6 hours of Mathematics coursework (including GES 554)
- 18 hours of Elective coursework

Elective coursework must be approved by the student’s advisor. Of the 30 coursework credit hours, at least 18 must have an AEM designation.

- Core Course Requirements -

All students must complete a minimum of one (1) class from the Aerospace Core listing of classes and one (1) class from the Mechanics Core listing of classes.

Aerospace Core:
AEM 567 Orbital Mechanics
AEM 582 Space Systems
AEM 614 Airfoil and Wing Theory
AEM 668 Advanced Dynamics of Flight*

Mechanics Core:
AEM 500 Intermediate Fluid Mechanics
AEM 530 Continuum Mechanics
AEM 562 Intermediate Dynamics
AEM 637 Theory of Elasticity

* For those without a BSAE degree, this course has the pre-requisite of AEM 568.

- Mathematics Requirement -

A total of six credit hours of mathematics is required. GES 554 Partial Differential Equations, which is three credit hours, is required and counts toward the six-credit hour mathematics requirement. The remaining three credit hours of mathematics coursework must be approved by the advisor.

- Elective Coursework Requirement -

A student must complete a least 18 hours of elective coursework. These courses are typically AEM courses, but other approved courses are acceptable. The specific courses must be approved by student’s advisor.

- Comprehensive Examination or Culminating Experience -

Students pursuing the MSAEM Plan II degree option have the choice of completing one of the following options to satisfy the requirement of a comprehensive examination or culminating experience:

- Pass one of the Ph.D. qualifying examinations that serves as the comprehensive examination or

- Complete a culminating experience and receive faculty advisor approval for the written report detailing the culminating experience. MSAEM Plan II students may, but are not required to, enroll in AEM 594 Special Projects, three credit hours, complete the culminating experience, and submit the written report detailing the culminating experience as part of the AEM 594 course requirements.

The student must have completed at least 18 hours of coursework prior to submitting the written report for the culminating experience. The approved written report for the culminating experience must be submitted no later than the thesis deadline date during the semester in which the student intends to graduate. The comprehensive examination option may only be attempted twice.

- Test Pilot School -

Students that seek credit for Test Pilot School completed through the United States Air Force may send official transcripts from the TPS to the UA Graduate School for transfer credit. The student must receive a grade of at least a B in TPS for the credit to be transferable. Additionally, the transfer of credit from TPS is subject to the restrictions placed on the transfer of credit by the Graduate School and the AEM Department. A maximum of six hours can be transferred. For additional information, view the transfer credit policy at the UA Graduate School website (http://graduate.ua.edu/admin/policy/transfercredit.html).

- Transfer Credit -

With approval of the UA Graduate School, a maximum of 12 hours of graduate credit for coursework completed at another institution may be applied toward the 30 credit hour coursework requirement for the MSAEM Plan II degree. The maximum of 12 hours of graduate transfer credit includes the six hours of credit transferred from TPS, if applicable.

All credit toward the MSAEM degree, including transfer credit, must have been earned during the six years (18 fall, spring, and summer semesters) immediately preceding the date on which the MSAEM degree is to be awarded. Students who have earned post-baccalaureate course credit are encouraged to explore transfer credit opportunities. For additional information, view the transfer credit policy at the UA Graduate School website (http://graduate.ua.edu/admin/policy/transfercredit.html).

Find out how to apply here - http://graduate.ua.edu/prospects/application/

Read less

Show 10 15 30 per page



Cookie Policy    X