• Goldsmiths, University of London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
OCAD University Featured Masters Courses
Coventry University Featured Masters Courses
Bath Spa University Featured Masters Courses
"fire" AND "safety" AND "…×
0 miles

Masters Degrees (Fire Safety Engineering)

We have 31 Masters Degrees (Fire Safety Engineering)

  • "fire" AND "safety" AND "engineering" ×
  • clear all
Showing 1 to 15 of 31
Order by 
Innovative design allows more interesting and functional architecture but challenges traditional concepts of fire safety. To respond to these demands takes specialist knowledge and advanced skills in engineering analysis. Read more

Innovative design allows more interesting and functional architecture but challenges traditional concepts of fire safety. To respond to these demands takes specialist knowledge and advanced skills in engineering analysis.

This programme covers the fundamentals of fire science, including laboratory classes, fire safety engineering and relevant structural engineering topics, such as finite element methods.

You will gain knowledge of the critical issues in structural fire safety engineering, and an understanding of relevant fire and structural behaviours.

You will become familiar with performance-based approaches to design and have an awareness of the capabilities – and limitations – of relevant advanced modelling methods for structures and fire.

This programme is fully accredited by the Joint Board of Moderators (JBM)

Facilities

Our Building Research Establishment (BRE) Centre for Fire Safety Engineering hosts bespoke equipment to support groundbreaking research and teaching, with combined thermal and mechanical loading and use of the latest image analysis techniques.

Programme structure

This programme is run over 12 months, with two semesters of taught courses followed by a research project leading to a masters thesis.

Semester 1 courses

  • Fire Science and Fire Dynamics
  • State-of-the-Art Review in Fire Safety Engineering
  • Structural Design for Fire
  • Finite Element Analysis for Solids
  • Thin-Walled Members and Stability

Semester 2 courses

  • Pre-Dissertation Project in Fire Safety Engineering
  • Fire Science Laboratory
  • Fire Safety Engineering Analysis and Design
  • The Finite Element Method
  • Structural Dynamics and Earthquake Engineering

Career opportunities

Internationally, there is great demand for graduates in this field, with expertise in structural fire safety engineering particularly sought after as performance-based design expands. All of our previous graduates are in relevant employment, with the majority working in fire teams at engineering consultancies.



Read less
The International Master of Science in Fire Safety Engineering (IMFSE) is a two-year educational programme in the Erasmus+ framework. Read more

The International Master of Science in Fire Safety Engineering (IMFSE) is a two-year educational programme in the Erasmus+ framework.

This masters programme is jointly offered by the following three full partner universities:

  • The University of Edinburgh, UK
  • Ghent University, Belgium (coordinator)
  • Lund University, Sweden

Additionally, there are three associated partners where students can perform thesis research:

  • The University of Queensland, Australia
  • ETH Zurich, Switzerland
  • The University of Maryland, United States of America

Classes in Edinburgh focus on fire dynamics, fire safety engineering and structural design for fire. Classes in Ghent have a more general fire safety engineering focus. Classes in Lund emphasise enclosure fire dynamics, risk analysis and human behaviour.

Our Building Research Establishment (BRE) Centre for Fire Safety Engineering hosts bespoke equipment to support groundbreaking research and teaching, with combined thermal and mechanical loading and use of the latest image analysis techniques.

IMFSE is very pleased to involved seven industrial partners as official sponsors. With their annual financial contributions, it has been made possible to create the IMFSE Sponsorship Consortium, which awards IMFSE students with full or partial scholarships. The current sponsors are:

  • Arup
  • IFIC Forensics
  • UL
  • Promat
  • FPC
  • BRE
  • Fire Engineered Solutions Ghent

Programme structure

The programme consists of four semesters each worth 30 ECTS credits. Changing study location after each semester lets you benefit from the expertise of each university.

Semester 1

Students choose to study at either Ghent or Edinburgh.

Ghent University:

  • Fire Dynamics
  • Basics of Structural Engineering
  • Thermodynamics, Heat and Mass Transfer

And 9 ECTS credits from the following elective courses (subject to approval by the faculty):

  • FSE Based Firefighting (3 credits)
  • Modelling of Turbulence and Combustion (3 credits)
  • Turbomachines (6 credits)
  • Introduction to Entrepreneurship (3 credits)

The University of Edinburgh:

  • Fire Science and Fire Dynamics
  • Fire Safety Engineering
  • Fire Safety, Engineering and Society (this course replaces Fire Investigation and Failure Analysis, which will move to Semester 3 from 2017/18 onward)
  • Engineering Project Management

Semester 2

Lund University:

  • Advanced Fire Dynamics
  • Human Behaviour in Fire
  • Risk Assessment
  • Simulation of Fires in Enclosures

Semester 3

Students choose to study at either Ghent or Edinburgh.

Ghent University:

  • Active Fire Protection I: Detection and Suppression
  • Active Fire Protection II: Smoke and Heat Control
  • Explosions and Industrial Fire Safety
  • Fire Safety Regulation
  • Passive Fire Protection
  • Performance-Based Design

The University of Edinburgh:

  • Fire Science Laboratory
  • Structural Design for Fire
  • Fire Safety, Engineering and Society (this course will be replaced by Fire Investigation and Failure Analysis from 2017/18 onwards)
  • Finite Element Analysis for Solids

Semester 4

The masters thesis can be completed at one of the three full partners universities, or at one of the three associated partners. The thesis work is supervised by at least one of the full partner universities.

Career opportunities

We aim to train the next generation of leaders in this field; there is currently great demand for fire safety engineering graduates worldwide and graduates have gained relevant employment or enhanced career opportunities.

A fire safety engineer fulfils a broad range of duties, in various ways related to fire. This can range from designing fire protection for a space station, to protecting treasures such as the US Constitution, to safely securing the occupants of a high-rise building from fire hazards.

Fire safety engineers are in great demand by corporations, educational institutions, consulting firms, and government bodies around the world. You may find career opportunities in the following industries:

  • consulting engineering firms
  • fire departments
  • fire equipment and systems manufacturers
  • government
  • hospitals and health care facilities
  • insurance industry
  • research and testing laboratories
  • educational institutions
  • entertainment industry
  • forensic investigations


Read less
Summary. The programme is offered by the Fire Safety Engineering Research and Technology Centre (FireSERT), a centre which is internationally recognised for its leading edge research in the fields of fire dynamics, structural fire engineering, human behaviour in fire and fire modelling. Read more

Summary

The programme is offered by the Fire Safety Engineering Research and Technology Centre (FireSERT), a centre which is internationally recognised for its leading edge research in the fields of fire dynamics, structural fire engineering, human behaviour in fire and fire modelling. The programme draws on the expertise and resources of the Centre in terms of teaching staff (with core teaching staff all actively involved in research) and experimental facilities. Students on the MSc programme have the opportunity to use Fire SERT's state-of-the-art facilities both within the taught programme and to progress experimental research projects which are often designed to complement current research projects being undertaken by staff. Students also have the opportunity to work closely with practitioners in the design module to develop a fire safety strategy for a real complex building.

About

The programme is a linked programme of awards leading to either a Post-Graduate Diploma (comprising eight taught modules) or MSc (eight taught modules plus Research Dissertation) in Fire Safety Engineering. In the PG Diploma programme (semesters 1 and 2) students will study compulsory modules in Heat Transfer and Thermofluids, Fire Dynamics, Structural Fire Engineering, Fire Engineering Laboratory, Active Fire Protection Systems, People and Fire and Fire Safety Engineering Design. Optional modules (to be taken in the 2nd semester) include Industrial Fire Safety and Computer Modelling in Fire Engineering.

Professional recognition

Institution of Fire Engineers (IFE) 

Accredited by the Institution of Fire Engineers (IFE) on behalf of the Engineering Council for the purposes of partially meeting the academic requirement for registration as a Chartered Engineer.

Chartered Institution of Building Services Engineers (CIBSE) 

Accredited by the Chartered Institution of Building Services Engineers (CIBSE) on behalf of the Engineering Council for the purposes of partially meeting the academic requirement for registration as a Chartered Engineer.

Energy Institute (EI) 

Accredited by the Energy Institute (EI) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Career options

There is strong demand for well educated fire safety engineers, and the majority of students will embark on a career within a fire safety engineering consultancy. Graduates from the Ulster course are also employed in other interesting and diverse careers in fields related to fire safety both in the UK and worldwide e.g. as regulators, fire safety officers in both the public and private sector, researchers in research and testing facilities, and fire brigade officers both in the UK and Europe. Opportunities also exist within the Fire Safety Engineering Research and Technology centre (FireSERT) for PhD studies in a wide range of fire science and engineering related topics.

The programme is a Recognised Educational Programme of the Institution of Fire Engineers. Students on this programme fulfill the academic requirements for Membership of IFE.



Read less
Your programme of study. You can study this programme either full time on campus, part time, or online to fit flexibly around work commitments. Read more

Your programme of study

You can study this programme either full time on campus, part time, or online to fit flexibly around work commitments.

Whilst Safety and Reliability Engineering allows you to apply your skills and knowledge to a wider range of industries, this programme is specifically for the oil and gas industry. It provides you with the knowledge to review reliability of engineering facilities, materials and products and legislative framework at the same time. Safety has always been of paramount concern in the oil and gas industry with a lot of learning and knowledge acquired since the oil industry growth of the 1970s. This knowledge has been scrutinised by University of Aberdeen and the industry to provide professional expertise to manage safety and reliability. Future challenges are being met to some extent by the advent of affordable sensors which manage difficult to reach places, but nonetheless require the knowledge and capabilities of professionals working in this discipline to ensure they are fit for purpose.

The MSc Safety Engineering for Oil & Gas programme provides training in safety engineering, reliability engineering, and loss prevention in the offshore, nuclear, transport, aerospace and process industries and more. Fully accredited by the Institution of Mechanical Engineers (IMechE), the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Institute of Highway Engineers (IHE) and the Chartered Institution of Highways & Transportation (CIHT).

Courses listed for the programme

Semester 1

  • Fundamental Safety Engineering and Risk Management Concepts
  • Statistics and Probability for Safety, Reliability, and Quality
  • Fire and Explosion Engineering
  • Offshore Oil and Gas Production Systems

Semester 2

  • Advanced Methods for Risk and Reliability Assessment
  • Applied Risk Analysis and Management
  • Process Design, Layout and Materials
  • Human Factors Engineering

Semester 3

  • Project

Find out more detail by visiting the programme web page

There is also on online delivery

Why study at Aberdeen?

  • The university is highly regarded within the oil and gas industry for continuous integration with industry needs and knowledge
  • You can study flexibly either part time or online
  • It is supported by the Lloyds Register and Advisory Board which in turn builds on the knowledge within the School of Engineering
  • We are ideally placed to provide this programme of study and support it with strong links to industry

Where you study

  • University of Aberdeen
  • Full time and part time
  • 12 Months or 24 Months
  • September start

There is also an Online delivery of this programme

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Fees for Online delivery

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 

Other engineering disciplines you may be interested in:



Read less
Your programme of study. You can study Safety and Reliability Engineering for Oil and Gas flexibly from anywhere in the world as this delivery is online. Read more

Your programme of study

You can study Safety and Reliability Engineering for Oil and Gas flexibly from anywhere in the world as this delivery is online. You can fit this programme around your work and other commitments part time.

Whilst Safety and Reliability Engineering allows you to apply your skills and knowledge to a wider range of industries, this programme is specifically for the oil and gas industry. It provides you with the knowledge to review reliability of engineering facilities, materials and products and legislative framework at the same time. Safety has always been of paramount concern in the oil and gas industry with a lot of learning and knowledge acquired since the oil industry growth of the 1970s. This knowledge has been scrutinised by University of Aberdeen and the industry to provide professional expertise to manage safety and reliability. Future challenges are being met to some extent by the advent of affordable sensors which manage difficult to reach places, but nonetheless require the knowledge and capabilities of professionals working in this discipline to ensure they are fit for purpose.

The MSc Safety Engineering for Oil & Gas programme provides training in safety engineering, reliability engineering, and loss prevention in the offshore, nuclear, transport, aerospace and process industries and more. Fully accredited by the Institution of Mechanical Engineers (IMechE), the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Institute of Highway Engineers (IHE) and the Chartered Institution of Highways & Transportation (CIHT).

Courses listed for the programme

Year 1

  • Fundamental Safety Engineering and Risk Management Concepts
  • Statistics and Probability for Safety, Reliability and Quality
  • Advanced Methods for Risk and Reliability Assessment (Distance Learning)
  • Applied Risk Analysis and Management (Distance Learning)

Year 2

  • Fire and Explosion Engineering
  • Process Design, Layout and Materials (Distance Learning)
  • Human Factors Engineering
  • Offshore Oil and Gas Production Systems (Distance Learning)

Year 3

  • Individual Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • The university is highly regarded within the oil and gas industry for continuous integration with industry needs and knowledge
  • You can study flexibly either part time or online
  • It is supported by the Lloyds Register and Advisory Board which in turn builds on the knowledge within the School of Engineering
  • We are ideally placed to provide this programme of study and support it with strong links to industry

Where you study

  • Online
  • Part Time
  • 5 Months or 27 Months
  • September or January start

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our https://www.abdn.ac.uk/funding/" target="_blank">funding database via the programme page and the https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php " target="_blank">latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 

Other engineering disciplines you may be interested in:



Read less
What is the Master of Safety Engineering about? .  The Master of Safety Engineering will prepare you to improve and realise safety in many different areas. Read more

What is the Master of Safety Engineering about? 

 The Master of Safety Engineering will prepare you to improve and realise safety in many different areas. The programme trains you in prevention policy and safety management systems, the safety of products, processes, and installations, qualitative risk analysis techniques, and fire and explosion safety. You’ll obtain detailed knowledge of technical and managerial process safety concepts with regard to the whole life cycle of a production plant, and risk evaluations based on qualitative and quantitative methods. 

Structure

The Master of Safety Engineering comprises a total of 60 credits. The programme consists of a group of common compulsory courses (23 credits) that are taken up by every student. This party contains courses with themes that are of interest to every safety professional, irrespective of the specialisation option. All courses in this part are taught in English. This relatively large core part ensures that every student is given the same broad basic education about the specialised field of safety.

After a general introduction to safety engineering, prevention policy and safety management systems are treated. Safety of products, processes and installations are discussed next and qualitative risk analysis techniques, fire and explosion safety complete this section.

Furthermore, students choose between one of two available options (22 credits each): Option Process Safety or Option Prevention. In turn, each option contains a number of compulsory courses (16 credits) and elective courses (6 credits). 

The Option Prevention focuses on occupational safety and health-related issues. The compulsory courses in this option also discuss non-technical aspects concerning safety. This option is mainly of interest to candidates who want to obtain the Certificaat Preventieadviseur Niveau 1.

The Option Process Safety provides students with a detailed knowledge of technical and managerial process safety concepts with regard to the whole life cycle of a production plant from concept to design, construction and operation to decommissioning. Safety concepts of representative operational units are presented in a series of case studies. Examples of required safety oriented competences in industrial operations are also discussed. It is shown how risk evaluations and estimates based on qualitative and quantitative methods are performed.

Each student also needs to choose elective courses either from a short indicative list, or from any Master’s programme within the Group of Science, Engineering and Technology. 

Finally, students have to complete a Master’s thesis of 15 credits, which represents an effort that is consistent with a programme of 60 credits in total.

The programme can be completed normally in one-year on a full-time basis. However, to facilitate the participation of working professionals, it can also be followed on a two year part-time basis.

Objectives

After finishing this advanced Master's programme, the student should:

  • have a broadly based knowledge of the different scientific disciplines that are needed to study and analyse the diverse technical and non-technical issues related to safety technology, risk management and loss prevention.
  • have acquired the capabilities and competences to perform or co-ordinate a scientifically sound analysis of safety related problems and their solutions within the governing boundary conditions (legal, organisational, technical, environmental, etc.).

To carry out the programme's objectives, teaching activities consist of a combination of classroom lectures, practically oriented seminars and site visits. The instructors themselves come from the academic world both inside and outside K.U.Leuven, or have been recruited from reputable industrial companies because of their long-standing expertise and willingness to contribute to teaching and training.

Career perspectives

In many countries, there is a permanent and growing need for scientists and engineers who are knowledgeable and trained at the academic level in the field of safety engineering and safety management. This is due to the increasing complexity of industrial production processes and the growing number of rules and regulations both in Europe and internationally.

Graduates of the Master of Science in Safety Engineering programme find employment in small national and large multinational industrial companies at home and abroad or are employed in private and/or governmental organisations. Such organisations need experts with the ability to conduct research, carry out analyses, and perform inspections, monitoring and certification in the broad field of safety.

Moreover, in some countries (including Belgium), companies beyond a certain size dealing with specific risks are required by law to hire or even employ a certified prevention advisor. This certification can be acquired through the Prevention option of the Master of Science in Safety Engineering (Certificaat Preventieadviseur Niveau 1).

It is also possible for graduates to begin a career as an independent consultant with expertise in safety and environmental areas.



Read less
Your programme of study. The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Read more

Your programme of study

The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Over time there have been many learning points as a result of process which did not address the challenge sufficiently resulting in new standards of safety, assessing risk and managing the challenges presented in mineral extraction. The industry has come a long way since its inception in Aberdeen in the 1970s and globally and University of Aberdeen has acquired this knowledge and research to work with industry and train the next Safety and Reliability Engineers to continuously improve safety. This programme is highly regarded from a well known provider in the industry. You visit industry and receive technical lectures with practical sessions to provide further awareness of the responsibility involved in the energy industry.

The programme is ideal if you are from an engineering, physics or mathematics background but it is also relevant to you if you studied stress analysis and thermodynamics with experience from the industry. The added value of this programme is that you can apply the discipline to other industries such as nuclear, defence, transport, aerospace, manufacturing and process industries, making you more employable and allowing wider scope for career options at graduation.

Courses listed for the programme

Semester 1

Fundamental Safety Engineering, and Risk Management Concepts

Statistics and Probability for Safety, Reliability and Quality

Fire and Explosion Engineering

Subsea Integrity

Semester 2

Advanced Methods for Risk and Reliability Assessments

Applied Risk Analysis and Management

Process Design, Layout and Materials

Human Factors Engineering

Semester 3

Safety Engineering Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1078/safety-and-reliability-engineering/

or on campus delivery:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/935/safety-and-reliability-engineering/

Why study at Aberdeen?

  • This is a highly regarded programme by the industry which is informed by the energy industry in Aberdeen city
  • Aberdeen is at the heart of the European and world oil and gas industry with many multinational FTS 100 companies located in the city
  • This is a world class programme which informs the Lloyds Register Foundation Centre for Safety and Reliability Engineering
  • You are taught by industry professionals with worldwide industry experience

Where you study

  • Online
  • Full Time or Part Time
  • 5 Months or 27 Months
  • September or January start

*• There is an online programme available from University of Aberdeen

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php

Other engineering disciplines you may be interested in:



Read less
Why choose this course?. This course aims to develop your knowledge and understanding of the underlying theories and their practical application in fire investigation. Read more

Why choose this course?

This course aims to develop your knowledge and understanding of the underlying theories and their practical application in fire investigation. You will also experience extensive practical experience of the major techniques, methodologies and approaches used in fire investigation. In addition you will develop your skills in critical thinking using a range of academic paradigms by undertaking an extensive research project in the field of fire investigation.

  • The delivery of the course involves a partnership between The West Midlands Fire Service, one of the leading centres of Fire Investigation in the UK and the University. Both partners have an established track record in delivering training and education with a vocational aspect in this area.
  • The Fire Investigation facility situated at the Oldbury Fire Investigation centre will allow the student a unique hands-on practical experience that is not offered by any other MSc course in the Midlands region.
  • This course provides opportunities for experienced fire investigators and forensic scene investigators to fast-track to an MSc degree.

Postgraduate Bursaries:

If you commenced undergraduate study at any University in 2012 you may be eligible for a £10,000 bursary

What happens on the course?

Fire Science and Building Construction

This module will introduce you to the basic science that underpins the investigation of fire scenes. You will be introduced to the chemistry of combustion, including consideration of the effects of ventilation, physical properties of combustible materials and ignition sources. You will look at the ontogeny and progression of combustion events, but also the legal and health and safety aspects underpinning fire science.

Evidence Gathering at Fire Scenes

This module will cover all aspects of the practical steps needed to identify and gather evidence at Fire Scenes. Integral to this module will be an appreciation of issues of continuity and integrity and an awareness of the differences between criminal and other investigations of scenes of fire.

Fire Scene Investigation Practical

You will gain direct practical experience of undertaking a fire scene investigation at the Oldbury facility of the West Midlands Fire Service. This module will expose you to a simulated fire scene, where you will have to carry out the full investigation of documenting and recording the scene, followed by evidence identification and recovery.

Interpretation of Fire Scenes

This module will allow you to utilise the various evidence strands that are present in fire scenes to work out the cause, origin and spread of fires. You will then discuss the effects of fire and products of combustion on the human body, including human behaviour.

Managing Fire Scene Investigations and Report Writing

This module will provide an in-depth analysis of the considerations surrounding the management of the investigations of fire scenes. There will be an overview of personnel involved, their roles and contribution to the investigation. The module will also describe the preparation of written and oral testimony for courts of law. Finally the presentation of the report in oral testimony will be reviewed.

Research Methods

provides you with the necessary skills to undertake a research project in this exciting area. The module will include a project specific literature review, experimental design and project planning, an oral presentation and an introduction to statistics in investigating experimental questions.

Research Project

The research project in Fire Investigation is an integral part of the course and is intended to develop research skills in persons undertaking careers in forensic mark comparison. As well as applying the scientific approach to research coupled with statistical validation of results from the research methods module, genuine case-based research will be undertaken at the University, in one of the course partners or at a number of alternative providers.

Why Wolverhampton?

a) The delivery of the course would involve a partnership between one of the leading centres of fire investigation in the UK and the University. Both partners have an established track record in delivering training and education with a vocational aspect in this area.

b) The Oldbury Fire Investigation facility will allow the student a unique hands-on practical experience that is not offered by any other MSc course in the Midlands region.

c) There are opportunities for experienced fire investigators and forensic scene investigators to fast-track to the MSc.

Career Path

Unfortunately, fires are always going to happen. There will always be a need to investigate these as the consequences of fires are extensive damage to persons and property. The applied nature of this course means that a number of career paths are available to you. These include:

  • Crime scene investigators.
  • Fire Investigators working for Fire Services.
  • Independent Fire Investigators working for a range of insurance companies.
  • The MSc also provides suitable preparation for further research/professional study at Doctoral level leading to a PhD or Professional doctorate (DBMS).

What skills will you gain?

At the end of this course you, the student, will demonstrate:

  1. a systematic understanding of the underpinning science, technology and legal issues that informs fire investigation;
  2. a comprehensive understanding of the investigative techniques and the current tools used in fire investigation;
  3. the ability to critically evaluate current research and methodologies in fire investigation;
  4. originality in the application of knowledge, together with a practical understanding of how established techniques of research and enquiry are used to create and interpret knowledge in fire investigation.


Read less
Your programme of study. Read more

Your programme of study

Have you ever wanted to invent something mechanical, prevent environmental damage to a building from floods, fire, explosions, landslides and other natural disasters, understand risks and reliability across buildings, renewables, and other areas? Do you want to improve quality of life across environmental remediation, farming, smart grid, green technology, food production, housing, transportation, safety, security, healthcare and water? Do you find it fascinating to try to make things work from what you have available? There will be plenty of major challenges to get involved with in the coming years crossing over into Nano technologies, advanced materials, electronic printing, grapheme technologies, wearable's, 3d printing, renewables and recycling and biotechnologies. Technology now means that you can design and engineer from anywhere in the world, including your home. Advanced Mechanical Engineering looks at computational mechanics, response to materials and reliability engineering. The Victorians set up some of the most advanced mechanical engineering of our times and in many ways they were the biggest mechanical engineering innovators ever.

This programme specialises in mechanical engineering so you are becoming proficient in designing anything that has background moving parts to allow it to work such as engines, motor driven devices and the effects of nature on mechanical objects and their ability to perform. You also look at how material composition can alter performance issues and provide new innovative methods to solve challenges in every day life and natural and other risks to machinery in all situations.  Your employment options are very varied, you may want to work within consumer goods to design and improve everyday objects like white goods, or you may like to be involved in very large scale hydro electric and power driving machinery in energy , manufacturing or large scale developments, or you may decide to get involved in innovation and enterprise yourself.

Courses listed for the programme

SEMESTER 1

  • Compulsory Courses
  • Computational Fluid Dynamics
  • Numerical Simulation of Waves
  • Advanced Composite Materials

Optional Courses

  • Fire and Explosion Engineering
  • Structural Dynamics

SEMESTER 2

  • Compulsory Courses
  • Finite Element Methods
  • Mathematical Optimisation
  • Engineering Risk and Reliability Analysis

Optional Courses

  • Project Management
  • Risers Systems Hydrodynamics
  • Renewable Energy 3 (Wind, Marine and Hydro

SEMESTER 3

  • Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • Your skills and knowledge can have huge application potential within newly disruptive industries affecting life and work
  • You can improve employability in Aerospace, Marine, Defences, Transport Systems and Vehicles
  • Some of the knowledge you build directly relates to industries in Aberdeen such as the energy industry.
  • Mechanical Engineering cuts into high growth Industry 4.0 and IOT related areas across many areas disrupted by climate, population growth, and quality of life
  • We ensure close links with industries to attend industry events, visits and teaching by professionals from the industry
  • Graduates are very successful and many work in senior industry roles

Where you study

  • University of Aberdeen
  • 12 Months Full Time
  • September start

International Student Fees 2017/2018

Find out about international fees:

  • International
  • EU and Scotland
  • Other UK

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about https://abdn.ac.uk/study/student-life" target="_blank">living in Aberdeen and https://www.abdn.ac.uk/study/international/finance.php" target="_blank">living costs

Other engineering disciplines you may be interested in:



Read less
Risk has become a key concept in modern society. Read more

Programme Background

Risk has become a key concept in modern society. Growing concern about the environment and a number of disasters have served to focus attention on the hazards and risks involved in a wide range of activities from offshore oil production to rail and air transport; from the design of football stadia to the operation of chemical plants and environmental protection. Today there is a wide range of techniques available to assess risk and reliability, both in relation to safety and in the wider sense. These techniques now underpin new legislation on safety and have relevance over a broad spectrum of activities, including environmental and other systems, where risk and reliability are key concerns.

The MSc/PG Diploma programme in Safety, Risk and Reliability Engineering is designed to give a thorough understanding of these techniques and experience of their application to a variety of real-world problems. It aims to provide students with an understanding of safety, risk and reliability engineering in both a qualitative and quantitative manner, and to develop the skills to apply this understanding. The programme will also introduce students to recent developments in analytical techniques, e.g. computer modelling of risk, reliability and safety problems.

Professional Recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. See http://www.jbm.org.ukfor further information.

The MSc and PgDip degrees have also been accredited by the Institution of Occupational Safety and Health (IOSH). Graduates are eligible to join IOSH as Graduate members and then undertake an initial professional development process that leads to Chartered membership. http://www.iosh.co.uk for further information.

Programme Content

The MSc/Postgraduate Diploma in Safety, Risk and Reliability Engineering is only available by attendance-free distance learning. The programme comprises eight courses. All courses have written examinations and some have compulsory coursework elements. MSc students are also required to complete an individual project (dissertation). This programme has a stronger engineering bias and you should only attempt this if you have done some University level mathematics or equivalent. Otherwise the Safety and Risk Management course might be more appropriate.

For the project component of the programme distance learners are likely to develop something based in their country of residence with advice and supervision from staff in the School. This may well include work with a local company or may involve independent study. Individual arrangements will be set up with each student.

For more detailed information on this programme please contact the Programme Leader before applying (see above).

Courses

• Risk Assessment and Safety Management
This course aims to give students an appreciation of risk from individual and societal perspectives as well as understanding the basic principles of risk assessment and modelling and how safety management works in practice.

• Systems Reliability
Gives an understanding of the qualitative and quantitative techniques that are used in the reliability, availability and maintainability analysis of all types of engineering systems.

• Learning from Disasters
Provides students with an in depth understanding of some of the classic disasters and their consequences by using a range of practical accident investigation techniques. Students will learn to analyse complex histories in order to find the underlying root cause.

• Safety, Risk and Reliability
Leads to an understanding of the principles of structural reliability theory and its application to risk and reliability engineering.

• Fire Safety, Explosions and Process Safety
Introduces students to the basic principles of fire safety science and engineering, and develops skills in associated modelling leading to an understanding of principal fire/explosion related issues in process safety.

• Data Analysis and Simulation
Develops knowledge of statistical data analysis and its application in engineering and science and introduces the concepts of using simulation techniques for analysis of complex systems. It also teaches linear optimisation techniques and the ability to apply them to solve simple problems.

• Human Factors Methods
This course will equip students from academic and/or industrial backgrounds with knowledge on, and the means to deploy, a wide range of specialist human factors techniques. The emphasis is on method selection, application, combination and integration within existing business practices. Students will develop a critical awareness of what methods exist, how to apply them in practice and their principle benefits and limitations.

•Environmental Impact Assessment
Provides the candidate with the knowledge and understanding of the principles and processes of the Environmental Impact Assessment. By the end of the course, the student should be familiar with the European EIA legislation and its translation into the Scottish planning system, and be able to demonstrate an understanding of the EIA process, the tools and the agents involved in an EIA and the possible problems with using EIA as a decision making tool. It is also intended that the student will be able to appreciate the purpose of the EIA process from a number of perspectives; that of a developer, an EIA practitioner and a policy maker.

Read less
Your programme of study. The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Read more

Your programme of study

The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Over time there have been many learning points as a result of process which did not address the challenge sufficiently resulting in new standards of safety, assessing risk and managing the challenges presented in mineral extraction. The industry has come a long way since its inception in Aberdeen in the 1970s and globally and University of Aberdeen has acquired this knowledge and research to work with industry and train the next Safety and Reliability Engineers to continuously improve safety. This programme is highly regarded from a well known provider in the industry. You visit industry and receive technical lectures with practical sessions to provide further awareness of the responsibility involved in the energy industry.

The programme is ideal if you are from an engineering, physics or mathematics background but it is also relevant to you if you studied stress analysis and thermodynamics with experience from the industry. The added value of this programme is that you can apply the discipline to other industries such as nuclear, defence, transport, aerospace, manufacturing and process industries, making you more employable and allowing wider scope for career options at graduation.

Courses listed for the programme

Semester 1

  • Fundamental Safety Engineering, and Risk Management Concepts
  • Statistics and Probability for Safety, Reliability and Quality
  • Fire and Explosion Engineering
  • Subsea Integrity

Semester 2

  • Advanced Methods for Risk and Reliability Assessments
  • Applied Risk Analysis and Management
  • Process Design, Layout and Materials
  • Human Factors Engineering

Semester 3

  • Safety Engineering Project

Find out more detail by visiting the programme web page

or online delivery

Why study at Aberdeen?

  • This is a highly regarded programme by the industry which is informed by the energy industry in Aberdeen city
  • Aberdeen is at the heart of the European and world oil and gas industry with many multinational FTS 100 companies located in  the city
  • This is a world class programme which informs the Lloyds Register Foundation Centre for Safety and Reliability Engineering
  • You are taught by industry professionals with worldwide industry experience

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • 12 Months or 24 Months
  • September start
  • There is an online programme available from University of Aberdeen

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 



Read less
Public awareness of hazards and risks has enhanced the importance of safety assessment and management in today’s increasingly litigious society. Read more

Programme Background

Public awareness of hazards and risks has enhanced the importance of safety assessment and management in today’s increasingly litigious society. Worldwide the burden of responsibility for health and safety is shifting towards those who own, manage and work in industrial and commercial organisations. Legal reform is tending to replace detailed industry specific legislation with a modern approach in which, where possible, goals and general principles are set and the onus is on organisations to show how they manage to achieve these goals.

The management of safety and risk needs to be integrated into the overall management of the organisation. It should be appropriate and cost-effective without dampening the innovative entrepreneurial spirit of employees with inflexible bureaucratic rules and procedures. An organisation’s exposure to potential hazards needs to be managed so as to reduce the chance of loss and mitigate any effects. Risk and safety issues need to be evaluated in a structured and calculated manner but in the light of an overall organisational strategy.

The MSc/PG Diploma programme in Safety and Risk Management aims to provide students with advanced knowledge of risk assessment techniques, the public and individual perception of risk, and how decisions are made in competitive business markets. The focus is on practical applications of safety methodologies, ergonomics and human factors, and safety and risk management techniques.

All of these skills will be drawn together to undertake complex qualitative and quantitative risk assessments. The core of the programme is the management of safety, but it is set within a broader remit where safety issues are part of a general risk management system with a balance of financial, quality and environmental concerns. The overall aim of the programme is to develop students’ skills and personal qualities to be able to undertake safety studies and manage safety and risk to the best national and international standards.

Professional Recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. See http://www.jbm.org.ukfor further information.

The MSc and PgDip degrees have also been accredited by the Institution of Occupational Safety and Health (IOSH). Graduates are eligible to join IOSH as Graduate members and then undertake an initial professional development process that leads to Chartered membership. http://www.iosh.co.uk for further information.

Programme Content

The MSc/Postgraduate Diploma in Safety, Risk and Management is only available by attendance-free distance learning. The programme comprises eight courses. All courses have written examinations and some have compulsory coursework elements. MSc students are also required to complete an individual project (dissertation).

For the project component of the programme distance learners are likely to develop something based in their country of residence with advice and supervision from staff in the School. This may well include work with a local company or may involve independent study. Individual arrangements will be set up with each student.

For more detailed information on this programme please contact the Programme Leader before applying (see above).

Courses

• Risk Assessment and Safety Management
This courses aims to give students an appreciation of risk from individual and societal perspectives as well as understanding the basic principles of risk assessment and modelling and how safety management works in practice.

• Human Factors Methods
This course will equip students from academic and/or industrial backgrounds with knowledge on, and the means to deploy, a wide range of specialist human factors techniques. The emphasis is on method selection, application, combination and integration within existing business practices. Students will develop a critical awareness of what methods exist, how to apply them in practice and their principle benefits and limitations.

• Human Factors in the Design and Evaluation of Control Rooms
The course will equip students from academic and/or industrial backgrounds with in-depth knowledge on, insights into, and the means to deploy a wide range of specialist techniques relevant to the ergonomic design and evaluation of control rooms. The emphasis is on key areas of control room operations and on actionable ways to deploy theory on human capabilities and limitations in order to improve performance, safety, efficiency and overall operator well being.

• Fire Safety, Explosions and Process Safety
Introduces students to the basic principles of fire safety science and engineering, and develops skills in associated modelling leading to an understanding of principal fire/explosion related issues in process safety.

• Environmental Impact Assessment
Provides the candidate with the knowledge and understanding of the principles and processes of the Environmental Impact Assessment. By the end of the course, the student should be familiar with the European EIA legislation and its translation into the Scottish planning system, and be able to demonstrate an understanding of the EIA process, the tools and the agents involved in an EIA and the possible problems with using EIA as a decision making tool. . It is also intended that the student will be able to appreciate the purpose of the EIA process from a number of perspectives; that of a developer, an EIA practitioner and a policy maker.

• Project Management Theory and Practice
Provides students with an understanding of the concepts and practices of construction project management used to provide value added services to clients within the constraints of time, cost, quality sustainability and health and safety management.

• Learning from Disasters
Gives students an in depth understanding of some of the classic disasters and their consequences by using a range of practical accident investigation techniques. Students will learn to analyse complex histories in order to find the underlying root cause.

• Value and Risk Management.
Aims to introduce the concepts of value and risk management, apply them to strategic and tactical problems and illustrate their tools and techniques through case study.

Read less
Structural engineers help to make, shape and maintain the built environment. They are professionals who enjoy innovation, a challenge, opportunities, responsibility and, excitement in a varied and very satisfying career. Read more

About the course

Structural engineers help to make, shape and maintain the built environment. They are professionals who enjoy innovation, a challenge, opportunities, responsibility and, excitement in a varied and very satisfying career.

The MSc programme in Structural Engineering is designed to attract both international and home students, who wish to pursue their career in civil and structural engineering. To meet the increasing demand for structural engineers to design more safe, economic and environmental friendly buildings, the programme content has specifically been designed to give a thorough grounding on current practice with regards to dealing with structural fire and earthquake resistances and design of carbon neutral buildings.

A particular feature of the course content lies with the emphasis on the performance-based, structural design philosophy. The strong focus on these aspects will appeal to any students who intend to become the next generation of structural engineers after graduation.

Aims

Structural engineering is a profession that provides a tremendous opportunity to make a real difference to people's lives and their environment. In the current century, climate change is an increasingly important issue which needs to be tackled - and the role of the structural engineer in tackling climate change is immense.

To meet these challenges, structural engineers need to combine traditional structural engineering expertise with an understanding of a wide range of issues related to design of zero carbon buildings. There is a significant shortage of structural engineers with the requisite knowledge, skills, and experience to deal efficiently with complex issues for designing structurally sound, elegantly simple and environmentally sustainable buildings. The skills shortage and its effects on the construction industry will be further exacerbated by the huge demand from some rising economic powers.

This new MSc programme has been developed in response to this growing need for graduates aware of current challenges in structural engineering. The primary aim of this programme is to create master’s degree graduates with qualities and transferable skills for demanding employment in the construction and civil engineering sector. The graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Course Content

The programme is currently taken full-time, over 12 months. Each taught module will count for 15 credits, approximating to 150 learning hours. The modules will be taught over the first eight months and during the final four months, students will conduct an individual research project worth 60 credits (Dissertation).

Compulsory Modules:

Nonlinear Structural Analysis & Finite Element Method
Structural Dynamics & Seismic Design
Advanced Construction Materials and Structural Retrofitting Technology
Advanced Reinforced and Prestressed Concrete Design
Advanced Steel Design
Case Studies of Modern Structures and Sustainable Structural Design
Research Methods and Professional Studies
Msc Civil Engineering Dissertation

Optional Modules:

Structural Design for Fire
Foundation, Earthworks and Pavement Design and Construction

Teaching

Our Philosophy

The philosophy behind the teaching and learning strategy we use is largely underpinned by high quality and accessible learning opportunities developing over the years by the University and the College, which are highly acclaimed standards and practices for learning and teaching.

In addition to teaching, the academics staff of this MSc programme are active in research. Teaching is therefore informed by research, giving you the opportunity to learn about the latest developments in structural engineering from leading experts in their chosen fields of specialisation.

Contact between students and academic staff is relatively high at around 20 hours per week initially to assist you in adjusting to university life. As the programme progresses the number of contact hours is steadily reduced as you undertake more project-based work. You will be taught by various approaches that complement each other in achieving the set learning outcomes.

How you will be taught

Lectures: These provide a broad overview of the main concepts and principles you need to understand, give you with a framework on which to build and expand your knowledge on through private studies.
Laboratories: Practical’s are generally two or three-hour sessions in which you can practice your observational and analytical skills, and develop a deeper understanding of theoretical concepts.

Design Studios: In a studio you will work on individual and group projects with guidance from members of staff. You may be required to produce a design or develop a solution to an engineering problem. These sessions allow you to develop your intellectual ability and practice your teamwork skills.

Computer Sessions: These allow for the opportunity to develop knowledge and experience of structural analysis and design software packages and apply them to structural engineering problems. Students have access to computers outside scheduled sessions to allow them to develop their transferable skills and learn at their own pace and time as well.

One-to-one Tutoring: On registration for the course you will be allocated a personal tutor who will be available to provide academic and pastoral support during your time at university. You will get one-to-one supervision on all project work.

Input from Guest Lecturers: Industry practitioners are invited to present lectures on the real structural engineering projects at regular seminars. The seminars are designed to facilitate informal interactions between students and guest lecturers, encouraging student active engagement in the discussions.

Site Visits: Learning from real-world examples is an important part of the course. You will visit sites featuring a range of structural engineering approaches. This exposure will provide you with invaluable experience including opportunities to debate on the real projects.

Assessment

Each of the taught modules is assessed either by formal examination, an assignment, or a balanced combination of two. Methods of assessing assignments include essay, individual/group report, oral presentation and class test.

Information on assignments in terms of the aims, learning outcomes, assessment criteria and submissions requirements are clearly specified at the beginning of the academic year. Detailed feedback on assignments is provided to students to assist them in achieving the required learning outcomes. The research project is assessed by dissertation and oral presentation.

Special Features

Emphasis on safety and sustainability: This MSc programme is distinctive because of its emphasis on building safety and sustainability and disaster mitigation of civil structures – with four taught modules totalling 60 credits. The dissertation projects will also be closely linked to ongoing research in these areas.

Industry support: Brunel has a very active Industrial Liaison Panel, which is immensely supportive of our programmes. The Panel and the companies have also shown keen interest in offering industrial support for the new programme through assistance such as support with project dissertations and site visits.

Guest speakers: Our strong contact with industry is also used to invite experienced industry practitioners to come and give talks on specialist topics at regularly organised seminars. The seminars also serve as a platform for student project presentations, which goes to build their confidence level because of the recognition and value their project gains through such dissemination.

Supporting professional development: Under a professional development module, you will be required to actively pursue your personal development planning through continuously recording and record keeping of progress being made throughout the course duration. Personal tutors will offer support to their tutees by regularly checking these records (i.e. a Personal Development Log (PDL) and discussing any relevant issues with the aim of supporting them to find solutions.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This new course has been designed in close consultation with industry and we are currently in the process of seeking accreditation for it from the major professional institutions (JBM). Related courses in the College of Engineering, Design and Physical Sciences are already accredited.

To ensure the programme addresses current industry concerns, it was developed in compliance with international standards, using Civil Engineering Body of Knowledge as a guide. The programme also satisfies the requirements of the major civil engineering professional bodies (JBM) as stipulated in their guidelines on coverage given to the teaching of structural engineering.

Read less
Research profile. The Institute for Infrastructure and Environment (IIE) is among the leading centres of civil and environmental engineering research in the UK. Read more

Research profile

The Institute for Infrastructure and Environment (IIE) is among the leading centres of civil and environmental engineering research in the UK. The Institute seeks new technologies to solve real-world problems in order to promote sustainability.

Key research areas include:

  • behaviour and design of structures in fire and other extreme events
  • fire science and fire safety engineering
  • shells and containment structures
  • nonlinear finite element modelling of complex structures and structural collapses
  • mechanics and transport of granular materials and multiphase media
  • computational mechanics and bio-mechanics
  • fibre-reinforced polymer composites in structural strengthening and repair
  • high-speed rail
  • intelligent infrastructure and non-destructive evaluation
  • sustainable water and wastewater treatment technologies
  • water supply
  • waste management and resource recovery

IIE has excellent laboratory and computing facilities, including the latest facilities and instrumentation for experimental and computational research in structures, granular solids, fire safety engineering, non-destructive testing and environmental engineering.

Masters by Research

An MSc by Research is based on a research project tailored to a candidate’s interests. It lasts one year full time or two years part time. The project can be a shorter alternative to an MPhil or PhD, or a precursor to either – including the option of an MSc project expanding into MPhil or doctorate work as it evolves. It can also be a mechanism for industry to collaborate with the School.

Training and support

Students are strongly encouraged and trained to present their research at conferences and in journal papers during the course of their PhD.

Students are also encouraged to attend transferable skills courses provided by the University and to participate in external courses provided by organisations such as the Engineering and Physical Sciences Research Council (EPSRC).

PhD candidates pursue their research projects under continuous guidance, resulting in a thesis that makes an original contribution to knowledge. You will be linked to two academic supervisors, and one industrial supervisor if the project is industrially sponsored.

Facilities

The Institute has excellent laboratory and computing facilities, including the latest instruments for experimental and computational research in structures, granular solids, fire safety engineering, non-destructive testing and environmental engineering.



Read less
This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility. Read more

About the course

This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility.

It caters to the worldwide demand for building services engineering managers who have a sound knowledge of engineering and management principles – and the ability to apply this knowledge to complex situations.

Management modules cover engineering finance and accounting, people management, business organisation and facilities and contract management.

Aims

Building Service Engineers help buildings to deliver on their potential by working with architects and construction engineers to produce buildings that offer the functionality and comfort we expect, with the minimum impact on our environment. They design the lighting appropriate for the space, the heating, cooling, ventilation and all systems that ensure comfort, health and safety in all types of buildings, residential commercial and industrial.

Building services engineering is an interdisciplinary profession. It involves the specification, design, installation and management of all the engineering services associated with the built environment.

With the growing complexity of engineering services in modern buildings and the significance of energy conservation and pollution control, the role of the building services engineer is becoming increasingly important.

As an interdisciplinary profession that involves the specification, design, installation and management of all the engineering services associated with the built environment, comfort and function also need to be combined – which calls for engineers with a wide range of knowledge and skills.

This MSc programme is for:

Recent engineering and technology graduates, moving into building services and related disciplines.
Established engineers and technologists, working in building services and faced with the challenge of new areas of responsibility.
Engineers who want to develop technical understanding and expertise across the multi-disciplines of building services engineering.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in building services engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with building services engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.

Course Content

Modes of Study
3-5 Years Distance Learning

The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to suit yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.

Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Compulsory Modules

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Engineering Finance and Accounting
Management of People in Engineering Activities
Organisation of Engineering Business
Management of Facilities and Engineering Contracts
Dissertation

Students should choose one of the two themes below:

Theme A - Traditional

Energy Conversion Technologies
This element provides a broad introduction to the principles of energy conversion and thermodynamic machines and demonstrates their application to energy conversion and management in buildings. Emphasis is placed on refrigeration plant, energy conversion plant and energy management.
Refrigeration covers the basic principles and components of vapour compression systems, heat pumps and absorption systems.
Energy Conversion considers power cycles, combined heat and power, combustion processes, boiler plant, thermal energy storage and environmental impacts of plant operation.

Theme B - Renewable

Renewable Energy Technologies
This element includes: energy sources, economics and environmental impact, energy storage technologies, the role of renewables, solar thermal, solar electricity, wind power generation, hydro, tidal and wave power, biofuels, building integrated renewables.

Special Features

There are several advantages in choosing Brunel's Building Services programme:

Award-winning courses: Building Services Engineering courses at Brunel have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: it is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Accreditation

The course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng).

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May.
Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Read less

Show 10 15 30 per page



Cookie Policy    X