• Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
King’s College London Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Bath Spa University Featured Masters Courses
"fire" AND "risk"×
0 miles

Masters Degrees (Fire Risk)

We have 32 Masters Degrees (Fire Risk)

  • "fire" AND "risk" ×
  • clear all
Showing 1 to 15 of 32
Order by 
The International Master of Science in Fire Safety Engineering (IMFSE) is a two-year educational programme in the Erasmus+ framework. Read more

The International Master of Science in Fire Safety Engineering (IMFSE) is a two-year educational programme in the Erasmus+ framework.

This masters programme is jointly offered by the following three full partner universities:

  • The University of Edinburgh, UK
  • Ghent University, Belgium (coordinator)
  • Lund University, Sweden

Additionally, there are three associated partners where students can perform thesis research:

  • The University of Queensland, Australia
  • ETH Zurich, Switzerland
  • The University of Maryland, United States of America

Classes in Edinburgh focus on fire dynamics, fire safety engineering and structural design for fire. Classes in Ghent have a more general fire safety engineering focus. Classes in Lund emphasise enclosure fire dynamics, risk analysis and human behaviour.

Our Building Research Establishment (BRE) Centre for Fire Safety Engineering hosts bespoke equipment to support groundbreaking research and teaching, with combined thermal and mechanical loading and use of the latest image analysis techniques.

IMFSE is very pleased to involved seven industrial partners as official sponsors. With their annual financial contributions, it has been made possible to create the IMFSE Sponsorship Consortium, which awards IMFSE students with full or partial scholarships. The current sponsors are:

  • Arup
  • IFIC Forensics
  • UL
  • Promat
  • FPC
  • BRE
  • Fire Engineered Solutions Ghent

Programme structure

The programme consists of four semesters each worth 30 ECTS credits. Changing study location after each semester lets you benefit from the expertise of each university.

Semester 1

Students choose to study at either Ghent or Edinburgh.

Ghent University:

  • Fire Dynamics
  • Basics of Structural Engineering
  • Thermodynamics, Heat and Mass Transfer

And 9 ECTS credits from the following elective courses (subject to approval by the faculty):

  • FSE Based Firefighting (3 credits)
  • Modelling of Turbulence and Combustion (3 credits)
  • Turbomachines (6 credits)
  • Introduction to Entrepreneurship (3 credits)

The University of Edinburgh:

  • Fire Science and Fire Dynamics
  • Fire Safety Engineering
  • Fire Safety, Engineering and Society (this course replaces Fire Investigation and Failure Analysis, which will move to Semester 3 from 2017/18 onward)
  • Engineering Project Management

Semester 2

Lund University:

  • Advanced Fire Dynamics
  • Human Behaviour in Fire
  • Risk Assessment
  • Simulation of Fires in Enclosures

Semester 3

Students choose to study at either Ghent or Edinburgh.

Ghent University:

  • Active Fire Protection I: Detection and Suppression
  • Active Fire Protection II: Smoke and Heat Control
  • Explosions and Industrial Fire Safety
  • Fire Safety Regulation
  • Passive Fire Protection
  • Performance-Based Design

The University of Edinburgh:

  • Fire Science Laboratory
  • Structural Design for Fire
  • Fire Safety, Engineering and Society (this course will be replaced by Fire Investigation and Failure Analysis from 2017/18 onwards)
  • Finite Element Analysis for Solids

Semester 4

The masters thesis can be completed at one of the three full partners universities, or at one of the three associated partners. The thesis work is supervised by at least one of the full partner universities.

Career opportunities

We aim to train the next generation of leaders in this field; there is currently great demand for fire safety engineering graduates worldwide and graduates have gained relevant employment or enhanced career opportunities.

A fire safety engineer fulfils a broad range of duties, in various ways related to fire. This can range from designing fire protection for a space station, to protecting treasures such as the US Constitution, to safely securing the occupants of a high-rise building from fire hazards.

Fire safety engineers are in great demand by corporations, educational institutions, consulting firms, and government bodies around the world. You may find career opportunities in the following industries:

  • consulting engineering firms
  • fire departments
  • fire equipment and systems manufacturers
  • government
  • hospitals and health care facilities
  • insurance industry
  • research and testing laboratories
  • educational institutions
  • entertainment industry
  • forensic investigations


Read less
MSc Fire Safety Engineering is concerned with the study of fire development and prevention and the means by which its consequence may be reduced to a minimum in human, environmental and financial terms. Read more
MSc Fire Safety Engineering is concerned with the study of fire development and prevention and the means by which its consequence may be reduced to a minimum in human, environmental and financial terms. This postgraduate degree emphasises Fire Safety Engineering in the context of buildings and infrastructure. This involves skills and knowledge crossing all areas of learning including fire chemistry, physics of heat transfer, biology and toxicity, structures, law and legislation, environmental impact, risk management and design. It is supported by an established research base and builds on the training and educational programmes offered by the Institution of Fire Engineers.

This course is designed for students who will eventually hold senior positions within the fire-related professions. Throughout the programme, emphasis will be placed on self-motivation, critical thinking and analytical depth. The application of Fire Safety Engineering is multi-disciplinary and, as in the professional world, you will carry out project work, which will facilitate dialogue between the Fire Engineer and other members of the design and management teams.

PROFESSIONAL ACCREDITATION

This MSc is accredited by both the Energy Institute (EI) and the Chartered Institution of Building Services Engineers (CIBSE) as fulfilling the further learning requirement for Chartered Engineer status, whilst also being a recognised course by the Institution of Fire Engineers (IFE).

LEARNING ENVIRONMENT AND ASSESSMENT

The course will be delivered through lectures, tutorials and practical exercises. Guided teaching and formal assessments will enhance the development of transferable skills such report-writing, maintenance of case notes, formal presentations, participation in discussions, ability to work to deadlines, computing skills, public speaking, scientific analysis, adherence and development of laboratory protocols and research methods.

There are different assessment methods employed across the modules. Some modules are assessed by both examination and coursework while others are assessed by coursework only, which may take the form of group projects, modelling exercises or time-controlled assignments or seminar presentations.

Benefiting from extensive research funding, we hold an enviable reputation for the quality of our teaching and research activities. All Fire courses are underpinned by the Research Centre in Fire and Hazards and benefit from the dedicated fire laboratories including equipment for small and intermediate scale facilities.

Our well-equipped modern fire engineering laboratory facilities comprise of state-of-the-art fire research equipment, used by experienced academics, are available for research and teaching. There are specialist facilities which include analytical and material characterisation equipment. A number of experiments, ranging from the investigation of fire retardants to the combustion properties of materials, and fire toxicity can be undertaken. We also have computational fluid dynamics facilities, that provide the use of CFD based fire modelling for research, teaching and consultancy.

FURTHER INFORMATION

Combined into a single-discipline, our Fire Safety Engineering Master’s degree meets a challenge of modern industrial needs. Graduates have become leaders in a range of backgrounds from fire services to civil engineering to safety management. The course is fully accredited by three professional institutions (CIBSE, EI and IFE) that play an active part in ensuring the course is developed to meet professional needs.

This course is supported by an established research base (Centre for Research in Fire and Hazards Science) which builds on the training and educational programmes offered by the Institution of Fire Engineers. Full-time students can underpin their studies with a range of balancing modules. The remainder of the MSc is a series of options which may involve external speakers as well as expertise from our staff. Students should check availability if they wish to undertake any option in particular.

MSc Fire Safety Engineering commences in Semester 1 with Fires in Buildings which examines: fundamental principles; mechanisms controlling spread of fires and fire development in enclosures; movement and smoke control; fire resistance and fire severity; human behaviour in fires and evacuation; the mechanism of fire suppression agents. Running in parallel, a Research Methods module supports the Dissertation, which is an in-depth study involving theoretical, computational, experimental or investigative analysis. The Dissertation is undertaken in Semester 3 together with the Engineering Design Project, which is an integration of themes of design, ICT and technology within a practical context requiring students to work in teams as well as individuals.

Read less
Public awareness of hazards and risks has enhanced the importance of safety assessment and management in today’s increasingly litigious society. Read more

Programme Background

Public awareness of hazards and risks has enhanced the importance of safety assessment and management in today’s increasingly litigious society. Worldwide the burden of responsibility for health and safety is shifting towards those who own, manage and work in industrial and commercial organisations. Legal reform is tending to replace detailed industry specific legislation with a modern approach in which, where possible, goals and general principles are set and the onus is on organisations to show how they manage to achieve these goals.

The management of safety and risk needs to be integrated into the overall management of the organisation. It should be appropriate and cost-effective without dampening the innovative entrepreneurial spirit of employees with inflexible bureaucratic rules and procedures. An organisation’s exposure to potential hazards needs to be managed so as to reduce the chance of loss and mitigate any effects. Risk and safety issues need to be evaluated in a structured and calculated manner but in the light of an overall organisational strategy.

The MSc/PG Diploma programme in Safety and Risk Management aims to provide students with advanced knowledge of risk assessment techniques, the public and individual perception of risk, and how decisions are made in competitive business markets. The focus is on practical applications of safety methodologies, ergonomics and human factors, and safety and risk management techniques.

All of these skills will be drawn together to undertake complex qualitative and quantitative risk assessments. The core of the programme is the management of safety, but it is set within a broader remit where safety issues are part of a general risk management system with a balance of financial, quality and environmental concerns. The overall aim of the programme is to develop students’ skills and personal qualities to be able to undertake safety studies and manage safety and risk to the best national and international standards.

Professional Recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. See http://www.jbm.org.ukfor further information.

The MSc and PgDip degrees have also been accredited by the Institution of Occupational Safety and Health (IOSH). Graduates are eligible to join IOSH as Graduate members and then undertake an initial professional development process that leads to Chartered membership. http://www.iosh.co.uk for further information.

Programme Content

The MSc/Postgraduate Diploma in Safety, Risk and Management is only available by attendance-free distance learning. The programme comprises eight courses. All courses have written examinations and some have compulsory coursework elements. MSc students are also required to complete an individual project (dissertation).

For the project component of the programme distance learners are likely to develop something based in their country of residence with advice and supervision from staff in the School. This may well include work with a local company or may involve independent study. Individual arrangements will be set up with each student.

For more detailed information on this programme please contact the Programme Leader before applying (see above).

Courses

• Risk Assessment and Safety Management
This courses aims to give students an appreciation of risk from individual and societal perspectives as well as understanding the basic principles of risk assessment and modelling and how safety management works in practice.

• Human Factors Methods
This course will equip students from academic and/or industrial backgrounds with knowledge on, and the means to deploy, a wide range of specialist human factors techniques. The emphasis is on method selection, application, combination and integration within existing business practices. Students will develop a critical awareness of what methods exist, how to apply them in practice and their principle benefits and limitations.

• Human Factors in the Design and Evaluation of Control Rooms
The course will equip students from academic and/or industrial backgrounds with in-depth knowledge on, insights into, and the means to deploy a wide range of specialist techniques relevant to the ergonomic design and evaluation of control rooms. The emphasis is on key areas of control room operations and on actionable ways to deploy theory on human capabilities and limitations in order to improve performance, safety, efficiency and overall operator well being.

• Fire Safety, Explosions and Process Safety
Introduces students to the basic principles of fire safety science and engineering, and develops skills in associated modelling leading to an understanding of principal fire/explosion related issues in process safety.

• Environmental Impact Assessment
Provides the candidate with the knowledge and understanding of the principles and processes of the Environmental Impact Assessment. By the end of the course, the student should be familiar with the European EIA legislation and its translation into the Scottish planning system, and be able to demonstrate an understanding of the EIA process, the tools and the agents involved in an EIA and the possible problems with using EIA as a decision making tool. . It is also intended that the student will be able to appreciate the purpose of the EIA process from a number of perspectives; that of a developer, an EIA practitioner and a policy maker.

• Project Management Theory and Practice
Provides students with an understanding of the concepts and practices of construction project management used to provide value added services to clients within the constraints of time, cost, quality sustainability and health and safety management.

• Learning from Disasters
Gives students an in depth understanding of some of the classic disasters and their consequences by using a range of practical accident investigation techniques. Students will learn to analyse complex histories in order to find the underlying root cause.

• Value and Risk Management.
Aims to introduce the concepts of value and risk management, apply them to strategic and tactical problems and illustrate their tools and techniques through case study.

Read less
Risk has become a key concept in modern society. Read more

Programme Background

Risk has become a key concept in modern society. Growing concern about the environment and a number of disasters have served to focus attention on the hazards and risks involved in a wide range of activities from offshore oil production to rail and air transport; from the design of football stadia to the operation of chemical plants and environmental protection. Today there is a wide range of techniques available to assess risk and reliability, both in relation to safety and in the wider sense. These techniques now underpin new legislation on safety and have relevance over a broad spectrum of activities, including environmental and other systems, where risk and reliability are key concerns.

The MSc/PG Diploma programme in Safety, Risk and Reliability Engineering is designed to give a thorough understanding of these techniques and experience of their application to a variety of real-world problems. It aims to provide students with an understanding of safety, risk and reliability engineering in both a qualitative and quantitative manner, and to develop the skills to apply this understanding. The programme will also introduce students to recent developments in analytical techniques, e.g. computer modelling of risk, reliability and safety problems.

Professional Recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. See http://www.jbm.org.ukfor further information.

The MSc and PgDip degrees have also been accredited by the Institution of Occupational Safety and Health (IOSH). Graduates are eligible to join IOSH as Graduate members and then undertake an initial professional development process that leads to Chartered membership. http://www.iosh.co.uk for further information.

Programme Content

The MSc/Postgraduate Diploma in Safety, Risk and Reliability Engineering is only available by attendance-free distance learning. The programme comprises eight courses. All courses have written examinations and some have compulsory coursework elements. MSc students are also required to complete an individual project (dissertation). This programme has a stronger engineering bias and you should only attempt this if you have done some University level mathematics or equivalent. Otherwise the Safety and Risk Management course might be more appropriate.

For the project component of the programme distance learners are likely to develop something based in their country of residence with advice and supervision from staff in the School. This may well include work with a local company or may involve independent study. Individual arrangements will be set up with each student.

For more detailed information on this programme please contact the Programme Leader before applying (see above).

Courses

• Risk Assessment and Safety Management
This course aims to give students an appreciation of risk from individual and societal perspectives as well as understanding the basic principles of risk assessment and modelling and how safety management works in practice.

• Systems Reliability
Gives an understanding of the qualitative and quantitative techniques that are used in the reliability, availability and maintainability analysis of all types of engineering systems.

• Learning from Disasters
Provides students with an in depth understanding of some of the classic disasters and their consequences by using a range of practical accident investigation techniques. Students will learn to analyse complex histories in order to find the underlying root cause.

• Safety, Risk and Reliability
Leads to an understanding of the principles of structural reliability theory and its application to risk and reliability engineering.

• Fire Safety, Explosions and Process Safety
Introduces students to the basic principles of fire safety science and engineering, and develops skills in associated modelling leading to an understanding of principal fire/explosion related issues in process safety.

• Data Analysis and Simulation
Develops knowledge of statistical data analysis and its application in engineering and science and introduces the concepts of using simulation techniques for analysis of complex systems. It also teaches linear optimisation techniques and the ability to apply them to solve simple problems.

• Human Factors Methods
This course will equip students from academic and/or industrial backgrounds with knowledge on, and the means to deploy, a wide range of specialist human factors techniques. The emphasis is on method selection, application, combination and integration within existing business practices. Students will develop a critical awareness of what methods exist, how to apply them in practice and their principle benefits and limitations.

•Environmental Impact Assessment
Provides the candidate with the knowledge and understanding of the principles and processes of the Environmental Impact Assessment. By the end of the course, the student should be familiar with the European EIA legislation and its translation into the Scottish planning system, and be able to demonstrate an understanding of the EIA process, the tools and the agents involved in an EIA and the possible problems with using EIA as a decision making tool. It is also intended that the student will be able to appreciate the purpose of the EIA process from a number of perspectives; that of a developer, an EIA practitioner and a policy maker.

Read less
The purpose of the MSc in Fire and Rescue Service Management is to promote increased understanding of critical management processes and hopefully to enable satisfactory performance in high-consequence, high risk situations. Read more
The purpose of the MSc in Fire and Rescue Service Management is to promote increased understanding of critical management processes and hopefully to enable satisfactory performance in high-consequence, high risk situations.

Strategic managers in the Fire and Rescue Service in risk critical situations face unique challenges in both preparing for and dealing with situations which threaten life and critical infrastructure or reputation.

This postgraduate course brings together insights regarding risk perception and decision making across domains ranging from the operational context, cognitive psychology, economics, and public policy. It suggests strategies to ensure a mature effective response to various managerial situations.

MSc Fire and Rescue Service Management develops the abilities of critical decision makers to grasp a situation, formulate a response assess success and failure and redefine an improved response. The course offers tools and strategies which allow Fire and Rescue Service managers to generate, evaluate, and select among decision options.

PROFESSIONAL ACCREDITATION

There are potential short-term placements within fire and rescue services.

There are exchange visits to Hong Kong Fire Service offered to a limited number of students and also opportunities to work with International partners to develop fire and rescue service infrastructure in those countries where there are limited resources available.

LEARNING ENVIRONMENT AND ASSESSMENT]]
MSc students take practical classes, carry out casework and conduct lab-based dissertation research projects. Students also have access to a wide range of analytical instrumentation in the Faculty of Science and Technology’s Analytical Unit. In collaboration with Cheshire Fire and Rescue Service all students are tested in a simulated command environment.

Assessment is by examinations, practicals and coursework. Practical assessment involves command simulations.

The course focuses on managerial decision making within the fire and rescue service, in both an operational and non-operational context. It includes environmental scanning (both external and internal), strategy formulation (strategic or long range planning), strategy implementation, and evaluation and control. Situational awareness and risk decision making in time pressured and high risk situations. Students will be tested in command simulations representative of those applicable to the emergency incident domain. The theory and practical sessions will build confidence through the development of practical expertise and specialist knowledge in the field of strategic management.

Read less
In just a brief duration of time - in a few minutes or even in a fraction of a second - a fire or an explosion can have catastrophic consequences in residential buildings or in industrial plant. Read more

In just a brief duration of time - in a few minutes or even in a fraction of a second - a fire or an explosion can have catastrophic consequences in residential buildings or in industrial plant. In UK alone, hundreds get killed and tens of thousands are injured every year. Some single incidents cost millions of pounds, the total monetary cost of fire and explosions in the UK is estimated at £12 billion per year or approximately 1% of GDP.This course offers students from diverse academic backgrounds advanced training in the field of Fire and Explosion Engineering for those wishing to embark on a career, or further develop their career, in the industry. Particular emphasis is placed on fire and explosion protection systems within a legislative framework that is complex and fast-changing.Core modules will cover both foundation and advanced aspects of fire and explosion engineering, from the factors that influence flame spread to the latest research in explosion prediction. You’ll also gain a firm grounding in fire safety design and have the chance to design a fire protection system for a complex building.

Specialist facilities

  • An Enclosed Fire Rig Test facility
  • The Cone Calorimeter (standard and modified with controlled ventilation)
  • A 1m³ indicative standard fire furnace (planned for 2017)
  • Purser furnace
  • The Limiting Oxygen Index apparatus
  • The standard ISO vessel for dust explosions (in storage until at least 2017)
  • TGA (trace gas analyzer) and GC (gas chromatography) analytical equipment (off-line).
  • The on-line FTIR (Fourier transform infrared) toxic product analysis.
  • Mass spectrometer (MS).
  • Particulate emissions measurements (including particle size)
  • Access to the world class Leeds Electron Microscopy and Spectroscopy Centre (LEMAS), within the School, and high speed photography for visualisation of fast processes and optical analysis of particles before and after reaction.

Some of the modules on this programme are offered as short courses by the Faculty of Engineering’s Continuing Professional Development unit.

Find out more about our Fire Engineering short courses

This programme is also available to study part-time over 36 months.

Course content

You’ll study core modules that allow you to understand issues such as flame spread and steady burning, as well as developing your knowledge of fire protection designs for complex buildings. You’ll also review research around explosions, how they can be predicted and mitigated.

A major part of the MSc are two projects that will give you valuable experience and skills.

The first project involves the design of a protection system, so you’ll learn about the application of techniques such as sprinklers, pressurisation, smoke venting, automatic fire detectors, means of escape and emergency lighting systems.

The other is a lab or computational based project taking into account your own preferences. You can choose from the list of topics we offer each year, but most part-time students choose to put forward their own topic which may be related to the interests of the employer or sponsor. If you take this course part-time with the support of your employer, you can undertake your projects in the workplace.

Both projects are assessed on the basis of a written dissertation and an oral presentation.

If you choose to study part-time, you’ll need to visit Leeds six or seven times over three years. You’ll attend two presentation days and either four or five teaching weeks, depending on whether you choose the e-learning module Fire Risk Assessment and Management.

Course features include:

  • Extensive participation in course delivery by lecturers from industry brings strong industrial involvement to the course
  • Most taught modules are delivered in intensive CPD one week format. Modules are spread evenly throughout the year
  • Extensive participation in course delivery by lecturers from industry brings strong industrial involvement to the training package
  • Projects can be undertaken in the workplace (part-time) or at the University (full time and part time)
  • Block module format allows both full-time and part-time students a choice of modules.

The taught modules are assessed by coursework and 'open book' tests; typically within a period of 6-10 weeks from start to finish.

Want to find out more about your modules?

Take a look at the Fire and Explosion module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Research Project (MSc) 60 credits
  • Fire Safety Design 45 credits
  • Fire Risk Assessment and Management 15 credits
  • Fire Dynamics and Modelling 15 credits
  • Fire and Explosion Investigation 15 credits
  • Explosion Prediction and Mitigation 30 credits

For more information on typical modules, read Fire and Explosion Engineering MSc Full Time in the course catalogue

For more information on typical modules, read Fire and Explosion Engineering MSc Part Time in the course catalogue

Learning and teaching

Each taught module is delivered in an intensive one-week block, allowing full and part-time students to study alongside each other. These teaching weeks will allow you to benefit from the expertise of our own academics – informed by their groundbreaking research – as well as a range of visiting lecturers from industry to gain an understanding of fire and explosion engineering in theory and practice.

Assessment

Taught modules are assessed by via coursework and ‘open book’ tests, typically within 6-10 weeks from start to finish.

Career opportunities

Challenging career opportunities for fire and explosion professionals are available in just about every type of business, industry and government operation.

They include fire and explosion consultancies, fire safety planning offices of local authorities, civil engineering and architectural companies, chemical/pharmaceutical companies, the oil and gas industries, fire and explosion protection equipment manufacturers, government bodies and departments, specialist research and testing labs and insurance companies.

Links with industry

Throughout the course you will have the opportunity to meet potential employers at the week-long taught courses.

The Fire programme at Leeds is actively supported and sponsored by, amongst others, the following companies/organisations:




Read less
This one-year postgraduate course is designed to enable engineers, architects, fire prevention officers and other suitably qualified professionals working in the construction industry acquire a sound knowledge and understanding of fire in buildings, the safety requirements in the design of buildings and the various options available for minimising the risk of fire in buildings. Read more
This one-year postgraduate course is designed to enable engineers, architects, fire prevention officers and other suitably qualified professionals working in the construction industry acquire a sound knowledge and understanding of fire in buildings, the safety requirements in the design of buildings and the various options available for minimising the risk of fire in buildings. The course also includes the design of fire safety systems and guidance in the preparation of an application for a fire safety certificate. This course has been approved by Engineers Ireland as meeting its requirements for continuing professional development.

Course Organisation:

Lectures are normally held on Friday evening 7 - 10 p.m. and Saturday morning 9.30 a.m. - 12.30 p.m. each week throughout the two semesters (September to April). Coursework, which is an integral part of the course, consists of two assignments that are carried out in the students' own time.

Course Content:

Fundamentals of Fire Science and Fire Engineering
Fire Safety Engineering
Active Fire Protection Systems
Legal Principles; Fire, Safety and Health Legislation, Insurances
The Building Control Act, 1990 and Building Regulations
The Fire Services Acts, 1981 and 2003
Coursework Assignments

Assessment:

The award of a Postgraduate Diploma in Fire Safety Practice is based on a combination of the results of two examination papers and two coursework assignments. Each paper and the coursework constitute one third of the overall assessment. Students must pass each paper and the coursework. There is no system of compensation. The pass mark for the examinations and the coursework is 40%. A Distinction is awarded to those who obtain an overall average mark of 70% or more in both the coursework and two papers combined at the summer examination. The Diploma awarding ceremony takes place in November.

Recommended Texts:

Extensive notes are provided by individual lecturers, who may also recommend texts.

Read less
The M.Sc. in Engineering for Natural Risk Management aims to train professionals capable of working in all sectors of safety and civil protection, both public and private, at national and international level. Read more

The M.Sc. in Engineering for Natural Risk Management aims to train professionals capable of working in all sectors of safety and civil protection, both public and private, at national and international level. Thanks to its multidisciplinary nature, the program will provide the skills to coordinate the activities of a complex system such as civil protection.

The student of the M.Sc. in Engineering for Natural Risk Management at the end of his studies will have the following knowledge and understanding capabilities:

a) Knowledge of physical phenomena that generate disasters

b) Capacity of understanding of the mechanisms of interaction between natural events and industrial activities that can generate technological risk

c) Ability to understand and evaluate the legal implications related to the management of emergency situations.

The acquired knowledge may be applied for the:

a) Use the most advanced technologies in order to assess risk exposure and vulnerability, predict the occurrence of catastrophic events and post disasters impact assessment.

b) Assessment of environmental impact of natural disasters

c) Definition of emergency plans for the integrated risk management and decisions support in emergency situations

The courses are fully taught in English. The fourth semester is mainly devoted to internships and thesis work to facilitate international exchanges and contacts with the labour market.

The program has the support of CIMA Foundation, expert center of the national civil protection, which is based in the University Campus of Savona. CIMA has the University of Genoa, the Department of Civil Protection, the Liguria Region and the Province of Savona as founding members. CIMA will provide laboratories, researchers and administrative staff to support the teaching activities.

Students are offered the opportunity to carry out internships/periods of study at Italian and foreign institutions and universities.

Graduates in Engineering for Natural Risk Management may find career opportunities in:

1. public organizations and administrations;

2. international organizations that deal with emergencies and disasters;

3. international development cooperation;

4. humanitarian organizations;

5. private sector, insurances;

6. professional services;

7. research facilities;

8. operational centers for forecasting natural disasters and decision support.

Typical career opportunities for graduates in Engineering for Natural Risk Management are:

a. responsible for managing emergencies in public institutions/government (civil protection);

b. responsible in entities involved in the management of emergency conditions (eg. the fire-fighters, Forestry Police);

c. expert in risk monitoring in public bodies and international organizations;

d. responsible for planning the phases of management of emergencies in public bodies;

e. risk expert in insurance companies;

f. expert in operational management of emergencies in international governmental organizations, non-governmental and development cooperation;

g. expert in mapping of hazardous conditions with reference to security from natural and industrial risks working for professional offices, public/private institutions, public administration.



Read less
This part-time postgraduate study programme in safety and risk management is designed to provide a means of developing highly effective occupational safety and health practitioners that are capable of operating across the full spectrum of working environments. Read more

Why this course?

This part-time postgraduate study programme in safety and risk management is designed to provide a means of developing highly effective occupational safety and health practitioners that are capable of operating across the full spectrum of working environments.

Written and supported by a dedicated team of part-time tutors/practitioners engaged in health and safety practice, this course offers a unique opportunity to acquire knowledge and expertise in a highly practical context.

The Postgraduate Certificate in Safety & Risk Management has been formally accepted by the Institution of Occupational Safety and Health (IOSH) as satisfying the academic requirements for Graduate Membership (GradIOSH). Following successful completion of the Postgraduate Certificate, there is an opportunity to progress to higher level study and Chartered Membership (CMIOSH).

This course is available by distance learning only. If you have full-time work commitments, part-time distance learning study enables you to participate in your own time from any location and achieve a valuable qualification of benefit to both you and your organisation.

Flexible entry and exit points allow you to start and finish at appropriate points along the progression route, according to your current qualifications, relevant work experience and requirements.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/safetyriskmanagement/

You’ll study

- Postgraduate Certificate
You’ll complete three compulsory modules:
- Benchmarking Safety & Risk Management
- Assessing Hazards, Risks & Dangers
- Optimising Safety & Risk Management Activities

- Postgraduate Diploma
You’ll complete four compulsory modules:
- Methods of Professional Enquiry
- Psychology of Workplace Activities
- Ergonomic Factors in Work Activities
- Corporate Risk Management

- Masters
You’ll study one compulsory module. You’re required to plan, implement and evaluate a major piece of research and development work. It involves an investigative and developmental project of professional relevance which is assessed on a report of 12,000 words.

Student competitions

There's the annual IOSH Student Research Poster Competition for students on BSc or MSc degree courses (in occupational safety and health or a cognate subject). Students are entered into the competition by their course tutor.

Finalists have the opportunity to showcase their research at the IOSH Conference and Safety & Health Expo in London, and also receive a cash prize. A number of our MSc graduates have been winners and runners-up.

Entry requirements

This programme is designed for people who already have a suitable combination of academic ability, subject knowledge and work experience in the general area of occupational health and safety.

Admission to the programme is determined by both academic and work experience criteria to reflect the non-traditional routes into the health and safety profession.

Applicants holding a recognised University degree and a level 3 Health and Safety Qualification (NEBOSH Certificate or equivalent) will be eligible to join the Safety and Risk Management Programme at Postgraduate Certificate level.

Applicants who do not satisfy the above will be assessed for admission on the basis of their portfolio of courses undertaken and relevant work experience.

Those seeking admission with advanced standing may include prior learning in recognised courses or work-based experience as entry criteria. Further information is available on request.

Entry to the Postgraduate Diploma will normally follow successful completion of the Postgraduate Certificate. Students who have gained equivalent academic qualifications at Postgraduate Certificate level may be accepted onto the course.

Direct entry to the MSc is not available. Students must first complete the Postgraduate Diploma in Safety & Risk Management before being allowed to continue on to the MSc.

Learning & teaching

This course is by distance learning only, delivered online via the University's Virtual Learning Environment, Myplace. Each stage of the programme is available with tutor support, providing students with an appropriate level of guidance, assessment and feedback.

Assessment

Assessment is based on continuous assessment of written assignment - there are no examinations.

Careers

- Where are they now?
100% of our MSc graduates are in work or further study**

Job titles include:
- Assistant Director of HR (Health & Safety)
- Clinical Risk Coordinator
- District Commander
- Head of HSE
- Health and Safety Advisor
- HSEQ Manager

Employers include:
- Balfour Beatty
- Compass Group
- Malone Engineering
- NHS
- ENSCO Plc
- Northern Ireland Fire & Rescue

**Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
MSc Top-up This programme allows forensic practitioners who are holders of the Forensic Science Society Diploma to study for an MSc. Read more
MSc Top-up This programme allows forensic practitioners who are holders of the Forensic Science Society Diploma to study for an MSc.

From 2010 the Forensic Science Society Diploma was credit rated at 120 credits at postgraduate level. This has allowed the university to offer a "top-up" of the diploma to masters level on the successful completion of a project in either Crime Scene Investigation, Fire Investigation, Firearm Examination and Questioned Documents.

The MSc course in Fire Investigation requires the student to carry out a major independent research project in fire investigation. The project can be undertaken in the student's own laboratories or at the University. The exact subject of the project is agreed by negotiation with the member of staff who will act as the academic supervisor for the project.

Support for the course is provided by Blackboard which gives details of risk assessments and ethical considerations which have to be in place before the commencement of the project.

Accreditation

This award is accredited by the Forensic Science Society.

Read less
This programme is designed for graduates in mathematics, engineering, or science with excellent numeracy skills, wishing to pursue careers in the application of mathematics, in traditional areas such as engineering and science and in service areas such as finance and banking, where knowledge of modern applications of mathematics would be advantageous. Read more
This programme is designed for graduates in mathematics, engineering, or science with excellent numeracy skills, wishing to pursue careers in the application of mathematics, in traditional areas such as engineering and science and in service areas such as finance and banking, where knowledge of modern applications of mathematics would be advantageous. The core philosophy of the programme is to equip students both with mathematics and its applications and with high-level scientific software and associated numerical skills. The Greenwich campus, near the financial district of Canary Wharf, enables the department to build ties with many modern engineering and applied mathematics practitioners enabling our students to become part of a wider group. The Leslie Comrie seminar series, inviting both academics and industrialists, allows you to interact with our external links creating an advantageous learning experience. We provide you the grounds for building a high profile of understanding of current research practices in the industry. Our classes contain interactive applications that enhance the learning experience by innovative teaching practices. Utilising research expertise within the department you will graduate with a strong understanding of numerical methods. You will also develop an understanding for further applicability in various fields of applied mathematics and engineering.

This programme is suitable both for fresh graduates and also for experienced professional practitioners who wish to further their skills. The programme core modules cover modern mathematical skills together with applications across different industries, and there are optional professional modules directly related to research expertise within the Faculty. This ensures that students have an advanced understanding of both theory and practice in their selected specialist areas. Students will gain knowledge of mathematical skills and applications, computational skills, and relevant professional experience, related to traditional engineering and science modelling, modern enterprise applications, finance, and service industries. They will gain an understanding of emerging applications. There will be hands-on training in various development tools and in the use of computational software related to their professional direction. Assessment takes the form of 100% coursework, based on applications of current market practices. A supervised thesis project takes place at the end of the last teaching term during the summer months. Projects are allocated in March and students are invited to undertake a project that provides genuine insight in an area of the research interests within the department. The programme is also available on a part-time basis.

Visit the website http://www2.gre.ac.uk/study/courses/pg/maths/appmaths

Mathematics

Postgraduate mathematics students benefit from award-winning teaching and great facilities. Our programmes are informed by world-renowned research and our links with industry ensure our students develop the academic and practical skills that will enhance their career prospects.

What you'll study

Full time
- Year 1:
Option Set 1

Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are required to choose 60 credits from this list of options.

Scientific Software Design and Development (15 credits)
Inverse Problems (15 credits)
Mathematics of Complex Systems (15 credits)
Reliability and Optimisation (15 credits)

Option Set 2
Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are also required to choose 60 credits from this list of options.

Principles and Practice of Evacuation Modelling (30 credits)
Principles and Practice of Fire Modelling (30 credits)

Option Set 3

Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are also required to choose 45 credits from this list of options.

Scientific Software Design and Development (15 credits)
Inverse Problems (15 credits)
Mathematics of Complex Systems (15 credits)
Reliability and Optimisation (15 credits)

Students are also required to choose 15 credits from this list of options.

Enterprise Software Engineering Development (15 credits)
Software Tools and Techniques (15 credits)
Actuarial Mathematics and Risk Modelling (15 credits)
Financial Time Series (15 credits)
Advanced Finite Difference Methods for Derivatives Pricing (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Inverse Problems (15 credits)
Mathematics and its Applications (30 credits)
Reliability and Optimisation (15 credits)

- Year 2:
Students are required to study the following compulsory courses.

Scientific Software Design and Development (15 credits)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematics of Complex Systems (15 credits)

Students are required to choose 15 credits from this list of options.

Advanced Finite Difference Methods for Derivatives Pricing (15 credits)
Mathematical Approaches to Risk Management (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

100% coursework: a supervised thesis project (during the summer months).

Career options

Our graduates are equipped with the tools to involve in many engineering applications and computational engineering sectors such as reliability engineering, risk management, complex engineering systems, fire safety and finance. Our expert seminar series gives you the opportunity to interact with leading figures from industry and academia and undertake projects of current industry practice. A postgraduate qualification is a major achievement and a milestone in your specialised career path leading to a professional career. The Department also offers a PhD programme which trains highly skilled candidates towards research careers in academia and industry. Our current collaborations for our PhD candidates lie with the STRIKE project for mathematical and computational applications.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
What is the Master of Safety Engineering about? .  The Master of Safety Engineering will prepare you to improve and realise safety in many different areas. Read more

What is the Master of Safety Engineering about? 

 The Master of Safety Engineering will prepare you to improve and realise safety in many different areas. The programme trains you in prevention policy and safety management systems, the safety of products, processes, and installations, qualitative risk analysis techniques, and fire and explosion safety. You’ll obtain detailed knowledge of technical and managerial process safety concepts with regard to the whole life cycle of a production plant, and risk evaluations based on qualitative and quantitative methods. 

Structure

The Master of Safety Engineering comprises a total of 60 credits. The programme consists of a group of common compulsory courses (23 credits) that are taken up by every student. This party contains courses with themes that are of interest to every safety professional, irrespective of the specialisation option. All courses in this part are taught in English. This relatively large core part ensures that every student is given the same broad basic education about the specialised field of safety.

After a general introduction to safety engineering, prevention policy and safety management systems are treated. Safety of products, processes and installations are discussed next and qualitative risk analysis techniques, fire and explosion safety complete this section.

Furthermore, students choose between one of two available options (22 credits each): Option Process Safety or Option Prevention. In turn, each option contains a number of compulsory courses (16 credits) and elective courses (6 credits). 

The Option Prevention focuses on occupational safety and health-related issues. The compulsory courses in this option also discuss non-technical aspects concerning safety. This option is mainly of interest to candidates who want to obtain the Certificaat Preventieadviseur Niveau 1.

The Option Process Safety provides students with a detailed knowledge of technical and managerial process safety concepts with regard to the whole life cycle of a production plant from concept to design, construction and operation to decommissioning. Safety concepts of representative operational units are presented in a series of case studies. Examples of required safety oriented competences in industrial operations are also discussed. It is shown how risk evaluations and estimates based on qualitative and quantitative methods are performed.

Each student also needs to choose elective courses either from a short indicative list, or from any Master’s programme within the Group of Science, Engineering and Technology. 

Finally, students have to complete a Master’s thesis of 15 credits, which represents an effort that is consistent with a programme of 60 credits in total.

The programme can be completed normally in one-year on a full-time basis. However, to facilitate the participation of working professionals, it can also be followed on a two year part-time basis.

Objectives

After finishing this advanced Master's programme, the student should:

  • have a broadly based knowledge of the different scientific disciplines that are needed to study and analyse the diverse technical and non-technical issues related to safety technology, risk management and loss prevention.
  • have acquired the capabilities and competences to perform or co-ordinate a scientifically sound analysis of safety related problems and their solutions within the governing boundary conditions (legal, organisational, technical, environmental, etc.).

To carry out the programme's objectives, teaching activities consist of a combination of classroom lectures, practically oriented seminars and site visits. The instructors themselves come from the academic world both inside and outside K.U.Leuven, or have been recruited from reputable industrial companies because of their long-standing expertise and willingness to contribute to teaching and training.

Career perspectives

In many countries, there is a permanent and growing need for scientists and engineers who are knowledgeable and trained at the academic level in the field of safety engineering and safety management. This is due to the increasing complexity of industrial production processes and the growing number of rules and regulations both in Europe and internationally.

Graduates of the Master of Science in Safety Engineering programme find employment in small national and large multinational industrial companies at home and abroad or are employed in private and/or governmental organisations. Such organisations need experts with the ability to conduct research, carry out analyses, and perform inspections, monitoring and certification in the broad field of safety.

Moreover, in some countries (including Belgium), companies beyond a certain size dealing with specific risks are required by law to hire or even employ a certified prevention advisor. This certification can be acquired through the Prevention option of the Master of Science in Safety Engineering (Certificaat Preventieadviseur Niveau 1).

It is also possible for graduates to begin a career as an independent consultant with expertise in safety and environmental areas.



Read less
Your programme of study. The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Read more

Your programme of study

The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Over time there have been many learning points as a result of process which did not address the challenge sufficiently resulting in new standards of safety, assessing risk and managing the challenges presented in mineral extraction. The industry has come a long way since its inception in Aberdeen in the 1970s and globally and University of Aberdeen has acquired this knowledge and research to work with industry and train the next Safety and Reliability Engineers to continuously improve safety. This programme is highly regarded from a well known provider in the industry. You visit industry and receive technical lectures with practical sessions to provide further awareness of the responsibility involved in the energy industry.

The programme is ideal if you are from an engineering, physics or mathematics background but it is also relevant to you if you studied stress analysis and thermodynamics with experience from the industry. The added value of this programme is that you can apply the discipline to other industries such as nuclear, defence, transport, aerospace, manufacturing and process industries, making you more employable and allowing wider scope for career options at graduation.

Courses listed for the programme

Semester 1

Fundamental Safety Engineering, and Risk Management Concepts

Statistics and Probability for Safety, Reliability and Quality

Fire and Explosion Engineering

Subsea Integrity

Semester 2

Advanced Methods for Risk and Reliability Assessments

Applied Risk Analysis and Management

Process Design, Layout and Materials

Human Factors Engineering

Semester 3

Safety Engineering Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/935/safety-and-reliability-engineering/

or online delivery at:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1078/safety-and-reliability-engineering/

Why study at Aberdeen?

  • This is a highly regarded programme by the industry which is informed by the energy industry in Aberdeen city
  • Aberdeen is at the heart of the European and world oil and gas industry with many multinational FTS 100 companies located in  the city
  • This is a world class programme which informs the Lloyds Register Foundation Centre for Safety and Reliability Engineering
  • You are taught by industry professionals with worldwide industry experience

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • 12 Months or 24 Months
  • September start
  • There is an online programme available from University of Aberdeen

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
Your programme of study. The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Read more

Your programme of study

The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Over time there have been many learning points as a result of process which did not address the challenge sufficiently resulting in new standards of safety, assessing risk and managing the challenges presented in mineral extraction. The industry has come a long way since its inception in Aberdeen in the 1970s and globally and University of Aberdeen has acquired this knowledge and research to work with industry and train the next Safety and Reliability Engineers to continuously improve safety. This programme is highly regarded from a well known provider in the industry. You visit industry and receive technical lectures with practical sessions to provide further awareness of the responsibility involved in the energy industry.

The programme is ideal if you are from an engineering, physics or mathematics background but it is also relevant to you if you studied stress analysis and thermodynamics with experience from the industry. The added value of this programme is that you can apply the discipline to other industries such as nuclear, defence, transport, aerospace, manufacturing and process industries, making you more employable and allowing wider scope for career options at graduation.

Courses listed for the programme

Semester 1

Fundamental Safety Engineering, and Risk Management Concepts

Statistics and Probability for Safety, Reliability and Quality

Fire and Explosion Engineering

Subsea Integrity

Semester 2

Advanced Methods for Risk and Reliability Assessments

Applied Risk Analysis and Management

Process Design, Layout and Materials

Human Factors Engineering

Semester 3

Safety Engineering Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1078/safety-and-reliability-engineering/

or on campus delivery:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/935/safety-and-reliability-engineering/

Why study at Aberdeen?

  • This is a highly regarded programme by the industry which is informed by the energy industry in Aberdeen city
  • Aberdeen is at the heart of the European and world oil and gas industry with many multinational FTS 100 companies located in the city
  • This is a world class programme which informs the Lloyds Register Foundation Centre for Safety and Reliability Engineering
  • You are taught by industry professionals with worldwide industry experience

Where you study

  • Online
  • Full Time or Part Time
  • 5 Months or 27 Months
  • September or January start

*• There is an online programme available from University of Aberdeen

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
Your programme of study. You can study Safety and Reliability Engineering for Oil and Gas flexibly from anywhere in the world as this delivery is online. Read more

Your programme of study

You can study Safety and Reliability Engineering for Oil and Gas flexibly from anywhere in the world as this delivery is online. You can fit this programme around your work and other commitments part time.

Whilst Safety and Reliability Engineering allows you to apply your skills and knowledge to a wider range of industries, this programme is specifically for the oil and gas industry. It provides you with the knowledge to review reliability of engineering facilities, materials and products and legislative framework at the same time. Safety has always been of paramount concern in the oil and gas industry with a lot of learning and knowledge acquired since the oil industry growth of the 1970s. This knowledge has been scrutinised by University of Aberdeen and the industry to provide professional expertise to manage safety and reliability. Future challenges are being met to some extent by the advent of affordable sensors which manage difficult to reach places, but nonetheless require the knowledge and capabilities of professionals working in this discipline to ensure they are fit for purpose.

The MSc Safety Engineering for Oil & Gas programme provides training in safety engineering, reliability engineering, and loss prevention in the offshore, nuclear, transport, aerospace and process industries and more. Fully accredited by the Institution of Mechanical Engineers (IMechE), the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Institute of Highway Engineers (IHE) and the Chartered Institution of Highways & Transportation (CIHT).

Courses listed for the programme

Year 1

Fundamental Safety Engineering and Risk Management Concepts

Statistics and Probability for Safety, Reliability and Quality

Advanced Methods for Risk and Reliability Assessment (Distance Learning)

Applied Risk Analysis and Management (Distance Learning)

Year 2

Fire and Explosion Engineering

Process Design, Layout and Materials (Distance Learning)

Human Factors Engineering

Offshore Oil and Gas Production Systems (Distance Learning)

Year 3

It is supported by the Lloyds Register and Advisory Board which in turn builds on the knowledge within the School of Engineering

We are ideally placed to provide this programme of study and support it with strong links to industry

The university is highly regarded within the oil and gas industry for continuous integration with industry needs and knowledge

You can study flexibly either part time or online

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1081/safety-and-reliability-engineering-for-oil-and-gas/

Why study at Aberdeen?

  • The university is highly regarded within the oil and gas industry for continuous integration with industry needs and knowledge
  • You can study flexibly either part time or online
  • It is supported by the Lloyds Register and Advisory Board which in turn builds on the knowledge within the School of Engineering
  • We are ideally placed to provide this programme of study and support it with strong links to industry

Where you study

  • Online
  • Part Time
  • 5 Months or 27 Months
  • September or January start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less

Show 10 15 30 per page



Cookie Policy    X