• University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of York Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
University of Greenwich Featured Masters Courses
University of St Andrews Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
Cardiff University Featured Masters Courses
"fire" AND "risk"×
0 miles

Masters Degrees (Fire Risk)

  • "fire" AND "risk" ×
  • clear all
Showing 1 to 15 of 30
Order by 
MSc Fire Safety Engineering is concerned with the study of fire development and prevention and the means by which its consequence may be reduced to a minimum in human, environmental and financial terms. Read more
MSc Fire Safety Engineering is concerned with the study of fire development and prevention and the means by which its consequence may be reduced to a minimum in human, environmental and financial terms. This postgraduate degree emphasises Fire Safety Engineering in the context of buildings and infrastructure. This involves skills and knowledge crossing all areas of learning including fire chemistry, physics of heat transfer, biology and toxicity, structures, law and legislation, environmental impact, risk management and design. It is supported by an established research base and builds on the training and educational programmes offered by the Institution of Fire Engineers.

This course is designed for students who will eventually hold senior positions within the fire-related professions. Throughout the programme, emphasis will be placed on self-motivation, critical thinking and analytical depth. The application of Fire Safety Engineering is multi-disciplinary and, as in the professional world, you will carry out project work, which will facilitate dialogue between the Fire Engineer and other members of the design and management teams.

PROFESSIONAL ACCREDITATION

This MSc is accredited by both the Energy Institute (EI) and the Chartered Institution of Building Services Engineers (CIBSE) as fulfilling the further learning requirement for Chartered Engineer status, whilst also being a recognised course by the Institution of Fire Engineers (IFE).

LEARNING ENVIRONMENT AND ASSESSMENT

The course will be delivered through lectures, tutorials and practical exercises. Guided teaching and formal assessments will enhance the development of transferable skills such report-writing, maintenance of case notes, formal presentations, participation in discussions, ability to work to deadlines, computing skills, public speaking, scientific analysis, adherence and development of laboratory protocols and research methods.

There are different assessment methods employed across the modules. Some modules are assessed by both examination and coursework while others are assessed by coursework only, which may take the form of group projects, modelling exercises or time-controlled assignments or seminar presentations.

Benefiting from extensive research funding, we hold an enviable reputation for the quality of our teaching and research activities. All Fire courses are underpinned by the Research Centre in Fire and Hazards and benefit from the dedicated fire laboratories including equipment for small and intermediate scale facilities.

Our well-equipped modern fire engineering laboratory facilities comprise of state-of-the-art fire research equipment, used by experienced academics, are available for research and teaching. There are specialist facilities which include analytical and material characterisation equipment. A number of experiments, ranging from the investigation of fire retardants to the combustion properties of materials, and fire toxicity can be undertaken. We also have computational fluid dynamics facilities, that provide the use of CFD based fire modelling for research, teaching and consultancy.

FURTHER INFORMATION

Combined into a single-discipline, our Fire Safety Engineering Master’s degree meets a challenge of modern industrial needs. Graduates have become leaders in a range of backgrounds from fire services to civil engineering to safety management. The course is fully accredited by three professional institutions (CIBSE, EI and IFE) that play an active part in ensuring the course is developed to meet professional needs.

This course is supported by an established research base (Centre for Research in Fire and Hazards Science) which builds on the training and educational programmes offered by the Institution of Fire Engineers. Full-time students can underpin their studies with a range of balancing modules. The remainder of the MSc is a series of options which may involve external speakers as well as expertise from our staff. Students should check availability if they wish to undertake any option in particular.

MSc Fire Safety Engineering commences in Semester 1 with Fires in Buildings which examines: fundamental principles; mechanisms controlling spread of fires and fire development in enclosures; movement and smoke control; fire resistance and fire severity; human behaviour in fires and evacuation; the mechanism of fire suppression agents. Running in parallel, a Research Methods module supports the Dissertation, which is an in-depth study involving theoretical, computational, experimental or investigative analysis. The Dissertation is undertaken in Semester 3 together with the Engineering Design Project, which is an integration of themes of design, ICT and technology within a practical context requiring students to work in teams as well as individuals.

Read less
MSc Fire Safety Engineering is concerned with the application of fire science into the practical context of built environment. Read more
MSc Fire Safety Engineering is concerned with the application of fire science into the practical context of built environment. This involves skills and knowledge crossing all areas of learning including fire chemistry, physics of heat transfer, biology and toxicity, structures, law and legislation, environmental impact, risk management and design. Combined into a single-discipline, this meets a challenge of modern industrial needs. Graduates have become leaders in a range of backgrounds from fire services to civil engineering to safety management. The course includes study of fires in buildings, engineering design projects and research methods. There are a range of options offered each year, including computational fluid dynamics, risk management, accidents and catastrophes, fire engineering solutions, incident command, fire safety law.

The course commences in Semester 1 with Fires in Buildings which examines: fundamental principles; mechanisms controlling spread of fires and fire development in enclosures; movement and smoke control; fire resistance and fire severity; human behaviour in fires and evacuation; the mechanism of fire suppression agents. Running in parallel, a Research Methods module supports the Dissertation, which is an in-depth study involving theoretical, computational, experimental or investigative analysis. The Dissertation is undertaken in Semester 3 together with the Engineering Design Project, which is an integration of themes of design, ICT and technology within a practical context requiring students to work in teams as well as individuals.

It is supported by an established research base (Centre for Research in Fire and Hazards Science) which builds on the training and educational programmes offered by the Institution of Fire Engineers. Full-time students can underpin their studies with a range of balancing modules. The remainder of the MSc is a series of options which may involve external speakers as well as expertise from our staff. Students should check availability if they wish to undertake any option in particular.

The course is designed for students who will eventually hold senior positions within the fire-related professions. Throughout the programme, emphasis will be placed on self-motivation, critical thinking and analytical depth. MSc Fire Safety Engineering is concerned with the study of fire development and prevention and the means by which its consequence may be reduced to a minimum in human, environmental and financial terms. The course emphasises Fire Safety Engineering in the context of buildings and infrastructure. It is supported by an established research base and builds on the training and educational programmes offered by the Institution of Fire Engineers.

The application of Fire Safety Engineering is multi-disciplinary and it is envisaged that, as in the professional world, you will carry out project work, which will facilitate dialogue between the Fire Engineer and other members of the design and management teams. It is the development of novel technological and engineering solutions within the often contradictory constraints of safety, economy and the law which pose the challenge in the course. The course is fully accredited by three professional institutions (CIBSE, EI and IFE) that play an active part in ensuring the course is developed to meet professional needs.

Read less
Public awareness of hazards and risks has enhanced the importance of safety assessment and management in today’s increasingly litigious society. Read more

Programme Background

Public awareness of hazards and risks has enhanced the importance of safety assessment and management in today’s increasingly litigious society. Worldwide the burden of responsibility for health and safety is shifting towards those who own, manage and work in industrial and commercial organisations. Legal reform is tending to replace detailed industry specific legislation with a modern approach in which, where possible, goals and general principles are set and the onus is on organisations to show how they manage to achieve these goals.

The management of safety and risk needs to be integrated into the overall management of the organisation. It should be appropriate and cost-effective without dampening the innovative entrepreneurial spirit of employees with inflexible bureaucratic rules and procedures. An organisation’s exposure to potential hazards needs to be managed so as to reduce the chance of loss and mitigate any effects. Risk and safety issues need to be evaluated in a structured and calculated manner but in the light of an overall organisational strategy.

The MSc/PG Diploma programme in Safety and Risk Management aims to provide students with advanced knowledge of risk assessment techniques, the public and individual perception of risk, and how decisions are made in competitive business markets. The focus is on practical applications of safety methodologies, ergonomics and human factors, and safety and risk management techniques.

All of these skills will be drawn together to undertake complex qualitative and quantitative risk assessments. The core of the programme is the management of safety, but it is set within a broader remit where safety issues are part of a general risk management system with a balance of financial, quality and environmental concerns. The overall aim of the programme is to develop students’ skills and personal qualities to be able to undertake safety studies and manage safety and risk to the best national and international standards.

Professional Recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. See http://www.jbm.org.ukfor further information.

The MSc and PgDip degrees have also been accredited by the Institution of Occupational Safety and Health (IOSH). Graduates are eligible to join IOSH as Graduate members and then undertake an initial professional development process that leads to Chartered membership. http://www.iosh.co.uk for further information.

Programme Content

The MSc/Postgraduate Diploma in Safety, Risk and Management is only available by attendance-free distance learning. The programme comprises eight courses. All courses have written examinations and some have compulsory coursework elements. MSc students are also required to complete an individual project (dissertation).

For the project component of the programme distance learners are likely to develop something based in their country of residence with advice and supervision from staff in the School. This may well include work with a local company or may involve independent study. Individual arrangements will be set up with each student.

For more detailed information on this programme please contact the Programme Leader before applying (see above).

Courses

• Risk Assessment and Safety Management
This courses aims to give students an appreciation of risk from individual and societal perspectives as well as understanding the basic principles of risk assessment and modelling and how safety management works in practice.

• Human Factors Methods
This course will equip students from academic and/or industrial backgrounds with knowledge on, and the means to deploy, a wide range of specialist human factors techniques. The emphasis is on method selection, application, combination and integration within existing business practices. Students will develop a critical awareness of what methods exist, how to apply them in practice and their principle benefits and limitations.

• Human Factors in the Design and Evaluation of Control Rooms
The course will equip students from academic and/or industrial backgrounds with in-depth knowledge on, insights into, and the means to deploy a wide range of specialist techniques relevant to the ergonomic design and evaluation of control rooms. The emphasis is on key areas of control room operations and on actionable ways to deploy theory on human capabilities and limitations in order to improve performance, safety, efficiency and overall operator well being.

• Fire Safety, Explosions and Process Safety
Introduces students to the basic principles of fire safety science and engineering, and develops skills in associated modelling leading to an understanding of principal fire/explosion related issues in process safety.

• Environmental Impact Assessment
Provides the candidate with the knowledge and understanding of the principles and processes of the Environmental Impact Assessment. By the end of the course, the student should be familiar with the European EIA legislation and its translation into the Scottish planning system, and be able to demonstrate an understanding of the EIA process, the tools and the agents involved in an EIA and the possible problems with using EIA as a decision making tool. . It is also intended that the student will be able to appreciate the purpose of the EIA process from a number of perspectives; that of a developer, an EIA practitioner and a policy maker.

• Project Management Theory and Practice
Provides students with an understanding of the concepts and practices of construction project management used to provide value added services to clients within the constraints of time, cost, quality sustainability and health and safety management.

• Learning from Disasters
Gives students an in depth understanding of some of the classic disasters and their consequences by using a range of practical accident investigation techniques. Students will learn to analyse complex histories in order to find the underlying root cause.

• Value and Risk Management.
Aims to introduce the concepts of value and risk management, apply them to strategic and tactical problems and illustrate their tools and techniques through case study.

Read less
Risk has become a key concept in modern society. Read more

Programme Background

Risk has become a key concept in modern society. Growing concern about the environment and a number of disasters have served to focus attention on the hazards and risks involved in a wide range of activities from offshore oil production to rail and air transport; from the design of football stadia to the operation of chemical plants and environmental protection. Today there is a wide range of techniques available to assess risk and reliability, both in relation to safety and in the wider sense. These techniques now underpin new legislation on safety and have relevance over a broad spectrum of activities, including environmental and other systems, where risk and reliability are key concerns.

The MSc/PG Diploma programme in Safety, Risk and Reliability Engineering is designed to give a thorough understanding of these techniques and experience of their application to a variety of real-world problems. It aims to provide students with an understanding of safety, risk and reliability engineering in both a qualitative and quantitative manner, and to develop the skills to apply this understanding. The programme will also introduce students to recent developments in analytical techniques, e.g. computer modelling of risk, reliability and safety problems.

Professional Recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. See http://www.jbm.org.ukfor further information.

The MSc and PgDip degrees have also been accredited by the Institution of Occupational Safety and Health (IOSH). Graduates are eligible to join IOSH as Graduate members and then undertake an initial professional development process that leads to Chartered membership. http://www.iosh.co.uk for further information.

Programme Content

The MSc/Postgraduate Diploma in Safety, Risk and Reliability Engineering is only available by attendance-free distance learning. The programme comprises eight courses. All courses have written examinations and some have compulsory coursework elements. MSc students are also required to complete an individual project (dissertation). This programme has a stronger engineering bias and you should only attempt this if you have done some University level mathematics or equivalent. Otherwise the Safety and Risk Management course might be more appropriate.

For the project component of the programme distance learners are likely to develop something based in their country of residence with advice and supervision from staff in the School. This may well include work with a local company or may involve independent study. Individual arrangements will be set up with each student.

For more detailed information on this programme please contact the Programme Leader before applying (see above).

Courses

• Risk Assessment and Safety Management
This course aims to give students an appreciation of risk from individual and societal perspectives as well as understanding the basic principles of risk assessment and modelling and how safety management works in practice.

• Systems Reliability
Gives an understanding of the qualitative and quantitative techniques that are used in the reliability, availability and maintainability analysis of all types of engineering systems.

• Learning from Disasters
Provides students with an in depth understanding of some of the classic disasters and their consequences by using a range of practical accident investigation techniques. Students will learn to analyse complex histories in order to find the underlying root cause.

• Safety, Risk and Reliability
Leads to an understanding of the principles of structural reliability theory and its application to risk and reliability engineering.

• Fire Safety, Explosions and Process Safety
Introduces students to the basic principles of fire safety science and engineering, and develops skills in associated modelling leading to an understanding of principal fire/explosion related issues in process safety.

• Data Analysis and Simulation
Develops knowledge of statistical data analysis and its application in engineering and science and introduces the concepts of using simulation techniques for analysis of complex systems. It also teaches linear optimisation techniques and the ability to apply them to solve simple problems.

• Human Factors Methods
This course will equip students from academic and/or industrial backgrounds with knowledge on, and the means to deploy, a wide range of specialist human factors techniques. The emphasis is on method selection, application, combination and integration within existing business practices. Students will develop a critical awareness of what methods exist, how to apply them in practice and their principle benefits and limitations.

•Environmental Impact Assessment
Provides the candidate with the knowledge and understanding of the principles and processes of the Environmental Impact Assessment. By the end of the course, the student should be familiar with the European EIA legislation and its translation into the Scottish planning system, and be able to demonstrate an understanding of the EIA process, the tools and the agents involved in an EIA and the possible problems with using EIA as a decision making tool. It is also intended that the student will be able to appreciate the purpose of the EIA process from a number of perspectives; that of a developer, an EIA practitioner and a policy maker.

Read less
The purpose of the MSc in Fire and Rescue Service Management is to promote increased understanding of critical management processes and hopefully to enable satisfactory performance in high-consequence, high risk situations. Read more
The purpose of the MSc in Fire and Rescue Service Management is to promote increased understanding of critical management processes and hopefully to enable satisfactory performance in high-consequence, high risk situations.

Strategic managers in the Fire and Rescue Service in risk critical situations face unique challenges in both preparing for and dealing with situations which threaten life and critical infrastructure or reputation.

This postgraduate course brings together insights regarding risk perception and decision making across domains ranging from the operational context, cognitive psychology, economics, and public policy. It suggests strategies to ensure a mature effective response to various managerial situations.

MSc Fire and Rescue Service Management develops the abilities of critical decision makers to grasp a situation, formulate a response assess success and failure and redefine an improved response. The course offers tools and strategies which allow Fire and Rescue Service managers to generate, evaluate, and select among decision options.

PROFESSIONAL ACCREDITATION

There are potential short-term placements within fire and rescue services.

There are exchange visits to Hong Kong Fire Service offered to a limited number of students and also opportunities to work with International partners to develop fire and rescue service infrastructure in those countries where there are limited resources available.

LEARNING ENVIRONMENT AND ASSESSMENT]]
MSc students take practical classes, carry out casework and conduct lab-based dissertation research projects. Students also have access to a wide range of analytical instrumentation in the Faculty of Science and Technology’s Analytical Unit. In collaboration with Cheshire Fire and Rescue Service all students are tested in a simulated command environment.

Assessment is by examinations, practicals and coursework. Practical assessment involves command simulations.

The course focuses on managerial decision making within the fire and rescue service, in both an operational and non-operational context. It includes environmental scanning (both external and internal), strategy formulation (strategic or long range planning), strategy implementation, and evaluation and control. Situational awareness and risk decision making in time pressured and high risk situations. Students will be tested in command simulations representative of those applicable to the emergency incident domain. The theory and practical sessions will build confidence through the development of practical expertise and specialist knowledge in the field of strategic management.

Read less
This part-time postgraduate study programme in safety and risk management is designed to provide a means of developing highly effective occupational safety and health practitioners that are capable of operating across the full spectrum of working environments. Read more

Why this course?

This part-time postgraduate study programme in safety and risk management is designed to provide a means of developing highly effective occupational safety and health practitioners that are capable of operating across the full spectrum of working environments.

Written and supported by a dedicated team of part-time tutors/practitioners engaged in health and safety practice, this course offers a unique opportunity to acquire knowledge and expertise in a highly practical context.

The Postgraduate Certificate in Safety & Risk Management has been formally accepted by the Institution of Occupational Safety and Health (IOSH) as satisfying the academic requirements for Graduate Membership (GradIOSH). Following successful completion of the Postgraduate Certificate, there is an opportunity to progress to higher level study and Chartered Membership (CMIOSH).

This course is available by distance learning only. If you have full-time work commitments, part-time distance learning study enables you to participate in your own time from any location and achieve a valuable qualification of benefit to both you and your organisation.

Flexible entry and exit points allow you to start and finish at appropriate points along the progression route, according to your current qualifications, relevant work experience and requirements.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/safetyriskmanagement/

You’ll study

- Postgraduate Certificate
You’ll complete three compulsory modules:
- Benchmarking Safety & Risk Management
- Assessing Hazards, Risks & Dangers
- Optimising Safety & Risk Management Activities

- Postgraduate Diploma
You’ll complete four compulsory modules:
- Methods of Professional Enquiry
- Psychology of Workplace Activities
- Ergonomic Factors in Work Activities
- Corporate Risk Management

- Masters
You’ll study one compulsory module. You’re required to plan, implement and evaluate a major piece of research and development work. It involves an investigative and developmental project of professional relevance which is assessed on a report of 12,000 words.

Student competitions

There's the annual IOSH Student Research Poster Competition for students on BSc or MSc degree courses (in occupational safety and health or a cognate subject). Students are entered into the competition by their course tutor.

Finalists have the opportunity to showcase their research at the IOSH Conference and Safety & Health Expo in London, and also receive a cash prize. A number of our MSc graduates have been winners and runners-up.

Entry requirements

This programme is designed for people who already have a suitable combination of academic ability, subject knowledge and work experience in the general area of occupational health and safety.

Admission to the programme is determined by both academic and work experience criteria to reflect the non-traditional routes into the health and safety profession.

Applicants holding a recognised University degree and a level 3 Health and Safety Qualification (NEBOSH Certificate or equivalent) will be eligible to join the Safety and Risk Management Programme at Postgraduate Certificate level.

Applicants who do not satisfy the above will be assessed for admission on the basis of their portfolio of courses undertaken and relevant work experience.

Those seeking admission with advanced standing may include prior learning in recognised courses or work-based experience as entry criteria. Further information is available on request.

Entry to the Postgraduate Diploma will normally follow successful completion of the Postgraduate Certificate. Students who have gained equivalent academic qualifications at Postgraduate Certificate level may be accepted onto the course.

Direct entry to the MSc is not available. Students must first complete the Postgraduate Diploma in Safety & Risk Management before being allowed to continue on to the MSc.

Learning & teaching

This course is by distance learning only, delivered online via the University's Virtual Learning Environment, Myplace. Each stage of the programme is available with tutor support, providing students with an appropriate level of guidance, assessment and feedback.

Assessment

Assessment is based on continuous assessment of written assignment - there are no examinations.

Careers

- Where are they now?
100% of our MSc graduates are in work or further study**

Job titles include:
- Assistant Director of HR (Health & Safety)
- Clinical Risk Coordinator
- District Commander
- Head of HSE
- Health and Safety Advisor
- HSEQ Manager

Employers include:
- Balfour Beatty
- Compass Group
- Malone Engineering
- NHS
- ENSCO Plc
- Northern Ireland Fire & Rescue

**Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
MSc Top-up This programme allows forensic practitioners who are holders of the Forensic Science Society Diploma to study for an MSc. Read more
MSc Top-up This programme allows forensic practitioners who are holders of the Forensic Science Society Diploma to study for an MSc.

From 2010 the Forensic Science Society Diploma was credit rated at 120 credits at postgraduate level. This has allowed the university to offer a "top-up" of the diploma to masters level on the successful completion of a project in either Crime Scene Investigation, Fire Investigation, Firearm Examination and Questioned Documents.

The MSc course in Fire Investigation requires the student to carry out a major independent research project in fire investigation. The project can be undertaken in the student's own laboratories or at the University. The exact subject of the project is agreed by negotiation with the member of staff who will act as the academic supervisor for the project.

Support for the course is provided by Blackboard which gives details of risk assessments and ethical considerations which have to be in place before the commencement of the project.

Accreditation

This award is accredited by the Forensic Science Society.

Read less
Strategic managers in the Fire and Rescue Service in risk critical situations face unique challenges in both preparing for and dealing with situations which threaten life and critical infrastructure or reputation. Read more
Strategic managers in the Fire and Rescue Service in risk critical situations face unique challenges in both preparing for and dealing with situations which threaten life and critical infrastructure or reputation. The purpose of this programme is to promote increased understanding of critical management processes and hopefully to enable satisfactory performance in high-consequence, high risk situations. This programme brings together insights regarding risk perception and decision making across domains ranging from the operational context, cognitive psychology, economics, and public policy. It suggests strategies to ensure a mature effective response to various managerial situations. Critical decision makers should develop their abilities build capability to grasp a situation, formulate a response assess success and failure and redefine an improved response. The programme offers tools and strategies which allow managers to generate, evaluate, and select among decision options.

Read less
The International Master of Science in Fire Safety Engineering (IMFSE) is a two-year educational programme in the Erasmus+ framework. Read more

Applications for this programme should be made through Ghent University.

Programme description

The International Master of Science in Fire Safety Engineering (IMFSE) is a two-year educational programme in the Erasmus+ framework.

This masters programme is jointly offered by the following three full partner universities:

-The University of Edinburgh, UK
-Ghent University, Belgium (coordinator)
-Lund University, Sweden

Additionally, there are three associated partners where students can perform thesis research:

-The University of Queensland, Australia
-ETH Zurich, Switzerland
-The University of Maryland, United States of America

Classes in Edinburgh focus on fire dynamics, fire safety engineering and structural design for fire. Classes in Ghent have a more general fire safety engineering focus. Classes in Lund emphasise enclosure fire dynamics, risk analysis and human behaviour.

Our Building Research Establishment (BRE) Centre for Fire Safety Engineering hosts bespoke equipment to support groundbreaking research and teaching, with combined thermal and mechanical loading and use of the latest image analysis techniques.

IMFSE is very pleased to involved seven industrial partners as official sponsors. With their annual financial contributions, it has been made possible to create the IMFSE Sponsorship Consortium, which awards IMFSE students with full or partial scholarships. The current sponsors are:

-Arup
-IFIC Forensics
-UL
-Promat
-FPC
-BRE
-Fire Engineered Solutions Ghent

Programme structure

The programme consists of four semesters each worth 30 ECTS credits. Changing study location after each semester lets you benefit from the expertise of each university.

Learning outcomes

The course contents and learning outcomes of IMFSE have been jointly developed, taking into account the specialties and experience of each of the three IMFSE universities. All three partners have extensive experience in teaching the different courses and integrating them into different degree requirements.

Competence in one/more scientific discipline(s)
For a masters degree (two years), students must be able to:

-master and apply advanced knowledge in the field of engineering in case of complex problems
-apply Computer Aided Engineering (CAE) tools and sophisticated calculation and communication instruments in a creative and target-oriented approach
-master and apply knowledge of physics, chemistry, thermodynamics, heat and mass transfer to critically analyse and evaluate the development of fires in enclosures
-master and apply knowledge of 'element methods' and dynamics of structures to critically analyse and evaluate the behaviour of simple structures in case of fire
-master and apply knowledge of explosions to critically analyse and evaluate associated risks
-master and apply the advanced knowledge of fire dynamics, risk assessment, human behaviour and integrate this in a performance-based fire safety design

Skills and abilities
For a masters degree (two years), students must be able to:

-analyse complex problems and convert them into scientific questions.
-perform research by making use of scientific literature.
-select and apply appropriate models, methods and techniques in different circumstances
-develop and validate mathematical models and methods
-analyse own results and results of others in an objective manner
-critically elaborate problems of fire risk assessment with autonomy and flexibility, using a limited amount of data
-perform valid computer simulations of development and consequences of enclosure fires

Intellectual competence
For a masters degree (two years), students must be able to:

-take independent positions on complex situations and be able to defend the point of view
-use own knowledge in a creative, target-oriented and innovative way regarding research, conceptual design and production
-reflect on the own way of thinking and acting and be conscious of the own expertise
-be aware of ongoing evolutions in the field of interest and maintain competence on the expert level
-flexibly adapt to changing professional circumstances.
-develop scientifically sound arguments to optimise passive and active fire protection measures

Competence in cooperation and communication
-discuss field of specialisation in English
-project planning: formulate objectives, report efficiently, keep track of end-goals and progress of the project
-cooperate and take the lead in a team in a multi-disciplinary working-environment
-report on technical or scientific subjects orally, in writing and in graphics
-function in an international environment (students, PhD students, scientific co-workers, scholars)

Societal competence
-Act in an ethical, professional and social manner.
-Be aware of the most important corporate and legal aspects in their field of engineering.
-Interpret the historical evolution of the own field of engineering and its social relevance.
-Master and apply critical insight in existing fire safety legislation and regulations in the development of a fire safety design.
-Act in an ethical, professional and social way when developing and presenting a performance-based fire safety design.

Profession-specific competence
-Master the complexity of technical systems by use of system and process models.
-Reconcile conflicting specifications and boundary conditions and transform them into high-quality, innovative concepts and processes.
-Transform incomplete, contradictory or redundant data into useful information.
-Select enough knowledge and comprehension to control the results of complex calculations or make approximate estimates.
-Pay attention to entire life-cycles of systems, machines and processes.
-Pay attention to energy-efficiency, environmental pressure, use of raw materials and labour costs.
-Pay attention to all aspects of reliability, safety and ergonomics.
-Be aware and insightful of the importance of entrepreneurship in society.
-Show perseverance, drive for innovation and a sense for the creation of added value.

Career opportunities

We aim to train the next generation of leaders in this field; there is currently great demand for fire safety engineering graduates worldwide and graduates have gained relevant employment or enhanced career opportunities.

A fire safety engineer fulfils a broad range of duties, in various ways related to fire. This can range from designing fire protection for a space station, to protecting treasures such as the US Constitution, to safely securing the occupants of a high-rise building from fire hazards.

Fire safety engineers are in great demand by corporations, educational institutions, consulting firms, and government bodies around the world. You may find career opportunities in the following industries:

-consulting engineering firms
-fire departments
-fire equipment and systems manufacturers
-government
-hospitals and health care facilities
-insurance industry
-research and testing laboratories
-educational institutions
-entertainment industry
-forensic investigations

Read less
This programme is designed for graduates in mathematics, engineering, or science with excellent numeracy skills, wishing to pursue careers in the application of mathematics, in traditional areas such as engineering and science and in service areas such as finance and banking, where knowledge of modern applications of mathematics would be advantageous. Read more
This programme is designed for graduates in mathematics, engineering, or science with excellent numeracy skills, wishing to pursue careers in the application of mathematics, in traditional areas such as engineering and science and in service areas such as finance and banking, where knowledge of modern applications of mathematics would be advantageous. The core philosophy of the programme is to equip students both with mathematics and its applications and with high-level scientific software and associated numerical skills. The Greenwich campus, near the financial district of Canary Wharf, enables the department to build ties with many modern engineering and applied mathematics practitioners enabling our students to become part of a wider group. The Leslie Comrie seminar series, inviting both academics and industrialists, allows you to interact with our external links creating an advantageous learning experience. We provide you the grounds for building a high profile of understanding of current research practices in the industry. Our classes contain interactive applications that enhance the learning experience by innovative teaching practices. Utilising research expertise within the department you will graduate with a strong understanding of numerical methods. You will also develop an understanding for further applicability in various fields of applied mathematics and engineering.

This programme is suitable both for fresh graduates and also for experienced professional practitioners who wish to further their skills. The programme core modules cover modern mathematical skills together with applications across different industries, and there are optional professional modules directly related to research expertise within the Faculty. This ensures that students have an advanced understanding of both theory and practice in their selected specialist areas. Students will gain knowledge of mathematical skills and applications, computational skills, and relevant professional experience, related to traditional engineering and science modelling, modern enterprise applications, finance, and service industries. They will gain an understanding of emerging applications. There will be hands-on training in various development tools and in the use of computational software related to their professional direction. Assessment takes the form of 100% coursework, based on applications of current market practices. A supervised thesis project takes place at the end of the last teaching term during the summer months. Projects are allocated in March and students are invited to undertake a project that provides genuine insight in an area of the research interests within the department. The programme is also available on a part-time basis.

Visit the website http://www2.gre.ac.uk/study/courses/pg/maths/appmaths

Mathematics

Postgraduate mathematics students benefit from award-winning teaching and great facilities. Our programmes are informed by world-renowned research and our links with industry ensure our students develop the academic and practical skills that will enhance their career prospects.

What you'll study

Full time
- Year 1:
Option Set 1

Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are required to choose 60 credits from this list of options.

Scientific Software Design and Development (15 credits)
Inverse Problems (15 credits)
Mathematics of Complex Systems (15 credits)
Reliability and Optimisation (15 credits)

Option Set 2
Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are also required to choose 60 credits from this list of options.

Principles and Practice of Evacuation Modelling (30 credits)
Principles and Practice of Fire Modelling (30 credits)

Option Set 3

Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are also required to choose 45 credits from this list of options.

Scientific Software Design and Development (15 credits)
Inverse Problems (15 credits)
Mathematics of Complex Systems (15 credits)
Reliability and Optimisation (15 credits)

Students are also required to choose 15 credits from this list of options.

Enterprise Software Engineering Development (15 credits)
Software Tools and Techniques (15 credits)
Actuarial Mathematics and Risk Modelling (15 credits)
Financial Time Series (15 credits)
Advanced Finite Difference Methods for Derivatives Pricing (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Inverse Problems (15 credits)
Mathematics and its Applications (30 credits)
Reliability and Optimisation (15 credits)

- Year 2:
Students are required to study the following compulsory courses.

Scientific Software Design and Development (15 credits)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematics of Complex Systems (15 credits)

Students are required to choose 15 credits from this list of options.

Advanced Finite Difference Methods for Derivatives Pricing (15 credits)
Mathematical Approaches to Risk Management (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

100% coursework: a supervised thesis project (during the summer months).

Career options

Our graduates are equipped with the tools to involve in many engineering applications and computational engineering sectors such as reliability engineering, risk management, complex engineering systems, fire safety and finance. Our expert seminar series gives you the opportunity to interact with leading figures from industry and academia and undertake projects of current industry practice. A postgraduate qualification is a major achievement and a milestone in your specialised career path leading to a professional career. The Department also offers a PhD programme which trains highly skilled candidates towards research careers in academia and industry. Our current collaborations for our PhD candidates lie with the STRIKE project for mathematical and computational applications.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
The MSc Safety Engineering for Oil & Gas programme provides training in safety engineering, reliability engineering, and loss prevention in the offshore, nuclear, transport, aerospace and process industries and more. Read more
The MSc Safety Engineering for Oil & Gas programme provides training in safety engineering, reliability engineering, and loss prevention in the offshore, nuclear, transport, aerospace and process industries and more. Fully accredited by the Institution of Mechanical Engineers (IMechE), the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Institute of Highway Engineers (IHE) and the Chartered Institution of Highways & Transportation (CIHT).

COURSES
Semester 1
Fundamental Safety Engineering and Risk Management Concepts
Statistics and Probability for Safety, Reliability, and Quality
Fire and Explosion Engineering
Offshore Oil and Gas Production Systems

Semester 2
Advanced Methods for Risk and Reliability Assessment
Applied Risk Analysis and Management
Process Design, Layout and Materials
Human Factors Engineering

Semester 3
Project

Read less
Project management is key to successful implementation of strategic change in any organisation. This programme develops your academic skills in modelling and evaluating the process of project management, allowing you to develop strategic and practical approaches in a wide variety of business environments. Read more

Why take this course?

Project management is key to successful implementation of strategic change in any organisation. This programme develops your academic skills in modelling and evaluating the process of project management, allowing you to develop strategic and practical approaches in a wide variety of business environments.

You will gain a broad understanding of the principles and practice of project management and the tools and techniques required to contribute to business effectiveness.

What will I experience?

On this course you can:

Attend lectures by practising project managers who speak about their experiences and give guidance on project management issues
Participate in live web-based chat forums to discuss your work with lecturers and other students
Tap in to our Library’s vast selection of electronic resources, which can be accessed from anywhere with an internet connection

What opportunities might it lead to?

This course is fully accredited by the Association for Project Management, demonstrating that it provides a level of knowledge recognised by a professional project management association It will provide you with the advanced ability to lead or act as part of a team progressing project issues from initiation through to completion. You can expect to find employment opportunities in virtually any industry, especially those within the commercial sector.

Here are some routes our graduates have pursued:

Project management
Consultancy
Project planning
Logistics
Product development

Module Details

You will complete a total of five units (including your dissertation) involving attendance of six or eight days for each unit. You will study several key topics covering areas of project management theory and methods, while gaining an insight into their practical application in a business context.

Here are the units you will study:

Project Environment and Planning: You will develop an understanding of the relationship between project and business management, as well as the project management environment and the factors that influence project outcomes. Strategic aspects of projects are addressed, including project selection and portfolio design. You will also learn how project managers must understand the benefits to be delivered by projects, the requirements of stakeholders and how to work within the constraints of cost, time and quality. Estimation methods and planning techniques are taught together with quality management. Approaches to the planning and control of projects that have been developed in different sectors are also covered, including agile methods and fast tracking.

Budgets and Commercial Management: This unit introduces you to raising project finance, building, monitoring and controlling project budgets and measuring Earned Value of project deliverables. It also covers the commercial aspects of procurement including tendering, contracting and the skills and practices of contract and bid negotiation, providing you with the tools and techniques for managing project budgets. The units also examines the key roles that project managers, budget managers and key project personnel play in managing project budgets.

People Management and Risk: This unit develops a critical understanding of individual, team and organisational working in order to deliver project goals successfully. It covers how individual characteristics such as personality, intelligence, ability and skills, motivation and attitudes affect individual performance. You will learn how to empower individuals and teams to achieve quality standards which enhance personal team and organisational performance, together with the development of creative and credible leadership. It also examines the key challenges in the application of risk management frameworks and models in project management, crisis management and corporate governance. Risk management strategies and the development of effective project mitigation and contingency action plans are critically evaluated.

Project Investigation and Systems Methods: This unit explores the investigation of project issues through the use of a structured research methodology and project management analysis tools to enhance the research process. Wider strategic issues are explored to place the research process into context and to illustrate how appropriate research methods can be identified for specific types of research problems. You will also look at tools for the modelling and analysis of complex problem situations (including systems thinking, soft systems methods and influence diagrams) and how these can be used to diagnose problem situations to identify relevant areas for further investigation. Project management methodologies including PRINCE2, Partnering and Programme Management as a wider context for project management research issues are examined. You will produce a research proposal that brings together the use of research methodology and project systems in identifying, justifying and investigating a research question that will feed into the research conducted in your final dissertation.

Dissertation: This unit enables you to deepen your understanding of an aspect of project management of your own choice. Many students choose to investigate topics which they intend to focus on in the next stage of their career. The unit is structured as a research project so you can demonstrate your ability to identify, design, plan and undertake research on a specific project management issue and effectively communicate your findings in an appropriate manner for a Master’s degree.

Programme Assessment

The units are structured as eight teaching blocks of three days of lectures, seminars and interactive syndicate work, with periods of self-managed study between blocks. Each of these will be assessed by coursework assignments. You will also produce a dissertation with guidance from a supervisor. The dissertation is structured as an independent research project to deepen your understanding of a chosen aspect of project management. Your choice of topic can contribute towards the next stage of your career by demonstrating your ability to identify, design, undertake and communicate your original research on a specific project management topic.

Each unit will be assessed by coursework assignments. You will also produce a dissertation with guidance from a supervisor.

Student Destinations

The key characteristic of this programme is the emphasis on strategic aspects of projects which provide a platform for a career as a senior project manager in high profile organisations, Graduate destinations have included:

Public sector management, including NHS and Fire Services
Infrastructure planning and implementation
Naval and Aerospace construction industries
Doctorate level study in Project Management

Read less
You study safety engineering, reliability engineering, and loss prevention in the context of legal requirements for wide ranging industry applications such as nuclear, defence, transport, aerospace, manufacturing and process industries. Read more
You study safety engineering, reliability engineering, and loss prevention in the context of legal requirements for wide ranging industry applications such as nuclear, defence, transport, aerospace, manufacturing and process industries.

COURSES
Semester 1
Fundamental Safety Engineering, and Risk Management Concepts
Statistics and Probability for Safety, Reliability and Quality
Fire and Explosion Engineering
Subsea Integrity

Semester 2
Advanced Methods for Risk and Reliability Assessments
Applied Risk Analysis and Management
Process Design, Layout and Materials
Human Factors Engineering

Semester 3
Safety Engineering Project

Read less
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures. Read more
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures.

Who is it for?

This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Normally students have an undergraduate degree in engineering or a related discipline. Students who don’t have qualifications in civil engineering usually have relevant work experience in civil engineering structures so they are familiar with working within the specific technical domain.

Objectives

From analysing how carbon nanofibers can reduce the effect of corrosion in concrete to gaining insight from experts developing the new Forth Bridge, this MSc in Civil Engineering Structures has been designed to be broad in scope so you can develop your own area of structural engineering expertise.

As a department, we have broad interests from defining new structural forms to practical application of new materials. We believe civil engineering is a creative and collaborative profession, as much as a technical one. This course gives you the tools to immerse yourself in both the analytical and experimental side of the subject, so you can investigate diverse problems to generate your own structural solutions.

The Civil Engineering Structures MSc mirrors industry practice, so you will work in groups with your peers from the first term onwards and learn from a group of world-leading engineers with diverse research strengths. From earthquake engineering to sustainable construction, you have the opportunity to learn in breadth and depth using high-end industry software to develop safe solutions for real-world projects.

Academic facilities

There is a large dedicated lab on site equipped with facilities to investigate different structures and construction materials from concrete to timber. You also have access to other workshops where you can liaise with mechanical or electrical engineers to develop innovative scale models. There is access to specialist soil labs and large-scale equipment including wind tunnels.

We have an extensive library housing all the references, journals and codes of practice that you will need during your studies.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught by the staff team within the School of Mathematics, Computer Science and Engineering and also from visiting industry experts from around the world.

Teaching mainly takes the form of lectures, but IT sessions and seminars also form part of the Masters degree. Modules are shared between two ten-week teaching terms running from October to December and January to March. Although work for the MSc dissertation starts during the second term, you will conduct most of the research work during the summer months.

The length of the full-time degree is 12 months. A part-time route is also available where you can spend either two or three years completing the programme. If you follow the two-year part-time study route, you will need to attend lectures for up to two days each week. Alternatively, you can complete the degree over three years by attending a single day each week. The timetable has been designed to offer flexibility for part-time students.

In the first term you will consider core technical topics and be introduced to new concepts such as structural reliability. In the second term you will begin to focus your studies by selecting your dissertation topic and by selecting options getting involved in a specific areas of your own interest. Spread over the year you will have design presentations, class tests and reports.

If you select an experimental dissertation you will have the opportunity to use a range of materials. Skilled technical support is available in the workshop and you have access to recently refurbished facilities, including specialist geotechnical labs which accommodate a large flexible laboratory space used for centrifuge model preparation and testing. Adjacent to this you have concrete mixing and casting facilities, a temperature-controlled soil element testing laboratory and a concrete durability laboratory.

Assessment

For the theoretical modules, you will be assessed through a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. For the design-oriented modules you are normally assessed by coursework only, where you will work both in groups and individually on challenging projects.

Modules

There are six core modules which give you a strong technical foundation and three elective modules from which you can choose two. These reflect the specialist expertise on offer within the academic team. These modules will give you unique insight into computer analysis of structures for blast and fire, bridge engineering, and earthquake analysis where you may look at techniques for analysing structures and safe design. In the final part of the programme you undertake a dissertation in which you can explore an area of interest from a proposed list of themes, some of which are industry-related.

Core modules and dissertation
-Advanced structural analysis and stability (20 credits)
-Finite element methods (15 credits)
-Dynamics of structures (15 credits)
-Structural reliability and risk (10 credits)
-Design of concrete structures (15 credits)
-Design of steel and composite structures (15 credits)
-Dissertation for MSc degree (Research Skills and Individual Project) (60 credits)

Elective modules - you will be able to study two of the following elective modules:
-Earthquake analysis of structures (15 credits)
-Analysis of steel and concrete structures for blast and fire exposure (15 credits)
-Bridge engineering (15 credits)

Career prospects

Graduates have secured employment with leading civil engineering consultants, research institutes and government agencies and pursued doctoral studies both in the UK and internationally. The cohort of 2014 have moved on to jobs and further study working within the following organisations:
-WSP Consultant Engineers
-Tully De'Ath Consultant Civil and Structural Engineers
-SSA Consulting Engineers
-Bradbrook Consulting
-Clarke Nicholls Marcel

Read less
The MSc Forensic Psychology is the only BPS accredited programme in Wales, offering a unique opportunity for students to study Forensic Psychology in Wales. Read more

Course Overview

The MSc Forensic Psychology is the only BPS accredited programme in Wales, offering a unique opportunity for students to study Forensic Psychology in Wales. Working collaboratively with NOMS Cymru (National Offender Management Services, Wales), helps keep the programme up to date with strategy development and policy decisions. Regular contributions from practitioners within the Principality enable students to understand more about services within Wales and their impact on our society locally. We also have many national contributors who share their extensive knowledge and experience.​

Due to the popularity of this programme you should submit your application at the earliest opportunity, and at the very latest by 29th July. ​

See the website https://www.cardiffmet.ac.uk/health/courses/Pages/Forensic-Psychology---MSc-.aspx

​Course Content​​

Forensic Psychology is the practice and application of psychological research relevant to crime, policing, the courts, the criminal and civil justice system, offenders, prison, secure settings, offender management, health and academic settings as well as private practice.

It looks at the role of environmental, psychosocial, and socio-cultural factors that may contribute to crime or its prevention. The primary aim of Forensic Psychology as an academic discipline is to develop understanding of the processes underlying criminal behaviour and for this improved understanding to impact on the effective management and rehabilitation of different groups of offenders in all settings within the criminal justice system.

The first aim of the programme is to provide students with a thorough and critical academic grounding in the evidence relating to environmental, cultural, cognitive and biological factors that may contribute to a wide variety of forms of offending. The programme will encourage students to consider the role and limitations of causal explanations for offending in the development of offender treatments, services and policy.

The second aim of the programme is to introduce students to the basic professional competencies for working in the many settings where forensic psychology is practiced, including skills related to inter-disciplinary working, risk assessment, ethics, continuing professional development, report writing and differences in practice when working with offenders, victims, the courts and the police.

The programme aims to produce Masters degree graduates with the ability to understand the limitations of the conceptual underpinnings of interventions and assessments used in forensic psychology and who are able therefore to engage in critical evaluation of the evidence base upon which their own practice will eventually be based. The programme will specifically avoid providing any formal supervised practice. Its aim is to produce reflective scientist-practitioners who will be ready to engage with the next stage of training (i.e. BPS Stage 2 or HCPC route) towards registration as a Forensic Psychologist with the Health and Care Professions Council.

Students will complete the following taught modules and will also be required to conduct a novel, supervised research dissertation with participants preferably drawn from a forensic setting:

Research Methods and Design (30 credits)
The aim of this module is to extend students knowledge and experience of quantitative and qualitative research methods. Topics covered include: randomised control trials, ANOVA, ANCOVA, MANOVA, Power analysis, Regression, Non parametric methods, interviews, discourse analysis, grounded theory, reflective analysis and psychometric evaluation.

Forensic Mental Health (20 credits)
This module aims to provide students with a critical examination of the relationship between mental illness, personality disorder, learning disability and criminal behaviour. The module will encourage students to view the mental health needs of offenders in the broadest possible context and to appreciate the inter-disciplinary nature of services available to mentally disordered offenders, difficulties in accessing those services and problems for custodial adjustment presented by specific psychiatric diagnoses

Professional Practice and Offender Management (20 credits)
The focus of this module is the professional practice of forensic psychology. The module builds on the groundwork laid by earlier modules and covers professional skills and the types of interventions that a practicing forensic psychologist may engage in. The topics covered by this module include ethics, report writing, working with other agencies, and working with offenders and victims.

Psychological Assessments and Interventions (20 credits)
This module covers psychology as it may be applied to the reduction of re-offending by convicted criminals. The central focus of the module is the 'what works' literature. A range of topics will be covered demonstrating the broad application of psychology to offender rehabilitation in the Criminal Justice System, and within Wales particularly. These topics include: (1) Offender assessment: risk, need and protective factors (2) factors affecting response to treatment; (3) ethical issues of compulsory treatment; and (4) interventions for a range of offending behaviours.

Theories of Criminal Behaviour (10 credits)
The module aims to examine the contribution made by biological, psychodynamic, evolutionary, cognitive and socio-cultural perspectives to our understanding of the aetiology of criminal behaviour. It will explore psychological theories of a variety of offending behaviours such as: violence, aggression, domestic abuse, sex offending, vehicle crime, fire setting as well as gangs and gangs membership.

Legal Psychology (10 credits)
This module covers psychology as it may be applied to the law, and the central focus of the module is evidence. A range of topics will be covered, demonstrating the broad application of psychology within the legal system. These topics include the interviewing of suspects and witnesses, vulnerable victims, offender profiling and the detection of deception.

Addiction and Psychological Vulnerabilities (10 credits)
This module informs students about different factors that may contribute to psychological vulnerability in offenders and victims. A variety of topics will be covered, including issues around the concept of addictive behaviours, vulnerability and the protection of vulnerable adults, including factors which may increase vulnerability to offending and victimisation.

Learning & Teaching​

​Teaching on the MSc Forensic Psychology Programme is predominantly conducted in small groups and adopts an interactive approach. The Research Methods and Design module and the Dissertation workshops are the only part of the programme which is taught in a larger group of around 40 to 50 students as opposed to between 10 and 20 students on the core modules. As a result teaching involves a range of discussions, activities, evaluations of papers, case studies and role play exercises. The focus within the programme is on both content and key skills to develop specialists in the field of forensic psychology with flexible generic skills. These experiences also help to foster student development and confidence as independent life-long learners.

Student learning is promoted through a variety of learning and teaching methods. These include: lectures, workshops, online learning through the virtual learning environment, Moodle, as well as self directed learning. Each student will have an allocated personal tutor to support them through their period of study.

As this programme is accredited by the BPS, there is a requirement for students to attend at least 80% of the taught sessions for the programme.

Assessment

The MSc is assessed by a range of different coursework assignments – e.g. presentations, reports, essays, reflective reports, academic posters, research proposal. There are no examinations.

Employability & Careers​

An MSc in Forensic Psychology is the first step (stage one) in gaining Chartered Psychologist status with the British Psychological Society (BPS) and Registered Practitioner status with the Health and Care Professionals Council (HCPC). The MSc in Forensic Psychology will provide the knowledge base and applied research skills that will provide the foundation for stage two of the chartered process that requires a minimum of two years of full-time supervised practice with an appropriate client group.

Find information on Scholarships here https://www.cardiffmet.ac.uk/scholarships

Find out how to apply here https://www.cardiffmet.ac.uk/howtoapply

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X