• Imperial College London Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Sussex Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Leeds Featured Masters Courses
Swansea University Featured Masters Courses
"fire" AND "engineering"×
0 miles

Masters Degrees (Fire Engineering)

  • "fire" AND "engineering" ×
  • clear all
Showing 1 to 15 of 54
Order by 
The International Master of Science in Fire Safety Engineering (IMFSE) is a two-year educational programme in the Erasmus+ framework. Read more

Applications for this programme should be made through Ghent University.

Programme description

The International Master of Science in Fire Safety Engineering (IMFSE) is a two-year educational programme in the Erasmus+ framework.

This masters programme is jointly offered by the following three full partner universities:

-The University of Edinburgh, UK
-Ghent University, Belgium (coordinator)
-Lund University, Sweden

Additionally, there are three associated partners where students can perform thesis research:

-The University of Queensland, Australia
-ETH Zurich, Switzerland
-The University of Maryland, United States of America

Classes in Edinburgh focus on fire dynamics, fire safety engineering and structural design for fire. Classes in Ghent have a more general fire safety engineering focus. Classes in Lund emphasise enclosure fire dynamics, risk analysis and human behaviour.

Our Building Research Establishment (BRE) Centre for Fire Safety Engineering hosts bespoke equipment to support groundbreaking research and teaching, with combined thermal and mechanical loading and use of the latest image analysis techniques.

IMFSE is very pleased to involved seven industrial partners as official sponsors. With their annual financial contributions, it has been made possible to create the IMFSE Sponsorship Consortium, which awards IMFSE students with full or partial scholarships. The current sponsors are:

-Arup
-IFIC Forensics
-UL
-Promat
-FPC
-BRE
-Fire Engineered Solutions Ghent

Programme structure

The programme consists of four semesters each worth 30 ECTS credits. Changing study location after each semester lets you benefit from the expertise of each university.

Learning outcomes

The course contents and learning outcomes of IMFSE have been jointly developed, taking into account the specialties and experience of each of the three IMFSE universities. All three partners have extensive experience in teaching the different courses and integrating them into different degree requirements.

Competence in one/more scientific discipline(s)
For a masters degree (two years), students must be able to:

-master and apply advanced knowledge in the field of engineering in case of complex problems
-apply Computer Aided Engineering (CAE) tools and sophisticated calculation and communication instruments in a creative and target-oriented approach
-master and apply knowledge of physics, chemistry, thermodynamics, heat and mass transfer to critically analyse and evaluate the development of fires in enclosures
-master and apply knowledge of 'element methods' and dynamics of structures to critically analyse and evaluate the behaviour of simple structures in case of fire
-master and apply knowledge of explosions to critically analyse and evaluate associated risks
-master and apply the advanced knowledge of fire dynamics, risk assessment, human behaviour and integrate this in a performance-based fire safety design

Skills and abilities
For a masters degree (two years), students must be able to:

-analyse complex problems and convert them into scientific questions.
-perform research by making use of scientific literature.
-select and apply appropriate models, methods and techniques in different circumstances
-develop and validate mathematical models and methods
-analyse own results and results of others in an objective manner
-critically elaborate problems of fire risk assessment with autonomy and flexibility, using a limited amount of data
-perform valid computer simulations of development and consequences of enclosure fires

Intellectual competence
For a masters degree (two years), students must be able to:

-take independent positions on complex situations and be able to defend the point of view
-use own knowledge in a creative, target-oriented and innovative way regarding research, conceptual design and production
-reflect on the own way of thinking and acting and be conscious of the own expertise
-be aware of ongoing evolutions in the field of interest and maintain competence on the expert level
-flexibly adapt to changing professional circumstances.
-develop scientifically sound arguments to optimise passive and active fire protection measures

Competence in cooperation and communication
-discuss field of specialisation in English
-project planning: formulate objectives, report efficiently, keep track of end-goals and progress of the project
-cooperate and take the lead in a team in a multi-disciplinary working-environment
-report on technical or scientific subjects orally, in writing and in graphics
-function in an international environment (students, PhD students, scientific co-workers, scholars)

Societal competence
-Act in an ethical, professional and social manner.
-Be aware of the most important corporate and legal aspects in their field of engineering.
-Interpret the historical evolution of the own field of engineering and its social relevance.
-Master and apply critical insight in existing fire safety legislation and regulations in the development of a fire safety design.
-Act in an ethical, professional and social way when developing and presenting a performance-based fire safety design.

Profession-specific competence
-Master the complexity of technical systems by use of system and process models.
-Reconcile conflicting specifications and boundary conditions and transform them into high-quality, innovative concepts and processes.
-Transform incomplete, contradictory or redundant data into useful information.
-Select enough knowledge and comprehension to control the results of complex calculations or make approximate estimates.
-Pay attention to entire life-cycles of systems, machines and processes.
-Pay attention to energy-efficiency, environmental pressure, use of raw materials and labour costs.
-Pay attention to all aspects of reliability, safety and ergonomics.
-Be aware and insightful of the importance of entrepreneurship in society.
-Show perseverance, drive for innovation and a sense for the creation of added value.

Career opportunities

We aim to train the next generation of leaders in this field; there is currently great demand for fire safety engineering graduates worldwide and graduates have gained relevant employment or enhanced career opportunities.

A fire safety engineer fulfils a broad range of duties, in various ways related to fire. This can range from designing fire protection for a space station, to protecting treasures such as the US Constitution, to safely securing the occupants of a high-rise building from fire hazards.

Fire safety engineers are in great demand by corporations, educational institutions, consulting firms, and government bodies around the world. You may find career opportunities in the following industries:

-consulting engineering firms
-fire departments
-fire equipment and systems manufacturers
-government
-hospitals and health care facilities
-insurance industry
-research and testing laboratories
-educational institutions
-entertainment industry
-forensic investigations

Read less
Innovative design allows more interesting and functional architecture but challenges traditional concepts of fire safety. To respond to these demands takes specialist knowledge and advanced skills in engineering analysis. Read more

Programme description

Innovative design allows more interesting and functional architecture but challenges traditional concepts of fire safety. To respond to these demands takes specialist knowledge and advanced skills in engineering analysis.

This programme covers the fundamentals of fire science, including laboratory classes, fire safety engineering and relevant structural engineering topics, such as finite element methods.

You will gain knowledge of the critical issues in structural fire safety engineering, and an understanding of relevant fire and structural behaviours.

You will become familiar with performance-based approaches to design and have an awareness of the capabilities – and limitations – of relevant advanced modelling methods for structures and fire.

This programme is fully accredited by the Joint Board of Moderators (JBM)

Facilities

Our Building Research Establishment (BRE) Centre for Fire Safety Engineering hosts bespoke equipment to support groundbreaking research and teaching, with combined thermal and mechanical loading and use of the latest image analysis techniques.

Programme structure

This programme is run over 12 months, with two semesters of taught courses followed by a research project leading to a masters thesis.

Semester 1 courses
Fire Science and Fire Dynamics
Structural Design for Fire
Finite Element Analysis for Solids
Fire Investigation and Failure Analysis
Thin-Walled Members and Stability
Semester 2 courses
Fire Science Laboratory
Fire Safety Engineering Analysis and Design
The Finite Element Method
Structural Dynamics and Earthquake Engineering

Career opportunities

Internationally, there is great demand for graduates in this field, with expertise in structural fire safety engineering particularly sought after as performance-based design expands. All of our previous graduates are in relevant employment, with the majority working in fire teams at engineering consultancies.

Read less
MSc Fire Investigation develops fire investigation knowledge and practical experience of investigation of actual fire scenes including excavation of fire debris, location of the seat of fire, investigation of the cause of fire, analysis for accelerants. Read more
MSc Fire Investigation develops fire investigation knowledge and practical experience of investigation of actual fire scenes including excavation of fire debris, location of the seat of fire, investigation of the cause of fire, analysis for accelerants.

This course is designed for those who are employed, or who wish to pursue a career, in the area of fire investigation as a fire officer, crime scene investigator, forensic scientist or insurance investigator.

Fire Investigation is the analysis of fire-related incidents and is a highly multi-disciplinary area. Fire investigators need knowledge of fire behaviour, scene management, analytical chemistry and investigative skills. This course covers fire science and fire behaviour, fire investigation, analytical science, and provides students with research skills and knowledge of being an expert witness in the English legal system.

LEARNING ENVIRONMENT AND ASSESSMENT

The Fire Laboratory houses a full suite of fire test equipment where the flammability and fire toxicity of various materials can be investigated. MSc students take practical classes, carry out simulated casework and conduct lab-based dissertation research projects. Students also have access to a wide range of analytical instrumentation in the Faculty of Science and Technology’s Analytical Unit. The Unit has gas chromatographs with pyrolysis injection capability and FID, MS and EC detectors, ion chromatographs and high performance liquid chromatographs with diode array, fluorescence and MS and Differential refractometer detectors. The Unit also has facilities for atomic absorption, UV-visible and infrared spectroscopy, Raman spectroscopy, NMR spectrometry, inductive coupled plasma mass spectrometry and Scanning Electron Microscopy With Energy Dispersive X-Ray Spectroscopy (SEM/EDAX).

The course will be delivered through lectures, tutorials and practical exercises. Guided teaching and formal assessments will enhance the development of transferable skills such as report-writing, maintenance of case notes, formal presentations, participation in discussions, ability to work to deadlines, computing skills, public speaking, scientific analysis, adherence and development of laboratory protocols and research methods.

Assessment is by exam, practicals and coursework. Assessments include the examination of fire scenes from real fires and producing case notes and reports, essays, moot courts, presentations and a dissertation.

OPPORTUNITIES

Students graduating from this course will be well placed to gain employment in fire investigation teams, forensic science laboratories, and fraud departments in major government or private organisations, or to go on to further research in academia.

Read less
This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. Read more

Overview

This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. As such it is also an opportunity for candidates from a different Engineering background to develop key Mechanical Engineering knowledge and skills required for their professional development. A key objective of the programme is to be an accredited route to becoming Chartered Engineer.

This programme makes use of masters-level courses in the Energy Sciences and Manufacture & Design complemented with specialist courses from relevant MSc courses offered by the institute. We have seen a growing need for an advanced mechanical engineering programme at the request of applicants, and our industry partners. This programme has been specifically developed to meet this need and to encourage students of this field into further learning.

The Scottish Funding Council has made available 20 scholarships covering fees only to students with Scottish backgrounds. 6 of these places are reserved for applicants to this programme in the first instance. The remaining places are spread over all our Energy based MSc programmes. There is no separate application process for this. If you are eligible, you will be considered automatically. You will be notified through the summer if you have been selected.

Programme content

Semester One - Mandatory
- B81PI Professional and Industrial Studies
This course is specifically designed to meet the master’s level outcome requirements in the areas of professional development and practice for chartered engineering status. This multi-disciplinary course uses industrial speakers and speakers from those in the university involved in bridging the gap between academia and industrial application.

- B51GS Specialist Engineering Technologies 1
The first of the specialist engineering technologies courses is based on computational fluid dynamics and assessed by a group project

Optional (Choose two)
- B51DE Engineering Design
In this course students interact with companies in a real life small R&D project supplied by the industrial partners. Working in teams, the students have to manage the design of a prototype, product or system and interact with the industrial contact putting into practice problem-solving skills from other engineering topics studied elsewhere in the programme.

- B51EK Fluids 1
Fluid mechanics applied to aerodynamics, including ideal flows, boundary layers, and aerofoils and their use for analysis and design purposes.

- B51EM Advanced Mechanics of Materials 1
Advanced classical mechanics including 3D stress and strain with particular application to thin walled vessels. Fatigue analysis and design for fatigue limit.

- B51EO Dynamics 1
To provide students with a thorough understanding of vibration theory and an appreciation of its application in an engineering environment

- B51EQ Thermodynamics 1
Thermodynamic cycles including heat engines and reverse heat engines and means of evaluating best performance.

- G11GA Flame Appraisal
Introduction to the stages required for evaluating an oilfield for production. This covers geological considerations and fluid flow from oil bearing rock.

Semester Two – Mandatory

- B81EZ Critical Analysis and Research Preparation
This course provides research training and addresses literature review skills, project planning, data analysis and presentation with a focus to critically discuss literature, and use data to support an argument.

- B51HB Failure Accident Analysis
To acquaint students with the potential causes of material, structure or component failure; framework under which a failure or forensic engineering investigation should be carried out and give them the opportunity to work case studies through from information-gathering to preparation of reports and an awareness of fire and explosion engineering.

- B51GT Specialist Engineering Technologies 2
To present advanced theory and practice in important or emerging areas of technology including non-linear final element materials to include contact mechanics, design of components subjected to high stress applications.

Optional (Choose one)
- B51EL Fluids 2
To provide a methodology for analysing one-dimensional compressible flow systems.

- B51EN Advanced Mechanics of Materials 2
To provide students with an opportunity to: carry out advanced analyses of mechanics of materials problems; analyse mechanics of materials where time is a significant additional variable; use final element analysis for cases involving viscoelasticity and complex geometry
engage with the findings of recent research in a mechanics of materials topic

- B51EP Dynamics 2
To provide students with a thorough understanding of control theory and an appreciation of the subject of environmental acoustics and passive noise control

- B51ER Thermodynamics 2
Investigation of heat transfer mechanisms with a view to the design of effective heat exchangers for given operating conditions. The study of radiation heat transfer and combustion equilibrium.

- B51DF Engineering Manufacture
To provide the student with a detailed understanding of the importance and integration of advanced manufacturing technology and manufacturing systems within the context of product engineering. On completion, the students should have acquired a detailed understanding of the product development process from initial conception through to product support as well as appreciate the impact of each stage of the process on the business and organisationally with respect to information dependence and manufacturing processes employed.

- G11GD Flame Development
A continuation of Flame Appraisal, this course looks at the well-head arrangement for oil extraction. This is an introduction to drilling engineering and the techniques required for oil extraction.

Semester 3 – Mandatory

- B51MD Masters Dissertation
An individual project led by a research active member of staff on a current research theme with the aim of leading to the production of a journal article.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Advanced Mechanical Engineering. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Read less
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures. Read more
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures.

Who is it for?

This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Normally students have an undergraduate degree in engineering or a related discipline. Students who don’t have qualifications in civil engineering usually have relevant work experience in civil engineering structures so they are familiar with working within the specific technical domain.

Objectives

From analysing how carbon nanofibers can reduce the effect of corrosion in concrete to gaining insight from experts developing the new Forth Bridge, this MSc in Civil Engineering Structures has been designed to be broad in scope so you can develop your own area of structural engineering expertise.

As a department, we have broad interests from defining new structural forms to practical application of new materials. We believe civil engineering is a creative and collaborative profession, as much as a technical one. This course gives you the tools to immerse yourself in both the analytical and experimental side of the subject, so you can investigate diverse problems to generate your own structural solutions.

The Civil Engineering Structures MSc mirrors industry practice, so you will work in groups with your peers from the first term onwards and learn from a group of world-leading engineers with diverse research strengths. From earthquake engineering to sustainable construction, you have the opportunity to learn in breadth and depth using high-end industry software to develop safe solutions for real-world projects.

Academic facilities

There is a large dedicated lab on site equipped with facilities to investigate different structures and construction materials from concrete to timber. You also have access to other workshops where you can liaise with mechanical or electrical engineers to develop innovative scale models. There is access to specialist soil labs and large-scale equipment including wind tunnels.

We have an extensive library housing all the references, journals and codes of practice that you will need during your studies.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught by the staff team within the School of Mathematics, Computer Science and Engineering and also from visiting industry experts from around the world.

Teaching mainly takes the form of lectures, but IT sessions and seminars also form part of the Masters degree. Modules are shared between two ten-week teaching terms running from October to December and January to March. Although work for the MSc dissertation starts during the second term, you will conduct most of the research work during the summer months.

The length of the full-time degree is 12 months. A part-time route is also available where you can spend either two or three years completing the programme. If you follow the two-year part-time study route, you will need to attend lectures for up to two days each week. Alternatively, you can complete the degree over three years by attending a single day each week. The timetable has been designed to offer flexibility for part-time students.

In the first term you will consider core technical topics and be introduced to new concepts such as structural reliability. In the second term you will begin to focus your studies by selecting your dissertation topic and by selecting options getting involved in a specific areas of your own interest. Spread over the year you will have design presentations, class tests and reports.

If you select an experimental dissertation you will have the opportunity to use a range of materials. Skilled technical support is available in the workshop and you have access to recently refurbished facilities, including specialist geotechnical labs which accommodate a large flexible laboratory space used for centrifuge model preparation and testing. Adjacent to this you have concrete mixing and casting facilities, a temperature-controlled soil element testing laboratory and a concrete durability laboratory.

Assessment

For the theoretical modules, you will be assessed through a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. For the design-oriented modules you are normally assessed by coursework only, where you will work both in groups and individually on challenging projects.

Modules

There are six core modules which give you a strong technical foundation and three elective modules from which you can choose two. These reflect the specialist expertise on offer within the academic team. These modules will give you unique insight into computer analysis of structures for blast and fire, bridge engineering, and earthquake analysis where you may look at techniques for analysing structures and safe design. In the final part of the programme you undertake a dissertation in which you can explore an area of interest from a proposed list of themes, some of which are industry-related.

Core modules and dissertation
-Advanced structural analysis and stability (20 credits)
-Finite element methods (15 credits)
-Dynamics of structures (15 credits)
-Structural reliability and risk (10 credits)
-Design of concrete structures (15 credits)
-Design of steel and composite structures (15 credits)
-Dissertation for MSc degree (Research Skills and Individual Project) (60 credits)

Elective modules - you will be able to study two of the following elective modules:
-Earthquake analysis of structures (15 credits)
-Analysis of steel and concrete structures for blast and fire exposure (15 credits)
-Bridge engineering (15 credits)

Career prospects

Graduates have secured employment with leading civil engineering consultants, research institutes and government agencies and pursued doctoral studies both in the UK and internationally. The cohort of 2014 have moved on to jobs and further study working within the following organisations:
-WSP Consultant Engineers
-Tully De'Ath Consultant Civil and Structural Engineers
-SSA Consulting Engineers
-Bradbrook Consulting
-Clarke Nicholls Marcel

Read less
In just a brief duration of time - in a few minutes or even in a fraction of a second - a fire or an explosion can have catastrophic consequences in residential buildings or in industrial plant. Read more
In just a brief duration of time - in a few minutes or even in a fraction of a second - a fire or an explosion can have catastrophic consequences in residential buildings or in industrial plant. In UK alone, hundreds get killed and tens of thousands are injured every year. Some single incidents cost millions of pounds, the total monetary cost of fire and explosions in the UK is estimated at £12 billion per year or approximately 1% of GDP.

This course offers students from diverse academic backgrounds advanced training in the field of Fire and Explosion Engineering for those wishing to embark on a career, or further develop their career, in the industry. Particular emphasis is placed on fire and explosion protection systems within a legislative framework that is complex and fast-changing.Core modules will cover both foundation and advanced aspects of fire and explosion engineering, from the factors that influence flame spread to the latest research in explosion prediction. You’ll also gain a firm grounding in fire safety design and have the chance to design a fire protection system for a complex building.

Read less
MSc Fire Scene Investigation covers fire scene investigation theory and practice. It is the scientific approach to the examination, analysis and interpretation of evidence which can be found at a fire scene. Read more
MSc Fire Scene Investigation covers fire scene investigation theory and practice. It is the scientific approach to the examination, analysis and interpretation of evidence which can be found at a fire scene.

As a Fire Scene Investigator you will determine the origin and cause of a fire through the application of practical skills and scientific knowledge from a variety of disciplines. You will also require excellent written and verbal communication skills to ensure investigative conclusions are effectively communicated. This is often carried out in a high pressure environment such a criminal or civil court.

INDUSTRY LINKS

Accredited by Institution of Fire Engineers at Member Grade; Accredited by Energy Institute at Member Grade with Chartered status available with additional post qualification development.

LEARNING ENVIRONMENT AND ASSESSMENT

Theoretical is undertaken at the University using state of the art facilities. Practical sessions are carried out at Lancashire Fire and Rescue Service Training Centre using live burn facilities and full scale room investigations.

FURTHER INFORMATION

This postgraduate course covers fire scene investigation theory and practice, the principles of fuels, sources of ignition and fire behaviour in buildings, fire modelling and computational fire dynamics in relation to fire cause and development hypothesis testing, providing evidence as an expert witness in court, the anatomy of large scale accidents and catastrophes, and research skills. The theory and practical sessions will build confidence through the development of practical expertise and specialist knowledge in the field of fire scene investigation and reporting protocols. Postgraduate Fire Scene Investigation at UCLan is accredited by the Institution of Fire Engineers and the Energy Institute.

Read less
Risk has become a key concept in modern society. Read more

Programme Background

Risk has become a key concept in modern society. Growing concern about the environment and a number of disasters have served to focus attention on the hazards and risks involved in a wide range of activities from offshore oil production to rail and air transport; from the design of football stadia to the operation of chemical plants and environmental protection. Today there is a wide range of techniques available to assess risk and reliability, both in relation to safety and in the wider sense. These techniques now underpin new legislation on safety and have relevance over a broad spectrum of activities, including environmental and other systems, where risk and reliability are key concerns.

The MSc/PG Diploma programme in Safety, Risk and Reliability Engineering is designed to give a thorough understanding of these techniques and experience of their application to a variety of real-world problems. It aims to provide students with an understanding of safety, risk and reliability engineering in both a qualitative and quantitative manner, and to develop the skills to apply this understanding. The programme will also introduce students to recent developments in analytical techniques, e.g. computer modelling of risk, reliability and safety problems.

Professional Recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. See http://www.jbm.org.ukfor further information.

The MSc and PgDip degrees have also been accredited by the Institution of Occupational Safety and Health (IOSH). Graduates are eligible to join IOSH as Graduate members and then undertake an initial professional development process that leads to Chartered membership. http://www.iosh.co.uk for further information.

Programme Content

The MSc/Postgraduate Diploma in Safety, Risk and Reliability Engineering is only available by attendance-free distance learning. The programme comprises eight courses. All courses have written examinations and some have compulsory coursework elements. MSc students are also required to complete an individual project (dissertation). This programme has a stronger engineering bias and you should only attempt this if you have done some University level mathematics or equivalent. Otherwise the Safety and Risk Management course might be more appropriate.

For the project component of the programme distance learners are likely to develop something based in their country of residence with advice and supervision from staff in the School. This may well include work with a local company or may involve independent study. Individual arrangements will be set up with each student.

For more detailed information on this programme please contact the Programme Leader before applying (see above).

Courses

• Risk Assessment and Safety Management
This course aims to give students an appreciation of risk from individual and societal perspectives as well as understanding the basic principles of risk assessment and modelling and how safety management works in practice.

• Systems Reliability
Gives an understanding of the qualitative and quantitative techniques that are used in the reliability, availability and maintainability analysis of all types of engineering systems.

• Learning from Disasters
Provides students with an in depth understanding of some of the classic disasters and their consequences by using a range of practical accident investigation techniques. Students will learn to analyse complex histories in order to find the underlying root cause.

• Safety, Risk and Reliability
Leads to an understanding of the principles of structural reliability theory and its application to risk and reliability engineering.

• Fire Safety, Explosions and Process Safety
Introduces students to the basic principles of fire safety science and engineering, and develops skills in associated modelling leading to an understanding of principal fire/explosion related issues in process safety.

• Data Analysis and Simulation
Develops knowledge of statistical data analysis and its application in engineering and science and introduces the concepts of using simulation techniques for analysis of complex systems. It also teaches linear optimisation techniques and the ability to apply them to solve simple problems.

• Human Factors Methods
This course will equip students from academic and/or industrial backgrounds with knowledge on, and the means to deploy, a wide range of specialist human factors techniques. The emphasis is on method selection, application, combination and integration within existing business practices. Students will develop a critical awareness of what methods exist, how to apply them in practice and their principle benefits and limitations.

•Environmental Impact Assessment
Provides the candidate with the knowledge and understanding of the principles and processes of the Environmental Impact Assessment. By the end of the course, the student should be familiar with the European EIA legislation and its translation into the Scottish planning system, and be able to demonstrate an understanding of the EIA process, the tools and the agents involved in an EIA and the possible problems with using EIA as a decision making tool. It is also intended that the student will be able to appreciate the purpose of the EIA process from a number of perspectives; that of a developer, an EIA practitioner and a policy maker.

Read less
The purpose of the MSc in Fire and Rescue Service Management is to promote increased understanding of critical management processes and hopefully to enable satisfactory performance in high-consequence, high risk situations. Read more
The purpose of the MSc in Fire and Rescue Service Management is to promote increased understanding of critical management processes and hopefully to enable satisfactory performance in high-consequence, high risk situations.

Strategic managers in the Fire and Rescue Service in risk critical situations face unique challenges in both preparing for and dealing with situations which threaten life and critical infrastructure or reputation.

This postgraduate course brings together insights regarding risk perception and decision making across domains ranging from the operational context, cognitive psychology, economics, and public policy. It suggests strategies to ensure a mature effective response to various managerial situations.

MSc Fire and Rescue Service Management develops the abilities of critical decision makers to grasp a situation, formulate a response assess success and failure and redefine an improved response. The course offers tools and strategies which allow Fire and Rescue Service managers to generate, evaluate, and select among decision options.

PROFESSIONAL ACCREDITATION

There are potential short-term placements within fire and rescue services.

There are exchange visits to Hong Kong Fire Service offered to a limited number of students and also opportunities to work with International partners to develop fire and rescue service infrastructure in those countries where there are limited resources available.

LEARNING ENVIRONMENT AND ASSESSMENT]]
MSc students take practical classes, carry out casework and conduct lab-based dissertation research projects. Students also have access to a wide range of analytical instrumentation in the Faculty of Science and Technology’s Analytical Unit. In collaboration with Cheshire Fire and Rescue Service all students are tested in a simulated command environment.

Assessment is by examinations, practicals and coursework. Practical assessment involves command simulations.

The course focuses on managerial decision making within the fire and rescue service, in both an operational and non-operational context. It includes environmental scanning (both external and internal), strategy formulation (strategic or long range planning), strategy implementation, and evaluation and control. Situational awareness and risk decision making in time pressured and high risk situations. Students will be tested in command simulations representative of those applicable to the emergency incident domain. The theory and practical sessions will build confidence through the development of practical expertise and specialist knowledge in the field of strategic management.

Read less
This course aims to develop your knowledge and understanding of the underlying theories and their practical application in fire investigation. Read more
This course aims to develop your knowledge and understanding of the underlying theories and their practical application in fire investigation.

You will also experience extensive practical experience of the major techniques, methodologies and approaches used in fire investigation.

In addition you will develop your skills in critical thinking using a range of academic paradigms by undertaking an extensive research project in the field of fire investigation.

The delivery of the course would involve a partnership between The West Midlands Fire Service, one of the leading centres of fire investigation in the UK and the University.

Both partners have an established track record in delivering training and education with a vocational aspect in this area.

The Fire Investigation facility situated at the Oldbury Fire Investigation centre will allow the student a unique hands-on practical experience that is not offered by any other MSc course in the Midlands region.

Opportunities for experienced fire investigators and forensic scene investigators to fast-track to the MSc will be part of this proposal.

Read less
You study safety engineering, reliability engineering, and loss prevention in the context of legal requirements for wide ranging industry applications such as nuclear, defence, transport, aerospace, manufacturing and process industries. Read more
You study safety engineering, reliability engineering, and loss prevention in the context of legal requirements for wide ranging industry applications such as nuclear, defence, transport, aerospace, manufacturing and process industries.

COURSES
Semester 1
Fundamental Safety Engineering, and Risk Management Concepts
Statistics and Probability for Safety, Reliability and Quality
Fire and Explosion Engineering
Subsea Integrity

Semester 2
Advanced Methods for Risk and Reliability Assessments
Applied Risk Analysis and Management
Process Design, Layout and Materials
Human Factors Engineering

Semester 3
Safety Engineering Project

Read less
The MSc Safety Engineering for Oil & Gas programme provides training in safety engineering, reliability engineering, and loss prevention in the offshore, nuclear, transport, aerospace and process industries and more. Read more
The MSc Safety Engineering for Oil & Gas programme provides training in safety engineering, reliability engineering, and loss prevention in the offshore, nuclear, transport, aerospace and process industries and more. Fully accredited by the Institution of Mechanical Engineers (IMechE), the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Institute of Highway Engineers (IHE) and the Chartered Institution of Highways & Transportation (CIHT).

COURSES
Semester 1
Fundamental Safety Engineering and Risk Management Concepts
Statistics and Probability for Safety, Reliability, and Quality
Fire and Explosion Engineering
Offshore Oil and Gas Production Systems

Semester 2
Advanced Methods for Risk and Reliability Assessment
Applied Risk Analysis and Management
Process Design, Layout and Materials
Human Factors Engineering

Semester 3
Project

Read less
MSc Fire Safety Engineering is concerned with the study of fire development and prevention and the means by which its consequence may be reduced to a minimum in human, environmental and financial terms. Read more
MSc Fire Safety Engineering is concerned with the study of fire development and prevention and the means by which its consequence may be reduced to a minimum in human, environmental and financial terms. This postgraduate degree emphasises Fire Safety Engineering in the context of buildings and infrastructure. This involves skills and knowledge crossing all areas of learning including fire chemistry, physics of heat transfer, biology and toxicity, structures, law and legislation, environmental impact, risk management and design. It is supported by an established research base and builds on the training and educational programmes offered by the Institution of Fire Engineers.

This course is designed for students who will eventually hold senior positions within the fire-related professions. Throughout the programme, emphasis will be placed on self-motivation, critical thinking and analytical depth. The application of Fire Safety Engineering is multi-disciplinary and, as in the professional world, you will carry out project work, which will facilitate dialogue between the Fire Engineer and other members of the design and management teams.

PROFESSIONAL ACCREDITATION

This MSc is accredited by both the Energy Institute (EI) and the Chartered Institution of Building Services Engineers (CIBSE) as fulfilling the further learning requirement for Chartered Engineer status, whilst also being a recognised course by the Institution of Fire Engineers (IFE).

LEARNING ENVIRONMENT AND ASSESSMENT

The course will be delivered through lectures, tutorials and practical exercises. Guided teaching and formal assessments will enhance the development of transferable skills such report-writing, maintenance of case notes, formal presentations, participation in discussions, ability to work to deadlines, computing skills, public speaking, scientific analysis, adherence and development of laboratory protocols and research methods.

There are different assessment methods employed across the modules. Some modules are assessed by both examination and coursework while others are assessed by coursework only, which may take the form of group projects, modelling exercises or time-controlled assignments or seminar presentations.

Benefiting from extensive research funding, we hold an enviable reputation for the quality of our teaching and research activities. All Fire courses are underpinned by the Research Centre in Fire and Hazards and benefit from the dedicated fire laboratories including equipment for small and intermediate scale facilities.

Our well-equipped modern fire engineering laboratory facilities comprise of state-of-the-art fire research equipment, used by experienced academics, are available for research and teaching. There are specialist facilities which include analytical and material characterisation equipment. A number of experiments, ranging from the investigation of fire retardants to the combustion properties of materials, and fire toxicity can be undertaken. We also have computational fluid dynamics facilities, that provide the use of CFD based fire modelling for research, teaching and consultancy.

FURTHER INFORMATION

Combined into a single-discipline, our Fire Safety Engineering Master’s degree meets a challenge of modern industrial needs. Graduates have become leaders in a range of backgrounds from fire services to civil engineering to safety management. The course is fully accredited by three professional institutions (CIBSE, EI and IFE) that play an active part in ensuring the course is developed to meet professional needs.

This course is supported by an established research base (Centre for Research in Fire and Hazards Science) which builds on the training and educational programmes offered by the Institution of Fire Engineers. Full-time students can underpin their studies with a range of balancing modules. The remainder of the MSc is a series of options which may involve external speakers as well as expertise from our staff. Students should check availability if they wish to undertake any option in particular.

MSc Fire Safety Engineering commences in Semester 1 with Fires in Buildings which examines: fundamental principles; mechanisms controlling spread of fires and fire development in enclosures; movement and smoke control; fire resistance and fire severity; human behaviour in fires and evacuation; the mechanism of fire suppression agents. Running in parallel, a Research Methods module supports the Dissertation, which is an in-depth study involving theoretical, computational, experimental or investigative analysis. The Dissertation is undertaken in Semester 3 together with the Engineering Design Project, which is an integration of themes of design, ICT and technology within a practical context requiring students to work in teams as well as individuals.

Read less
Structural engineers help to make, shape and maintain the built environment. They are professionals who enjoy innovation, a challenge, opportunities, responsibility and, excitement in a varied and very satisfying career. Read more
Structural engineers help to make, shape and maintain the built environment. They are professionals who enjoy innovation, a challenge, opportunities, responsibility and, excitement in a varied and very satisfying career. Structural engineering is a profession that provides a tremendous opportunity to make a real difference to people's lives and their environment. In the 21st Century, climate change is an increasingly important issue which needs to be tackled and the role of the structural engineer in tackling climate change is immense.

To meet these challenges, the 21st Century structural engineers need to combine traditional structural engineering expertise with an understanding of a wide range of issues related to design of zero carbon buildings. There is a significant shortage of structural engineers with the requisite knowledge, skills, and experience to deal efficiently with complex issues for designing structurally sound, elegantly simple and environmentally sustainable buildings. The skill shortage and its effects on the construction industry will be further exacerbated by the huge demanding from some rising economic powers. In response to this growing need for graduates aware of current challenges in structural engineering, this new MSc programme has been developed.

This programme is designed to attract both international and home students, who wish to pursue their career in civil and structural engineering. To meet the needs of increasing demand for structural engineers to design more safe, economic and environmental friendly buildings, the programme content has specifically been designed to give a thorough grounding on current practice with regards to dealing with structural fire and earthquake resistances and design of carbon neutral buildings. A particular feature of this content lies with the emphasis on the performance based structural design philosophy. The strong focus on these aspects will appeal to international students and home students who intend to become the next generation of structural engineers after graduation.

Read less
This programme is designed for graduates in mathematics, engineering, or science with excellent numeracy skills, wishing to pursue careers in the application of mathematics, in traditional areas such as engineering and science and in service areas such as finance and banking, where knowledge of modern applications of mathematics would be advantageous. Read more
This programme is designed for graduates in mathematics, engineering, or science with excellent numeracy skills, wishing to pursue careers in the application of mathematics, in traditional areas such as engineering and science and in service areas such as finance and banking, where knowledge of modern applications of mathematics would be advantageous. The core philosophy of the programme is to equip students both with mathematics and its applications and with high-level scientific software and associated numerical skills. The Greenwich campus, near the financial district of Canary Wharf, enables the department to build ties with many modern engineering and applied mathematics practitioners enabling our students to become part of a wider group. The Leslie Comrie seminar series, inviting both academics and industrialists, allows you to interact with our external links creating an advantageous learning experience. We provide you the grounds for building a high profile of understanding of current research practices in the industry. Our classes contain interactive applications that enhance the learning experience by innovative teaching practices. Utilising research expertise within the department you will graduate with a strong understanding of numerical methods. You will also develop an understanding for further applicability in various fields of applied mathematics and engineering.

This programme is suitable both for fresh graduates and also for experienced professional practitioners who wish to further their skills. The programme core modules cover modern mathematical skills together with applications across different industries, and there are optional professional modules directly related to research expertise within the Faculty. This ensures that students have an advanced understanding of both theory and practice in their selected specialist areas. Students will gain knowledge of mathematical skills and applications, computational skills, and relevant professional experience, related to traditional engineering and science modelling, modern enterprise applications, finance, and service industries. They will gain an understanding of emerging applications. There will be hands-on training in various development tools and in the use of computational software related to their professional direction. Assessment takes the form of 100% coursework, based on applications of current market practices. A supervised thesis project takes place at the end of the last teaching term during the summer months. Projects are allocated in March and students are invited to undertake a project that provides genuine insight in an area of the research interests within the department. The programme is also available on a part-time basis.

Visit the website http://www2.gre.ac.uk/study/courses/pg/maths/appmaths

Mathematics

Postgraduate mathematics students benefit from award-winning teaching and great facilities. Our programmes are informed by world-renowned research and our links with industry ensure our students develop the academic and practical skills that will enhance their career prospects.

What you'll study

Full time
- Year 1:
Option Set 1

Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are required to choose 60 credits from this list of options.

Scientific Software Design and Development (15 credits)
Inverse Problems (15 credits)
Mathematics of Complex Systems (15 credits)
Reliability and Optimisation (15 credits)

Option Set 2
Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are also required to choose 60 credits from this list of options.

Principles and Practice of Evacuation Modelling (30 credits)
Principles and Practice of Fire Modelling (30 credits)

Option Set 3

Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are also required to choose 45 credits from this list of options.

Scientific Software Design and Development (15 credits)
Inverse Problems (15 credits)
Mathematics of Complex Systems (15 credits)
Reliability and Optimisation (15 credits)

Students are also required to choose 15 credits from this list of options.

Enterprise Software Engineering Development (15 credits)
Software Tools and Techniques (15 credits)
Actuarial Mathematics and Risk Modelling (15 credits)
Financial Time Series (15 credits)
Advanced Finite Difference Methods for Derivatives Pricing (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Inverse Problems (15 credits)
Mathematics and its Applications (30 credits)
Reliability and Optimisation (15 credits)

- Year 2:
Students are required to study the following compulsory courses.

Scientific Software Design and Development (15 credits)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematics of Complex Systems (15 credits)

Students are required to choose 15 credits from this list of options.

Advanced Finite Difference Methods for Derivatives Pricing (15 credits)
Mathematical Approaches to Risk Management (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

100% coursework: a supervised thesis project (during the summer months).

Career options

Our graduates are equipped with the tools to involve in many engineering applications and computational engineering sectors such as reliability engineering, risk management, complex engineering systems, fire safety and finance. Our expert seminar series gives you the opportunity to interact with leading figures from industry and academia and undertake projects of current industry practice. A postgraduate qualification is a major achievement and a milestone in your specialised career path leading to a professional career. The Department also offers a PhD programme which trains highly skilled candidates towards research careers in academia and industry. Our current collaborations for our PhD candidates lie with the STRIKE project for mathematical and computational applications.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X