• University of Leeds Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Coventry University Featured Masters Courses
Imperial College London Featured Masters Courses
Vlerick Business School Featured Masters Courses
OCAD University Featured Masters Courses
University of Leeds Featured Masters Courses
"fire"×
0 miles

Masters Degrees (Fire)

We have 102 Masters Degrees (Fire)

  • "fire" ×
  • clear all
Showing 1 to 15 of 102
Order by 
Why choose this course?. This course aims to develop your knowledge and understanding of the underlying theories and their practical application in fire investigation. Read more

Why choose this course?

This course aims to develop your knowledge and understanding of the underlying theories and their practical application in fire investigation. You will also experience extensive practical experience of the major techniques, methodologies and approaches used in fire investigation. In addition you will develop your skills in critical thinking using a range of academic paradigms by undertaking an extensive research project in the field of fire investigation.

  • The delivery of the course involves a partnership between The West Midlands Fire Service, one of the leading centres of Fire Investigation in the UK and the University. Both partners have an established track record in delivering training and education with a vocational aspect in this area.
  • The Fire Investigation facility situated at the Oldbury Fire Investigation centre will allow the student a unique hands-on practical experience that is not offered by any other MSc course in the Midlands region.
  • This course provides opportunities for experienced fire investigators and forensic scene investigators to fast-track to an MSc degree.

Postgraduate Bursaries:

If you commenced undergraduate study at any University in 2012 you may be eligible for a £10,000 bursary

What happens on the course?

Fire Science and Building Construction

This module will introduce you to the basic science that underpins the investigation of fire scenes. You will be introduced to the chemistry of combustion, including consideration of the effects of ventilation, physical properties of combustible materials and ignition sources. You will look at the ontogeny and progression of combustion events, but also the legal and health and safety aspects underpinning fire science.

Evidence Gathering at Fire Scenes

This module will cover all aspects of the practical steps needed to identify and gather evidence at Fire Scenes. Integral to this module will be an appreciation of issues of continuity and integrity and an awareness of the differences between criminal and other investigations of scenes of fire.

Fire Scene Investigation Practical

You will gain direct practical experience of undertaking a fire scene investigation at the Oldbury facility of the West Midlands Fire Service. This module will expose you to a simulated fire scene, where you will have to carry out the full investigation of documenting and recording the scene, followed by evidence identification and recovery.

Interpretation of Fire Scenes

This module will allow you to utilise the various evidence strands that are present in fire scenes to work out the cause, origin and spread of fires. You will then discuss the effects of fire and products of combustion on the human body, including human behaviour.

Managing Fire Scene Investigations and Report Writing

This module will provide an in-depth analysis of the considerations surrounding the management of the investigations of fire scenes. There will be an overview of personnel involved, their roles and contribution to the investigation. The module will also describe the preparation of written and oral testimony for courts of law. Finally the presentation of the report in oral testimony will be reviewed.

Research Methods

provides you with the necessary skills to undertake a research project in this exciting area. The module will include a project specific literature review, experimental design and project planning, an oral presentation and an introduction to statistics in investigating experimental questions.

Research Project

The research project in Fire Investigation is an integral part of the course and is intended to develop research skills in persons undertaking careers in forensic mark comparison. As well as applying the scientific approach to research coupled with statistical validation of results from the research methods module, genuine case-based research will be undertaken at the University, in one of the course partners or at a number of alternative providers.

Why Wolverhampton?

a) The delivery of the course would involve a partnership between one of the leading centres of fire investigation in the UK and the University. Both partners have an established track record in delivering training and education with a vocational aspect in this area.

b) The Oldbury Fire Investigation facility will allow the student a unique hands-on practical experience that is not offered by any other MSc course in the Midlands region.

c) There are opportunities for experienced fire investigators and forensic scene investigators to fast-track to the MSc.

Career Path

Unfortunately, fires are always going to happen. There will always be a need to investigate these as the consequences of fires are extensive damage to persons and property. The applied nature of this course means that a number of career paths are available to you. These include:

  • Crime scene investigators.
  • Fire Investigators working for Fire Services.
  • Independent Fire Investigators working for a range of insurance companies.
  • The MSc also provides suitable preparation for further research/professional study at Doctoral level leading to a PhD or Professional doctorate (DBMS).

What skills will you gain?

At the end of this course you, the student, will demonstrate:

  1. a systematic understanding of the underpinning science, technology and legal issues that informs fire investigation;
  2. a comprehensive understanding of the investigative techniques and the current tools used in fire investigation;
  3. the ability to critically evaluate current research and methodologies in fire investigation;
  4. originality in the application of knowledge, together with a practical understanding of how established techniques of research and enquiry are used to create and interpret knowledge in fire investigation.


Read less
The International Master of Science in Fire Safety Engineering (IMFSE) is a two-year educational programme in the Erasmus+ framework. Read more

The International Master of Science in Fire Safety Engineering (IMFSE) is a two-year educational programme in the Erasmus+ framework.

This masters programme is jointly offered by the following three full partner universities:

  • The University of Edinburgh, UK
  • Ghent University, Belgium (coordinator)
  • Lund University, Sweden

Additionally, there are three associated partners where students can perform thesis research:

  • The University of Queensland, Australia
  • ETH Zurich, Switzerland
  • The University of Maryland, United States of America

Classes in Edinburgh focus on fire dynamics, fire safety engineering and structural design for fire. Classes in Ghent have a more general fire safety engineering focus. Classes in Lund emphasise enclosure fire dynamics, risk analysis and human behaviour.

Our Building Research Establishment (BRE) Centre for Fire Safety Engineering hosts bespoke equipment to support groundbreaking research and teaching, with combined thermal and mechanical loading and use of the latest image analysis techniques.

IMFSE is very pleased to involved seven industrial partners as official sponsors. With their annual financial contributions, it has been made possible to create the IMFSE Sponsorship Consortium, which awards IMFSE students with full or partial scholarships. The current sponsors are:

  • Arup
  • IFIC Forensics
  • UL
  • Promat
  • FPC
  • BRE
  • Fire Engineered Solutions Ghent

Programme structure

The programme consists of four semesters each worth 30 ECTS credits. Changing study location after each semester lets you benefit from the expertise of each university.

Semester 1

Students choose to study at either Ghent or Edinburgh.

Ghent University:

  • Fire Dynamics
  • Basics of Structural Engineering
  • Thermodynamics, Heat and Mass Transfer

And 9 ECTS credits from the following elective courses (subject to approval by the faculty):

  • FSE Based Firefighting (3 credits)
  • Modelling of Turbulence and Combustion (3 credits)
  • Turbomachines (6 credits)
  • Introduction to Entrepreneurship (3 credits)

The University of Edinburgh:

  • Fire Science and Fire Dynamics
  • Fire Safety Engineering
  • Fire Safety, Engineering and Society
  • Engineering Project Management

Semester 2

Lund University:

  • Advanced Fire Dynamics
  • Human Behaviour in Fire
  • Risk Assessment
  • Simulation of Fires in Enclosures

Semester 3

Students choose to study at either Ghent or Edinburgh.

Ghent University:

  • Active Fire Protection I: Detection and Suppression
  • Active Fire Protection II: Smoke and Heat Control
  • Explosions and Industrial Fire Safety
  • Fire Safety Regulation
  • Passive Fire Protection
  • Performance-Based Design

The University of Edinburgh:

  • Fire Science Laboratory
  • Structural Design for Fire
  • Fire Investigation and Failure Analysis
  • Finite Element Analysis for Solids

Semester 4

The masters thesis can be completed at one of the three full partners universities, or at one of the three associated partners. The thesis work is supervised by at least one of the full partner universities.

Career opportunities

We aim to train the next generation of leaders in this field; there is currently great demand for fire safety engineering graduates worldwide and graduates have gained relevant employment or enhanced career opportunities.

A fire safety engineer fulfils a broad range of duties, in various ways related to fire. This can range from designing fire protection for a space station, to protecting treasures such as the US Constitution, to safely securing the occupants of a high-rise building from fire hazards.

Fire safety engineers are in great demand by corporations, educational institutions, consulting firms, and government bodies around the world. You may find career opportunities in the following industries:

  • consulting engineering firms
  • fire departments
  • fire equipment and systems manufacturers
  • government
  • hospitals and health care facilities
  • insurance industry
  • research and testing laboratories
  • educational institutions
  • entertainment industry
  • forensic investigations


Read less
Summary. The programme is offered by the Fire Safety Engineering Research and Technology Centre (FireSERT), a centre which is internationally recognised for its leading edge research in the fields of fire dynamics, structural fire engineering, human behaviour in fire and fire modelling. Read more

Summary

The programme is offered by the Fire Safety Engineering Research and Technology Centre (FireSERT), a centre which is internationally recognised for its leading edge research in the fields of fire dynamics, structural fire engineering, human behaviour in fire and fire modelling. The programme draws on the expertise and resources of the Centre in terms of teaching staff (with core teaching staff all actively involved in research) and experimental facilities. Students on the MSc programme have the opportunity to use Fire SERT's state-of-the-art facilities both within the taught programme and to progress experimental research projects which are often designed to complement current research projects being undertaken by staff. Students also have the opportunity to work closely with practitioners in the design module to develop a fire safety strategy for a real complex building.

About

The programme is a linked programme of awards leading to either a Post-Graduate Diploma (comprising eight taught modules) or MSc (eight taught modules plus Research Dissertation) in Fire Safety Engineering. In the PG Diploma programme (semesters 1 and 2) students will study compulsory modules in Heat Transfer and Thermofluids, Fire Dynamics, Structural Fire Engineering, Fire Engineering Laboratory, Active Fire Protection Systems, People and Fire and Fire Safety Engineering Design. Optional modules (to be taken in the 2nd semester) include Industrial Fire Safety and Computer Modelling in Fire Engineering.

Professional recognition

Institution of Fire Engineers (IFE) 

Accredited by the Institution of Fire Engineers (IFE) on behalf of the Engineering Council for the purposes of partially meeting the academic requirement for registration as a Chartered Engineer.

Chartered Institution of Building Services Engineers (CIBSE) 

Accredited by the Chartered Institution of Building Services Engineers (CIBSE) on behalf of the Engineering Council for the purposes of partially meeting the academic requirement for registration as a Chartered Engineer.

Energy Institute (EI) 

Accredited by the Energy Institute (EI) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Career options

There is strong demand for well educated fire safety engineers, and the majority of students will embark on a career within a fire safety engineering consultancy. Graduates from the Ulster course are also employed in other interesting and diverse careers in fields related to fire safety both in the UK and worldwide e.g. as regulators, fire safety officers in both the public and private sector, researchers in research and testing facilities, and fire brigade officers both in the UK and Europe. Opportunities also exist within the Fire Safety Engineering Research and Technology centre (FireSERT) for PhD studies in a wide range of fire science and engineering related topics.

The programme is a Recognised Educational Programme of the Institution of Fire Engineers. Students on this programme fulfill the academic requirements for Membership of IFE.



Read less
Innovative design allows more interesting and functional architecture but challenges traditional concepts of fire safety. To respond to these demands takes specialist knowledge and advanced skills in engineering analysis. Read more

Innovative design allows more interesting and functional architecture but challenges traditional concepts of fire safety. To respond to these demands takes specialist knowledge and advanced skills in engineering analysis.

This programme covers the fundamentals of fire science, including laboratory classes, fire safety engineering and relevant structural engineering topics, such as finite element methods.

You will gain knowledge of the critical issues in structural fire safety engineering, and an understanding of relevant fire and structural behaviours.

You will become familiar with performance-based approaches to design and have an awareness of the capabilities – and limitations – of relevant advanced modelling methods for structures and fire.

This programme is fully accredited by the Joint Board of Moderators (JBM)

Facilities

Our Building Research Establishment (BRE) Centre for Fire Safety Engineering hosts bespoke equipment to support groundbreaking research and teaching, with combined thermal and mechanical loading and use of the latest image analysis techniques.

Programme structure

This programme is run over 12 months, with two semesters of taught courses followed by a research project leading to a masters thesis.

Semester 1 courses

  • Fire Science and Fire Dynamics
  • State-of-the-Art Review in Fire Safety Engineering
  • Structural Design for Fire
  • Finite Element Analysis for Solids
  • Thin-Walled Members and Stability

Plus one of:

  • Fire Investigation and Failure Analysis
  • Fire Safety, Engineering & Society

Semester 2 courses

  • Pre-Dissertation Project in Fire Safety Engineering
  • Fire Science Laboratory
  • Fire Safety Engineering Analysis and Design
  • The Finite Element Method
  • Structural Dynamics and Earthquake Engineering

Career opportunities

Internationally, there is great demand for graduates in this field, with expertise in structural fire safety engineering particularly sought after as performance-based design expands. All of our previous graduates are in relevant employment, with the majority working in fire teams at engineering consultancies.



Read less
This one-year postgraduate course is designed to enable engineers, architects, fire prevention officers and other suitably qualified professionals working in the construction industry acquire a sound knowledge and understanding of fire in buildings, the safety requirements in the design of buildings and the various options available for minimising the risk of fire in buildings. Read more
This one-year postgraduate course is designed to enable engineers, architects, fire prevention officers and other suitably qualified professionals working in the construction industry acquire a sound knowledge and understanding of fire in buildings, the safety requirements in the design of buildings and the various options available for minimising the risk of fire in buildings. The course also includes the design of fire safety systems and guidance in the preparation of an application for a fire safety certificate. This course has been approved by Engineers Ireland as meeting its requirements for continuing professional development.

Course Organisation:

Lectures are normally held on Friday evening 7 - 10 p.m. and Saturday morning 9.30 a.m. - 12.30 p.m. each week throughout the two semesters (September to April). Coursework, which is an integral part of the course, consists of two assignments that are carried out in the students' own time.

Course Content:

Fundamentals of Fire Science and Fire Engineering
Fire Safety Engineering
Active Fire Protection Systems
Legal Principles; Fire, Safety and Health Legislation, Insurances
The Building Control Act, 1990 and Building Regulations
The Fire Services Acts, 1981 and 2003
Coursework Assignments

Assessment:

The award of a Postgraduate Diploma in Fire Safety Practice is based on a combination of the results of two examination papers and two coursework assignments. Each paper and the coursework constitute one third of the overall assessment. Students must pass each paper and the coursework. There is no system of compensation. The pass mark for the examinations and the coursework is 40%. A Distinction is awarded to those who obtain an overall average mark of 70% or more in both the coursework and two papers combined at the summer examination. The Diploma awarding ceremony takes place in November.

Recommended Texts:

Extensive notes are provided by individual lecturers, who may also recommend texts.

Read less
MSc Top-up This programme allows forensic practitioners who are holders of the Forensic Science Society Diploma to study for an MSc. Read more
MSc Top-up This programme allows forensic practitioners who are holders of the Forensic Science Society Diploma to study for an MSc.

From 2010 the Forensic Science Society Diploma was credit rated at 120 credits at postgraduate level. This has allowed the university to offer a "top-up" of the diploma to masters level on the successful completion of a project in either Crime Scene Investigation, Fire Investigation, Firearm Examination and Questioned Documents.

The MSc course in Fire Investigation requires the student to carry out a major independent research project in fire investigation. The project can be undertaken in the student's own laboratories or at the University. The exact subject of the project is agreed by negotiation with the member of staff who will act as the academic supervisor for the project.

Support for the course is provided by Blackboard which gives details of risk assessments and ethical considerations which have to be in place before the commencement of the project.

Accreditation

This award is accredited by the Forensic Science Society.

Read less
Research profile. The Institute for Infrastructure and Environment (IIE) is among the leading centres of civil and environmental engineering research in the UK. Read more

Research profile

The Institute for Infrastructure and Environment (IIE) is among the leading centres of civil and environmental engineering research in the UK. The Institute seeks new technologies to solve real-world problems in order to promote sustainability.

Key research areas include:

  • behaviour and design of structures in fire and other extreme events
  • fire science and fire safety engineering
  • shells and containment structures
  • nonlinear finite element modelling of complex structures and structural collapses
  • mechanics and transport of granular materials and multiphase media
  • computational mechanics and bio-mechanics
  • fibre-reinforced polymer composites in structural strengthening and repair
  • high-speed rail
  • intelligent infrastructure and non-destructive evaluation
  • sustainable water and wastewater treatment technologies
  • water supply
  • waste management and resource recovery

IIE has excellent laboratory and computing facilities, including the latest facilities and instrumentation for experimental and computational research in structures, granular solids, fire safety engineering, non-destructive testing and environmental engineering.

Masters by Research

An MSc by Research is based on a research project tailored to a candidate’s interests. It lasts one year full time or two years part time. The project can be a shorter alternative to an MPhil or PhD, or a precursor to either – including the option of an MSc project expanding into MPhil or doctorate work as it evolves. It can also be a mechanism for industry to collaborate with the School.

Training and support

Students are strongly encouraged and trained to present their research at conferences and in journal papers during the course of their PhD.

Students are also encouraged to attend transferable skills courses provided by the University and to participate in external courses provided by organisations such as the Engineering and Physical Sciences Research Council (EPSRC).

PhD candidates pursue their research projects under continuous guidance, resulting in a thesis that makes an original contribution to knowledge. You will be linked to two academic supervisors, and one industrial supervisor if the project is industrially sponsored.

Facilities

The Institute has excellent laboratory and computing facilities, including the latest instruments for experimental and computational research in structures, granular solids, fire safety engineering, non-destructive testing and environmental engineering.



Read less
Risk has become a key concept in modern society. Read more

Programme Background

Risk has become a key concept in modern society. Growing concern about the environment and a number of disasters have served to focus attention on the hazards and risks involved in a wide range of activities from offshore oil production to rail and air transport; from the design of football stadia to the operation of chemical plants and environmental protection. Today there is a wide range of techniques available to assess risk and reliability, both in relation to safety and in the wider sense. These techniques now underpin new legislation on safety and have relevance over a broad spectrum of activities, including environmental and other systems, where risk and reliability are key concerns.

The MSc/PG Diploma programme in Safety, Risk and Reliability Engineering is designed to give a thorough understanding of these techniques and experience of their application to a variety of real-world problems. It aims to provide students with an understanding of safety, risk and reliability engineering in both a qualitative and quantitative manner, and to develop the skills to apply this understanding. The programme will also introduce students to recent developments in analytical techniques, e.g. computer modelling of risk, reliability and safety problems.

Professional Recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. See http://www.jbm.org.ukfor further information.

The MSc and PgDip degrees have also been accredited by the Institution of Occupational Safety and Health (IOSH). Graduates are eligible to join IOSH as Graduate members and then undertake an initial professional development process that leads to Chartered membership. http://www.iosh.co.uk for further information.

Programme Content

The MSc/Postgraduate Diploma in Safety, Risk and Reliability Engineering is only available by attendance-free distance learning. The programme comprises eight courses. All courses have written examinations and some have compulsory coursework elements. MSc students are also required to complete an individual project (dissertation). This programme has a stronger engineering bias and you should only attempt this if you have done some University level mathematics or equivalent. Otherwise the Safety and Risk Management course might be more appropriate.

For the project component of the programme distance learners are likely to develop something based in their country of residence with advice and supervision from staff in the School. This may well include work with a local company or may involve independent study. Individual arrangements will be set up with each student.

For more detailed information on this programme please contact the Programme Leader before applying (see above).

Courses

• Risk Assessment and Safety Management
This course aims to give students an appreciation of risk from individual and societal perspectives as well as understanding the basic principles of risk assessment and modelling and how safety management works in practice.

• Systems Reliability
Gives an understanding of the qualitative and quantitative techniques that are used in the reliability, availability and maintainability analysis of all types of engineering systems.

• Learning from Disasters
Provides students with an in depth understanding of some of the classic disasters and their consequences by using a range of practical accident investigation techniques. Students will learn to analyse complex histories in order to find the underlying root cause.

• Safety, Risk and Reliability
Leads to an understanding of the principles of structural reliability theory and its application to risk and reliability engineering.

• Fire Safety, Explosions and Process Safety
Introduces students to the basic principles of fire safety science and engineering, and develops skills in associated modelling leading to an understanding of principal fire/explosion related issues in process safety.

• Data Analysis and Simulation
Develops knowledge of statistical data analysis and its application in engineering and science and introduces the concepts of using simulation techniques for analysis of complex systems. It also teaches linear optimisation techniques and the ability to apply them to solve simple problems.

• Human Factors Methods
This course will equip students from academic and/or industrial backgrounds with knowledge on, and the means to deploy, a wide range of specialist human factors techniques. The emphasis is on method selection, application, combination and integration within existing business practices. Students will develop a critical awareness of what methods exist, how to apply them in practice and their principle benefits and limitations.

•Environmental Impact Assessment
Provides the candidate with the knowledge and understanding of the principles and processes of the Environmental Impact Assessment. By the end of the course, the student should be familiar with the European EIA legislation and its translation into the Scottish planning system, and be able to demonstrate an understanding of the EIA process, the tools and the agents involved in an EIA and the possible problems with using EIA as a decision making tool. It is also intended that the student will be able to appreciate the purpose of the EIA process from a number of perspectives; that of a developer, an EIA practitioner and a policy maker.

Read less
Public awareness of hazards and risks has enhanced the importance of safety assessment and management in today’s increasingly litigious society. Read more

Programme Background

Public awareness of hazards and risks has enhanced the importance of safety assessment and management in today’s increasingly litigious society. Worldwide the burden of responsibility for health and safety is shifting towards those who own, manage and work in industrial and commercial organisations. Legal reform is tending to replace detailed industry specific legislation with a modern approach in which, where possible, goals and general principles are set and the onus is on organisations to show how they manage to achieve these goals.

The management of safety and risk needs to be integrated into the overall management of the organisation. It should be appropriate and cost-effective without dampening the innovative entrepreneurial spirit of employees with inflexible bureaucratic rules and procedures. An organisation’s exposure to potential hazards needs to be managed so as to reduce the chance of loss and mitigate any effects. Risk and safety issues need to be evaluated in a structured and calculated manner but in the light of an overall organisational strategy.

The MSc/PG Diploma programme in Safety and Risk Management aims to provide students with advanced knowledge of risk assessment techniques, the public and individual perception of risk, and how decisions are made in competitive business markets. The focus is on practical applications of safety methodologies, ergonomics and human factors, and safety and risk management techniques.

All of these skills will be drawn together to undertake complex qualitative and quantitative risk assessments. The core of the programme is the management of safety, but it is set within a broader remit where safety issues are part of a general risk management system with a balance of financial, quality and environmental concerns. The overall aim of the programme is to develop students’ skills and personal qualities to be able to undertake safety studies and manage safety and risk to the best national and international standards.

Professional Recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. See http://www.jbm.org.ukfor further information.

The MSc and PgDip degrees have also been accredited by the Institution of Occupational Safety and Health (IOSH). Graduates are eligible to join IOSH as Graduate members and then undertake an initial professional development process that leads to Chartered membership. http://www.iosh.co.uk for further information.

Programme Content

The MSc/Postgraduate Diploma in Safety, Risk and Management is only available by attendance-free distance learning. The programme comprises eight courses. All courses have written examinations and some have compulsory coursework elements. MSc students are also required to complete an individual project (dissertation).

For the project component of the programme distance learners are likely to develop something based in their country of residence with advice and supervision from staff in the School. This may well include work with a local company or may involve independent study. Individual arrangements will be set up with each student.

For more detailed information on this programme please contact the Programme Leader before applying (see above).

Courses

• Risk Assessment and Safety Management
This courses aims to give students an appreciation of risk from individual and societal perspectives as well as understanding the basic principles of risk assessment and modelling and how safety management works in practice.

• Human Factors Methods
This course will equip students from academic and/or industrial backgrounds with knowledge on, and the means to deploy, a wide range of specialist human factors techniques. The emphasis is on method selection, application, combination and integration within existing business practices. Students will develop a critical awareness of what methods exist, how to apply them in practice and their principle benefits and limitations.

• Human Factors in the Design and Evaluation of Control Rooms
The course will equip students from academic and/or industrial backgrounds with in-depth knowledge on, insights into, and the means to deploy a wide range of specialist techniques relevant to the ergonomic design and evaluation of control rooms. The emphasis is on key areas of control room operations and on actionable ways to deploy theory on human capabilities and limitations in order to improve performance, safety, efficiency and overall operator well being.

• Fire Safety, Explosions and Process Safety
Introduces students to the basic principles of fire safety science and engineering, and develops skills in associated modelling leading to an understanding of principal fire/explosion related issues in process safety.

• Environmental Impact Assessment
Provides the candidate with the knowledge and understanding of the principles and processes of the Environmental Impact Assessment. By the end of the course, the student should be familiar with the European EIA legislation and its translation into the Scottish planning system, and be able to demonstrate an understanding of the EIA process, the tools and the agents involved in an EIA and the possible problems with using EIA as a decision making tool. . It is also intended that the student will be able to appreciate the purpose of the EIA process from a number of perspectives; that of a developer, an EIA practitioner and a policy maker.

• Project Management Theory and Practice
Provides students with an understanding of the concepts and practices of construction project management used to provide value added services to clients within the constraints of time, cost, quality sustainability and health and safety management.

• Learning from Disasters
Gives students an in depth understanding of some of the classic disasters and their consequences by using a range of practical accident investigation techniques. Students will learn to analyse complex histories in order to find the underlying root cause.

• Value and Risk Management.
Aims to introduce the concepts of value and risk management, apply them to strategic and tactical problems and illustrate their tools and techniques through case study.

Read less
Study for this Masters in Bioarchaeology at Liverpool John Moores University and gain hands-on experience at the archaeology excavation at the Poulton Project, carry out novel research and discover new laboratory techniques. Read more
Study for this Masters in Bioarchaeology at Liverpool John Moores University and gain hands-on experience at the archaeology excavation at the Poulton Project, carry out novel research and discover new laboratory techniques.

-Complete this masters degree in one year (full time)
-Masters course developed and delivered by leading researchers in the field
-Excavation and bioarchaeological analysis of real human remains
-Gain hands-on experience in field and laboratory techniques using specialised bioarchaeological labs and facilities
-Substantial bone selection for research and for experience as teaching toolstools


Bioarchaeology is an exciting and fast-advancing science that combines archaeology with branches of the natural sciences. Study focuses on the key topics pertaining to human remains from archaeological sites.

Bioarchaeology includes areas of scientific investigation including palaeodemography, past behaviour, biological affinity, subsistence strategy, and health and well-being in the past.

The MSc in Bioarchaeology will help you to develop a broad understanding of these issues, through the excavation and analysis of human and animal remains. Analytical techniques will cover dental and osteological analyses, archaeological field methods, and ancient genetics.

The programme aims to develop your advanced practical skills in skeletal analysis, making use of the department’s well-equipped specialist laboratories and reference collections.

A particular strength of our provision and Faculty expertise is that we are able to address the bioarchaeology of many world areas and time periods. When you complete the course, you will have all the skills necessary to continue into an academic career or gain employment in research, museums, education or commercial organisations.

During the year you will be given a personal tutor that will support you throughout your time at LJMU and be following both your academic and professional development.

Please see guidance below on core and option modules for further information on what you will study.
Semester 1 (three core modules)

Advanced Osteology and Skeletal Pathology
Provides students with an advanced knowledge of the human skeleton and the ability to identify animal bones, methods of curation of skeletal collections and understanding of pathological modifications.
Research Design and Quantitative Methods
Provides extensive training in generic research knowledge and statistical techniques for the Natural Sciences. Students design a research project and are assessed via the preparation of a full grant application for the project.
Dental Anthropology
Provides students with the theoretical knowledge and practical experience required by bioarchaeologists to identify and examine human teeth.
Semester 2 (two core modules and one option)

Bioarchaeology: Bones, Teeth and Genes
Focuses on the different methods used to study human remains in archaeological and anthropological contexts. Delivery is through a combination of lectures, practicals, workshops and seminar sessions by experts in different fields, followed by reading and in-class discussion of recent literature.
Excavation
Covers field survey, site management, excavation and related data analysis. In addition to practicals and lectures, the course includes a non-residential field experience.
Dissertation
Comprises an independent, in-depth scientific research study on a chosen relevant topic. The following options are typically offered:
Ballistics and Arson Investigation
Teaches the fundamental principles of fire science, fire dynamics and material science, enabling students to demonstrate their application of fire investigation.
Taphonomy Trauma Analysis
Provides students with an extensive understanding of the biomechanics of human bones and the reaction of bones to the environment for a taphonomic history of the remains. Students gain a broad appreciation of different types of weapons to reconstruct a traumatic event using skeletal evidence.
Human Identification and Forensic DNA
Analyses the issues related to the identification of an unknown subject from both skeletal and genetic features. The module also introduces students to the use of a DNA typing approach for the identification of human remains.

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Please email if you require further guidance or clarification.

Read less
This Masters-level Forensic Bioscience course from Liverpool John Moores University is ideal for forensic science practitioners and science graduates. Read more
This Masters-level Forensic Bioscience course from Liverpool John Moores University is ideal for forensic science practitioners and science graduates. You will have access to state-of-the-art learning facilities plus a research-informed curriculum.

•Complete this masters degree in one year (full time)
•Suitable for Forensic Science practitioners and science graduates, this course is informed by research and industry links
•Enjoy access to state-of-the-art laboratories, crime scene facilities and a moot room
•Learn from forensic anthropologists, biologists, crime scene and fire investigation specialists and leading in-house academics
•Benefit from a local, national or international work placement
•Develop transferrable skills in legal matters and research methods and specialise in your chosen area


Forensic Bioscience is one of four forensic programmes offered by LJMU. All four options share a number of common modules, but each course has its own distinct identity.

During this course you will:
•explore the criminal justice system as a setting in which a forensic scientist might work (this relates to British and international law)
•discover how to apply appropriate techniques following the analysis and evaluation of complex forensic cases
•learn to critically evaluate current crime scene techniques

Although this year long programme does not have a part time study option, you can work at a slower pace and gain the full Masters over three years by completing the PG Cert in year one, the PG Diploma in year two and the Masters in year three. There is even the option to carry out the dissertation project in your place of work.
On joining the course you will be appointed a personal tutor who will be able to offer academic and pastoral support. The School also operates an open door policy, providing access to members of staff when you need them.

You will study at the Byrom Street site in the University’s City Campus. With an ongoing £12 million investment in laboratory facilities here and state-of-the-art research facilities in the newly developed Life Sciences building, you’ll enjoy a first class study environment.
The Avril Robarts Library, open 24/7 during semesters, is located just minutes away on Tithebarn Street.
Legal aspects of the course are taught in the Moot Room in the multi-million pound Redmonds building on Brownlow Hill.

Please see guidance below on core and option modules for further information on what you will study.
Forensic Bioscience
Combines theory and practical work in post mortem interval determination, entomology, microbiology and pathology.
Law and Court Room Skills
Discusses the criminal justice systems under which a forensic scientist may work and examines expert witness testimony. Aspects of regulation and quality assurance are touched upon.
Research Methods
Covers grant application, critical appraisal of leading research and data interpretation and evaluation. This leads naturally into the dissertation.
Bioanalytical Techniques
Examines state-of-the-art biomolecular techniques, including DNA and protein analysis. Commonly used techniques in the forensic field will be critically analysed and performed along with emerging techniques which can form the basis of the dissertation or further postgraduate study.
Taphonomy and Trauma Analysis
Examines decomposition processes and trauma analysis.


Dissertation
The Dissertation research themes are led by staff and PhD students. Students are encouraged to present their research at conferences.
The following options are typically offered:

Fire Investigation
Offers specialist knowledge of fire and explosive analysis both at the crime scene and in terms of analytical techniques.
Trace Evidence Analysis
Teaches you to identify, differentiate and analyse different types of trace evidence using advanced techniques. Microscopy, including SEM (EDX) and atomic force, form the basis of the practical analysis performed, along with other techniques.

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Please email if you require further guidance or clarification.

Read less
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures. Read more
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures.

Who is it for?

This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Normally students have an undergraduate degree in engineering or a related discipline. Students who don’t have qualifications in civil engineering usually have relevant work experience in civil engineering structures so they are familiar with working within the specific technical domain.

Objectives

From analysing how carbon nanofibers can reduce the effect of corrosion in concrete to gaining insight from experts developing the new Forth Bridge, this MSc in Civil Engineering Structures has been designed to be broad in scope so you can develop your own area of structural engineering expertise.

As a department, we have broad interests from defining new structural forms to practical application of new materials. We believe civil engineering is a creative and collaborative profession, as much as a technical one. This course gives you the tools to immerse yourself in both the analytical and experimental side of the subject, so you can investigate diverse problems to generate your own structural solutions.

The Civil Engineering Structures MSc mirrors industry practice, so you will work in groups with your peers from the first term onwards and learn from a group of world-leading engineers with diverse research strengths. From earthquake engineering to sustainable construction, you have the opportunity to learn in breadth and depth using high-end industry software to develop safe solutions for real-world projects.

Academic facilities

There is a large dedicated lab on site equipped with facilities to investigate different structures and construction materials from concrete to timber. You also have access to other workshops where you can liaise with mechanical or electrical engineers to develop innovative scale models. There is access to specialist soil labs and large-scale equipment including wind tunnels.

We have an extensive library housing all the references, journals and codes of practice that you will need during your studies.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught by the staff team within the School of Mathematics, Computer Science and Engineering and also from visiting industry experts from around the world.

Teaching mainly takes the form of lectures, but IT sessions and seminars also form part of the Masters degree. Modules are shared between two ten-week teaching terms running from October to December and January to March. Although work for the MSc dissertation starts during the second term, you will conduct most of the research work during the summer months.

The length of the full-time degree is 12 months. A part-time route is also available where you can spend either two or three years completing the programme. If you follow the two-year part-time study route, you will need to attend lectures for up to two days each week. Alternatively, you can complete the degree over three years by attending a single day each week. The timetable has been designed to offer flexibility for part-time students.

In the first term you will consider core technical topics and be introduced to new concepts such as structural reliability. In the second term you will begin to focus your studies by selecting your dissertation topic and by selecting options getting involved in a specific areas of your own interest. Spread over the year you will have design presentations, class tests and reports.

If you select an experimental dissertation you will have the opportunity to use a range of materials. Skilled technical support is available in the workshop and you have access to recently refurbished facilities, including specialist geotechnical labs which accommodate a large flexible laboratory space used for centrifuge model preparation and testing. Adjacent to this you have concrete mixing and casting facilities, a temperature-controlled soil element testing laboratory and a concrete durability laboratory.

Assessment

For the theoretical modules, you will be assessed through a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. For the design-oriented modules you are normally assessed by coursework only, where you will work both in groups and individually on challenging projects.

Modules

There are six core modules which give you a strong technical foundation and three elective modules from which you can choose two. These reflect the specialist expertise on offer within the academic team. These modules will give you unique insight into computer analysis of structures for blast and fire, bridge engineering, and earthquake analysis where you may look at techniques for analysing structures and safe design. In the final part of the programme you undertake a dissertation in which you can explore an area of interest from a proposed list of themes, some of which are industry-related.

Core modules and dissertation
-Advanced structural analysis and stability (20 credits)
-Finite element methods (15 credits)
-Dynamics of structures (15 credits)
-Structural reliability and risk (10 credits)
-Design of concrete structures (15 credits)
-Design of steel and composite structures (15 credits)
-Dissertation for MSc degree (Research Skills and Individual Project) (60 credits)

Elective modules - you will be able to study two of the following elective modules:
-Earthquake analysis of structures (15 credits)
-Analysis of steel and concrete structures for blast and fire exposure (15 credits)
-Bridge engineering (15 credits)

Career prospects

Graduates have secured employment with leading civil engineering consultants, research institutes and government agencies and pursued doctoral studies both in the UK and internationally. The cohort of 2014 have moved on to jobs and further study working within the following organisations:
-WSP Consultant Engineers
-Tully De'Ath Consultant Civil and Structural Engineers
-SSA Consulting Engineers
-Bradbrook Consulting
-Clarke Nicholls Marcel

Read less
The Diploma is a one-year postgraduate course designed to provide civil engineers and other suitably qualified graduates with a sound knowledge of present day practice in environmental engineering. Read more
The Diploma is a one-year postgraduate course designed to provide civil engineers and other suitably qualified graduates with a sound knowledge of present day practice in environmental engineering. The course has special relevance for local authority engineers but it has also been designed for those in the private sector who have a particular interest in environmental management with a particular emphasis on measures of quantitative assessment. Topics covered in the course include air quality, noise, hydrological processes, water and wastewater treatment, solid and toxic waste management, fire safety engineering and environmental monitoring and control. Environmental Impact Studies and analysis of risk, as an inherent part of infrastructural development, are also considered. This course has been approved by Engineers Ireland as meeting its requirements for continuing professional development.

Course organisation:

Lectures are normally held on Friday evening 7 - 10 p.m. and Saturday morning 9.30 a.m. - 12.30 p.m. each week throughout the two semesters (September to April). In addition to attending lectures, participants are required to submit coursework as part of the students' assessment.

Course content:

Environmental legislation, EIA and EIS

Hydrology for environmental management

Water and wastewater engineering

Air quality and noise monitoring and management

Solid and hazardous wastes

Fire safety engineering

Renewable energy

Special topics including water borne diseases, radiation hazards

Assessment:

The award of a Postgraduate Diploma in Environmental Engineering is based on a combination of the results of two examination papers and coursework. Each paper constitutes one third of the overall assessment. The mark for the coursework also constitutes one third of the overall grade. Students must pass each paper and the coursework element independently; there is no system of compensation. The pass mark for the examination papers is 40%. A Distinction is awarded to those who obtain an overall average mark of 70% or over in both the coursework and two papers combined at the summer examination. The Diploma awarding ceremony takes place in November.

Recommended texts:

Extensive notes are provided by individual lecturers, who may also recommend texts.

Read less
This programme is designed for graduates in mathematics, engineering, or science with excellent numeracy skills, wishing to pursue careers in the application of mathematics, in traditional areas such as engineering and science and in service areas such as finance and banking, where knowledge of modern applications of mathematics would be advantageous. Read more
This programme is designed for graduates in mathematics, engineering, or science with excellent numeracy skills, wishing to pursue careers in the application of mathematics, in traditional areas such as engineering and science and in service areas such as finance and banking, where knowledge of modern applications of mathematics would be advantageous. The core philosophy of the programme is to equip students both with mathematics and its applications and with high-level scientific software and associated numerical skills. The Greenwich campus, near the financial district of Canary Wharf, enables the department to build ties with many modern engineering and applied mathematics practitioners enabling our students to become part of a wider group. The Leslie Comrie seminar series, inviting both academics and industrialists, allows you to interact with our external links creating an advantageous learning experience. We provide you the grounds for building a high profile of understanding of current research practices in the industry. Our classes contain interactive applications that enhance the learning experience by innovative teaching practices. Utilising research expertise within the department you will graduate with a strong understanding of numerical methods. You will also develop an understanding for further applicability in various fields of applied mathematics and engineering.

This programme is suitable both for fresh graduates and also for experienced professional practitioners who wish to further their skills. The programme core modules cover modern mathematical skills together with applications across different industries, and there are optional professional modules directly related to research expertise within the Faculty. This ensures that students have an advanced understanding of both theory and practice in their selected specialist areas. Students will gain knowledge of mathematical skills and applications, computational skills, and relevant professional experience, related to traditional engineering and science modelling, modern enterprise applications, finance, and service industries. They will gain an understanding of emerging applications. There will be hands-on training in various development tools and in the use of computational software related to their professional direction. Assessment takes the form of 100% coursework, based on applications of current market practices. A supervised thesis project takes place at the end of the last teaching term during the summer months. Projects are allocated in March and students are invited to undertake a project that provides genuine insight in an area of the research interests within the department. The programme is also available on a part-time basis.

Visit the website http://www2.gre.ac.uk/study/courses/pg/maths/appmaths

Mathematics

Postgraduate mathematics students benefit from award-winning teaching and great facilities. Our programmes are informed by world-renowned research and our links with industry ensure our students develop the academic and practical skills that will enhance their career prospects.

What you'll study

Full time
- Year 1:
Option Set 1

Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are required to choose 60 credits from this list of options.

Scientific Software Design and Development (15 credits)
Inverse Problems (15 credits)
Mathematics of Complex Systems (15 credits)
Reliability and Optimisation (15 credits)

Option Set 2
Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are also required to choose 60 credits from this list of options.

Principles and Practice of Evacuation Modelling (30 credits)
Principles and Practice of Fire Modelling (30 credits)

Option Set 3

Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are also required to choose 45 credits from this list of options.

Scientific Software Design and Development (15 credits)
Inverse Problems (15 credits)
Mathematics of Complex Systems (15 credits)
Reliability and Optimisation (15 credits)

Students are also required to choose 15 credits from this list of options.

Enterprise Software Engineering Development (15 credits)
Software Tools and Techniques (15 credits)
Actuarial Mathematics and Risk Modelling (15 credits)
Financial Time Series (15 credits)
Advanced Finite Difference Methods for Derivatives Pricing (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Inverse Problems (15 credits)
Mathematics and its Applications (30 credits)
Reliability and Optimisation (15 credits)

- Year 2:
Students are required to study the following compulsory courses.

Scientific Software Design and Development (15 credits)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematics of Complex Systems (15 credits)

Students are required to choose 15 credits from this list of options.

Advanced Finite Difference Methods for Derivatives Pricing (15 credits)
Mathematical Approaches to Risk Management (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

100% coursework: a supervised thesis project (during the summer months).

Career options

Our graduates are equipped with the tools to involve in many engineering applications and computational engineering sectors such as reliability engineering, risk management, complex engineering systems, fire safety and finance. Our expert seminar series gives you the opportunity to interact with leading figures from industry and academia and undertake projects of current industry practice. A postgraduate qualification is a major achievement and a milestone in your specialised career path leading to a professional career. The Department also offers a PhD programme which trains highly skilled candidates towards research careers in academia and industry. Our current collaborations for our PhD candidates lie with the STRIKE project for mathematical and computational applications.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
What is the Master of Safety Engineering about? .  The Master of Safety Engineering will prepare you to improve and realise safety in many different areas. Read more

What is the Master of Safety Engineering about? 

 The Master of Safety Engineering will prepare you to improve and realise safety in many different areas. The programme trains you in prevention policy and safety management systems, the safety of products, processes, and installations, qualitative risk analysis techniques, and fire and explosion safety. You’ll obtain detailed knowledge of technical and managerial process safety concepts with regard to the whole life cycle of a production plant, and risk evaluations based on qualitative and quantitative methods. 

Structure

The Master of Safety Engineering comprises a total of 60 credits. The programme consists of a group of common compulsory courses (23 credits) that are taken up by every student. This party contains courses with themes that are of interest to every safety professional, irrespective of the specialisation option. All courses in this part are taught in English. This relatively large core part ensures that every student is given the same broad basic education about the specialised field of safety.

After a general introduction to safety engineering, prevention policy and safety management systems are treated. Safety of products, processes and installations are discussed next and qualitative risk analysis techniques, fire and explosion safety complete this section.

Furthermore, students choose between one of two available options (22 credits each): Option Process Safety or Option Prevention. In turn, each option contains a number of compulsory courses (16 credits) and elective courses (6 credits). 

The Option Prevention focuses on occupational safety and health-related issues. The compulsory courses in this option also discuss non-technical aspects concerning safety. This option is mainly of interest to candidates who want to obtain the Certificaat Preventieadviseur Niveau 1.

The Option Process Safety provides students with a detailed knowledge of technical and managerial process safety concepts with regard to the whole life cycle of a production plant from concept to design, construction and operation to decommissioning. Safety concepts of representative operational units are presented in a series of case studies. Examples of required safety oriented competences in industrial operations are also discussed. It is shown how risk evaluations and estimates based on qualitative and quantitative methods are performed.

Each student also needs to choose elective courses either from a short indicative list, or from any Master’s programme within the Group of Science, Engineering and Technology. 

Finally, students have to complete a Master’s thesis of 15 credits, which represents an effort that is consistent with a programme of 60 credits in total.

The programme can be completed normally in one-year on a full-time basis. However, to facilitate the participation of working professionals, it can also be followed on a two year part-time basis.

Objectives

After finishing this advanced Master's programme, the student should:

  • have a broadly based knowledge of the different scientific disciplines that are needed to study and analyse the diverse technical and non-technical issues related to safety technology, risk management and loss prevention.
  • have acquired the capabilities and competences to perform or co-ordinate a scientifically sound analysis of safety related problems and their solutions within the governing boundary conditions (legal, organisational, technical, environmental, etc.).

To carry out the programme's objectives, teaching activities consist of a combination of classroom lectures, practically oriented seminars and site visits. The instructors themselves come from the academic world both inside and outside K.U.Leuven, or have been recruited from reputable industrial companies because of their long-standing expertise and willingness to contribute to teaching and training.

Career perspectives

In many countries, there is a permanent and growing need for scientists and engineers who are knowledgeable and trained at the academic level in the field of safety engineering and safety management. This is due to the increasing complexity of industrial production processes and the growing number of rules and regulations both in Europe and internationally.

Graduates of the Master of Science in Safety Engineering programme find employment in small national and large multinational industrial companies at home and abroad or are employed in private and/or governmental organisations. Such organisations need experts with the ability to conduct research, carry out analyses, and perform inspections, monitoring and certification in the broad field of safety.

Moreover, in some countries (including Belgium), companies beyond a certain size dealing with specific risks are required by law to hire or even employ a certified prevention advisor. This certification can be acquired through the Prevention option of the Master of Science in Safety Engineering (Certificaat Preventieadviseur Niveau 1).

It is also possible for graduates to begin a career as an independent consultant with expertise in safety and environmental areas.



Read less

Show 10 15 30 per page



Cookie Policy    X