• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
King’s College London Featured Masters Courses
Cass Business School Featured Masters Courses
Ulster University Featured Masters Courses
University of Bradford Featured Masters Courses
Loughborough University Featured Masters Courses
"finite"×
0 miles

Masters Degrees (Finite)

  • "finite" ×
  • clear all
Showing 1 to 15 of 140
Order by 
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University has been at the forefront of international research in the area of computational engineering. Internationally renowned engineers at Swansea pioneered the development of numerical techniques, such as the finite element method, and associated computational procedures that have enabled the solution of many complex engineering problems. As a student on the Master's course in Computer Modelling and Finite Elements in Engineering Mechanics, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Key Features: Computer Modelling and Finite Elements in Engineering Mechanics

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Using mathematical modelling as the basis, computational methods provide procedures which, with the aid of the computer, allow complex problems to be solved. The techniques play an ever-increasing role in industry and there is further emphasis to apply the methodology to other important areas such as medicine and the life sciences.

This Computer Modelling and Finite Elements in Engineering Mechanics course provides a solid foundation in computer modelling and the finite element method in particular.

The Zienkiewicz Centre for Computational Engineering, within which this course is run, has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

Modules

Modules on the Computer Modelling and Finite Elements in Engineering Mechanics course can vary each year but you could expect to study:

Reservoir Modelling and Simulation
Solid Mechanics
Finite Element Computational Analysis
Advanced Fluid Mechanics
Computational Plasticity
Fluid-Structure Interaction
Nonlinear Continuum Mechanics
Computational Fluid Dynamics
Dynamics and Transient Analysis
Computational Case Study
Communication Skills for Research Engineers
Numerical Methods for Partial Differential Equations

Accreditation

The MSc Computer Modelling and Finite Elements in Engineering Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

The Zienkiewicz Centre for Computational Engineering has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Careers

Employment in a wide range of industries, which require the skills developed during the Computer Modelling and Finite Elements in Engineering Mechanics course, from aerospace to the medical sector. Computational modelling techniques have developed in importance to provide solutions to complex problems and as a graduate of this course in Computer Modelling and Finite Elements in Engineering Mechanics, you will be able to utilise your highly sought-after skills in industry or research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Computational Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computational Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University has gained a significant international profile as one of the key international centres for research and training in computational mechanics and engineering. As a student on the Master's course in Erasmus Mundus Computational Mechanics, you will be provided with in-depth, multidisciplinary training in the application of the finite element method and related state-of-the-art numerical and computational techniques to the solution and simulation of highly challenging problems in engineering analysis and design.

Key Features of Erasmus Mundus Computational Mechanics MSc

The Zienkiewicz Centre for Computational Engineering is acknowledged internationally as the leading UK centre for computational engineering research. It represents an interdisciplinary group of researchers who are active in computational or applied mechanics. It is unrivalled concentration of knowledge and expertise in this field. Many numerical techniques currently in use in commercial simulation software have originated from Swansea University.

The Erasmus Mundus MSc Computational Mechanics course is a two-year postgraduate programme run by an international consortium of four leading European Universities, namely Swansea University, Universitat Politècnica de Catalunya (Spain), École Centrale de Nantes (France) and University of Stuttgart (Germany) in cooperation with the International Centre for Numerical Methods in Engineering (CIMNE, Spain).

As a student on the Erasmus Mundus MSc Computational Mechanics course, you will gain a general knowledge of the theory of computational mechanics, including the strengths and weaknesses of the approach, appreciate the worth of undertaking a computational simulation in an industrial context, and be provided with training in the development of new software for the improved simulation of current engineering problems.

In the first year of the Erasmus Mundus MSc Computational Mechanics course, you will follow an agreed common set of core modules leading to common examinations in Swansea or Barcelona. In addition, an industrial placement will take place during this year, where you will have the opportunity to be exposed to the use of computational mechanics within an industrial context. For the second year of the Erasmus Mundus MSc Computational Mechanics, you will move to one of the other Universities, depending upon your preferred specialisation, to complete a series of taught modules and the research thesis. There will be a wide choice of specialisation areas (i.e. fluids, structures, aerospace, biomedical) by incorporating modules from the four Universities. This allows you to experience postgraduate education in more than one European institution.

Modules

Modules on the Erasmus Mundus MSc Computational Mechanics course can vary each year but you could expect to study the following core modules (together with elective modules):

Numerical Methods for Partial Differential Equations
Continuum Mechanics
Advanced Fluid Mechanics
Industrial Project
Finite Element Computational Analysis
Entrepreneurship for Engineers
Finite Element in Fluids
Computational Plasticity
Fluid-Structure Interaction
Nonlinear Continuum Mechanics
Computational Fluid Dynamics
Dynamics and Transient Analysis
Reservoir Modelling and Simulation

Accreditation

The Erasmus Mundus Computational Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

See http://www.jbm.org.uk for further information.

This degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

On the Erasmus Mundus MSc Computational Mechanics course, you will have the opportunity to apply your skills and knowledge in computational mechanics in an industrial context.

As a student on the Erasmus Mundus MSc Computational Mechanics course you will be placed in engineering industries, consultancies or research institutions that have an interest and expertise in computational mechanics. Typically, you will be trained by the relevant industry in the use of their in-house or commercial computational mechanics software.

You will also gain knowledge and expertise on the use of the particular range of commercial software used in the industry where you are placed.

Careers

The next decade will experience an explosive growth in the demand for accurate and reliable numerical simulation and optimisation of engineering systems.

Computational mechanics will become even more multidisciplinary than in the past and many technological tools will be, for instance, integrated to explore biological systems and submicron devices. This will have a major impact in our everyday lives.

Employment can be found in a broad range of engineering industries as this course provides the skills for the modelling, formulation, analysis and implementation of simulation tools for advanced engineering problems.



Student Quotes

“I gained immensely from the high quality coursework, extensive research support, confluence of cultures and unforgettable friendship.”

Prabhu Muthuganeisan, MSc Computational Mechanics

Read less
Innovative design allows more interesting and functional architecture but challenges traditional concepts of fire safety. To respond to these demands takes specialist knowledge and advanced skills in engineering analysis. Read more

Programme description

Innovative design allows more interesting and functional architecture but challenges traditional concepts of fire safety. To respond to these demands takes specialist knowledge and advanced skills in engineering analysis.

This programme covers the fundamentals of fire science, including laboratory classes, fire safety engineering and relevant structural engineering topics, such as finite element methods.

You will gain knowledge of the critical issues in structural fire safety engineering, and an understanding of relevant fire and structural behaviours.

You will become familiar with performance-based approaches to design and have an awareness of the capabilities – and limitations – of relevant advanced modelling methods for structures and fire.

This programme is fully accredited by the Joint Board of Moderators (JBM)

Facilities

Our Building Research Establishment (BRE) Centre for Fire Safety Engineering hosts bespoke equipment to support groundbreaking research and teaching, with combined thermal and mechanical loading and use of the latest image analysis techniques.

Programme structure

This programme is run over 12 months, with two semesters of taught courses followed by a research project leading to a masters thesis.

Semester 1 courses
Fire Science and Fire Dynamics
Structural Design for Fire
Finite Element Analysis for Solids
Fire Investigation and Failure Analysis
Thin-Walled Members and Stability
Semester 2 courses
Fire Science Laboratory
Fire Safety Engineering Analysis and Design
The Finite Element Method
Structural Dynamics and Earthquake Engineering

Career opportunities

Internationally, there is great demand for graduates in this field, with expertise in structural fire safety engineering particularly sought after as performance-based design expands. All of our previous graduates are in relevant employment, with the majority working in fire teams at engineering consultancies.

Read less
Energy management using sustainable technologies and implementation of environmental initiatives play a rapidly increasing role in many public organisations and industry. Read more

About the course

Energy management using sustainable technologies and implementation of environmental initiatives play a rapidly increasing role in many public organisations and industry.

There is an urgent need for trained personnel to advise, implement and deliver strategies and management for sustainable practices. This programme empowers graduates with a sound knowledge of sustainable technologies and skills for effective energy management with regard for environmental protection. It will enable them to create new opportunities for their employers by bringing an appreciation for current research into industrial use.

Building Services Engineering courses awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

College Research wins CIBSE Building Performance Award 2013.

Aims

This programme will give graduates the sound knowledge and skills required for effective energy management and environmental protection.

Students will develop themes of expertise facilitated by an MSc project and dissertation, which also provides a useful introduction to students thinking of embarking on a doctoral research degree.

Links with industry are a key element of the programme, including guest speakers from various industry sectors.

Course Content

Compulsory Modules:

Energy Conversion Technologies
Sustainable Built Environment
Renewable Energy Technologies
Sustainable Energy Development
Environmental Legislation: Energy and Environmental Review and Auditing
Environmental Hazard and Risk
Research Methods and Sustainable Engineering
Masters Project and Dissertation

Optional Modules (choose one)

Strategic Management, Innovation and Enterprise
Project Management

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May/June. Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Special Features

Award-winning, accredited courses
Brunel’s Building Services Engineering courses have received the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers. Brunel offers a number of MSc courses in mechanical engineering, all accredited by professional institutes as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Accrediting professional institutes vary by course and include the Institute of Mechanical Engineers (IMechE) and Chartered Institute of Building Services Engineers (CIBSE).

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

World-class research
Teaching in the courses is underpinned by research activities in aerospace engineering, automotive/motorsport engineering, solid and fluid mechanics, and energy & environment. Staff generate numerous publications, conference presentations and patents, and have links with a wide range of institutions both within and outside the UK. The discipline benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

Sustainable Energy : Technologies and Management MSc is accredited by the Institution of Mechanical Engineering (IMechE), and The Chartered Institution of Building Services Engineers (CIBSE). Additionally we are seeking reaccreditation with the Energy Institute as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng).

Read less
This programme responds to the worldwide demand for building services engineers who have a sound knowledge of engineering principles and the ability to apply this knowledge within the building services industry. Read more

About the course

This programme responds to the worldwide demand for building services engineers who have a sound knowledge of engineering principles and the ability to apply this knowledge within the building services industry.

Professional ‘Building Services Engineers’ design all of the systems that are necessary in a building for occupants to carry out their business. These systems include: heating, lighting, air-conditioning and electrical systems. The role is increasingly involved with the provision of sustainable, energy efficient and green building within our society. Services have to be carefully designed and installed so that they are unobtrusive and aesthetically pleasing, and also work in harmony with the architecture of the building. The programme will respond to the worldwide demand for building services engineers who have a sound knowledge engineering principles and the ability to apply this knowledge to the complex situations prevailing within the building services industry.

The course is available either as a full-time, 1-year programme at Brunel or as a 3-to-5 year distance learning programme.

Aims

With the growing complexity of engineering services in modern buildings and the significance of energy conservation and emissions control, the role of the building services engineer is becoming increasingly important.

As an interdisciplinary profession that involves the specification, design, installation and management of all the engineering services associated with the built environment, comfort and function also need to be combined – which calls for engineers with a wide range of knowledge and skills.

This MSc programme is suitable for:

Recent engineering and technology graduates, moving into building services and related disciplines.
Established engineers and technologists, working in building services and faced with the challenge of new areas of responsibility.
Engineers who want to develop technical understanding and expertise across the multi-disciplines of building services engineering.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in building services engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with building services engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.

Course Content

Modes of Study

1 Year Full-Time: The taught element of the course (September to April) includes seven modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

3-5 Years Distance Learning: The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to study yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.

Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Typical Modules

The course comprises four core modules, three technical modules and a dissertation. The taught modules are:

Core Modules:

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Energy Conversion Technologies
Dissertation

Technical Modules:

Building Management and Control Systems
Design of Fluid Services and Heat Transfer Equipment
Building Services Design and Management

Special Features

There are several advantages in choosing the Brunel Building Services programme:

Award-winning courses: Building Services Engineering courses have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: It is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: Emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Collaborative research
Engineering at Brunel benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Additioanlly we are seeking reaccreditation with the Energy Institute.

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of the academic year.
Examinations are normally taken in May. MSc dissertation project normally is carried out over four months (full-time students) or one year (distance learning students) and it is accessed by submission of an MSc dissertation.

Read less
This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility. Read more

About the course

This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility.

It caters to the worldwide demand for building services engineering managers who have a sound knowledge of engineering and management principles – and the ability to apply this knowledge to complex situations.

Management modules cover engineering finance and accounting, people management, business organisation and facilities and contract management.

Aims

Building Service Engineers help buildings to deliver on their potential by working with architects and construction engineers to produce buildings that offer the functionality and comfort we expect, with the minimum impact on our environment. They design the lighting appropriate for the space, the heating, cooling, ventilation and all systems that ensure comfort, health and safety in all types of buildings, residential commercial and industrial.

Building services engineering is an interdisciplinary profession. It involves the specification, design, installation and management of all the engineering services associated with the built environment.

With the growing complexity of engineering services in modern buildings and the significance of energy conservation and pollution control, the role of the building services engineer is becoming increasingly important.

As an interdisciplinary profession that involves the specification, design, installation and management of all the engineering services associated with the built environment, comfort and function also need to be combined – which calls for engineers with a wide range of knowledge and skills.

This MSc programme is for:

Recent engineering and technology graduates, moving into building services and related disciplines.
Established engineers and technologists, working in building services and faced with the challenge of new areas of responsibility.
Engineers who want to develop technical understanding and expertise across the multi-disciplines of building services engineering.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in building services engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with building services engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.

Course Content

Modes of Study
3-5 Years Distance Learning

The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to suit yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.

Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Compulsory Modules

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Engineering Finance and Accounting
Management of People in Engineering Activities
Organisation of Engineering Business
Management of Facilities and Engineering Contracts
Dissertation

Students should choose one of the two themes below:

Theme A - Traditional

Energy Conversion Technologies
This element provides a broad introduction to the principles of energy conversion and thermodynamic machines and demonstrates their application to energy conversion and management in buildings. Emphasis is placed on refrigeration plant, energy conversion plant and energy management.
Refrigeration covers the basic principles and components of vapour compression systems, heat pumps and absorption systems.
Energy Conversion considers power cycles, combined heat and power, combustion processes, boiler plant, thermal energy storage and environmental impacts of plant operation.

Theme B - Renewable

Renewable Energy Technologies
This element includes: energy sources, economics and environmental impact, energy storage technologies, the role of renewables, solar thermal, solar electricity, wind power generation, hydro, tidal and wave power, biofuels, building integrated renewables.

Special Features

There are several advantages in choosing Brunel's Building Services programme:

Award-winning courses: Building Services Engineering courses at Brunel have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: it is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Accreditation

The course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng).

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May.
Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Read less
Motorsport is one of the world's most dynamic, competitive industries - and engineers that master their craft have almost unlimited career opportunities. Read more

About the course

Motorsport is one of the world's most dynamic, competitive industries - and engineers that master their craft have almost unlimited career opportunities.

This MSc in Automotive Motorsport Engineering at Brunel equips graduates with the qualities and transferable skills they need to flourish at a senior level in an exacting industry.

The comprehensive curriculum covers a wide range of specialist skills sought within the industry – including core modules in:

Research methods and sustainable engineering
Racing team management and vehicle testing
Advanced vehicle dynamics, IC engines, materials and manufacturing

You’ll gain practical experience through a team project, and complete a dissertation of your choice, typically covering a design, experimental, computing or analysis subject.

Aims

The speed of change in motorsport is relentless -and engineers need to inovate to succeed. From F1 pit lane mechanics to testing specialists, engine and aerodynamics maestros to team managers and financial controllers, graduates from this course have a host of exciting and varied career options open to them.

The MSc programme at Brunel University helps you develop imagination and creativity to follow a successful engineering career with a mix of modules covering automotive and motorsport engineering topics, which delivers an integrating layer on top of subject specific first degree or professional skills.

Its primary focus is to create Master's degree graduates who are well equipped with the knowledge and skills to work in a multi discipline subject area, typically encountered in the automotive and motorsport engineering industry.

Course Content

The course will allow students the option of specialising in automotive engineering or motorsport engineering, both in the optional modules and the dissertation.

Every student also produces a group project, usually carried out with four or five other students. The group project involves the design, manufacture, assembly, and testing of a single seater racing vehicle, that will take part in the annual Formula Student competition in July with over 70 teams competing in the event.

Compulsory modules:

Research Methods and Sustainable Engineering
Racing Team Management and Vehicle Testing
Advanced Vehicle Dynamics, IC Engines, Materials and Manufacturing
Major Group Project
Dissertation

Optional Modules
Students choose two of the four modules below:

Advanced Modelling and Design
Advanced Thermofluids
Racing Legislation, Finance and Sponsorship
Racing Vehicle Design and Performance

Special Features

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Brunel Automotive Lecture Series
Brunel’s Automotive Lecture Series is a special feature of the taught programmes in the areas of automotive and motorsport engineering. The Series consists of talks on technology and careers by industry leaders, alumni and expert technologists appropriate not only for late stage undergraduate and postgraduate students but also for researchers in the these areas. Topics include themes from the broader automotive and motorsport industry and its technologies including advanced powertrains, vehicle testing and advanced components.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The Automotive and Motorsport Engineering MSc at Brunel University is accredited by the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Assessment

Modules are taught over eight months (from October to May) and are assessed by a balanced combination of examination and assignment. For the final four months (June to September), students will conduct an individual project and prepare a dissertation, allowing the opportunity to undertake original research relating to the automotive and motorsport engineering fields.

The group project is conducted throughout the year and is assessed by means of project logbooks, oral presentations and final project reports.

Read less
The world is recognising that buildings need to consume less energy in the future – and this course develops your building services engineering knowledge with a focus on sustainable design. Read more

About the course

The world is recognising that buildings need to consume less energy in the future – and this course develops your building services engineering knowledge with a focus on sustainable design.

You will learn about renewable energy technologies, efficient ventilation, air conditioning and energy conversion technologies in the programme, and can choose from a broad range of dissertation topics.

The course is available on either a one-year, full-time or three-to-five-year, distance-learning basis.

Aims

The era of zero emission building is within grasping distance of the mass construction industry – creating a huge demand for specialists with the skills to design and project manage effectively.

The aim of this programme is to respond to the worldwide demand for building services engineers and managers who have a sound knowledge of engineering principles and the ability to apply this knowledge to the complex situations prevailing within the building services industry.

Course Content

Modes of Study

1-Year Full-Time
The taught element of the course (September to April) includes seven modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

3-to-5-Years Distance-Learning
The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to suit yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.
Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Typical Modules

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Energy Conversion Technologies
Building Services Design and Management
Renewable Energy Technologies
Energy Efficient Ventilation for Buildings
Dissertation

Special Features

There are numerous advantages in choosing the Brunel Building Services programme:

Award-winning courses: Building Services Engineering courses have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: It is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: Emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Collaborative research
Engineering at Brunel benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Additionally we are seeking reaccreditation with the Energy Institute.

Teaching

Students are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May/June.
Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Read less
This specialist course has been developed to equip graduate engineers with the skills required of a highly demanding aerospace industry. Read more

About the course

This specialist course has been developed to equip graduate engineers with the skills required of a highly demanding aerospace industry.

Taught modules are balanced with practical and challenging individual and group aerospace project work. You will learn about aircraft design aerodynamics, space mechanics, spacecraft design, propulsion systems and the role of flight simulation in aerospace at an
advanced level.

Practical projects typically include the design, build and testing of a scale aircraft, computational fluid dynamics and structural analysis modelling of a critical aerospace component and flight performance evaluation using a flight simulator.

MSc Aerospace Engineering is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Aims

Although the course has a distinct specialist and technical flavour, the MSc also seeks to provide graduates with a raft of non-technical skills to enable them to realise their professional potential to its fullest.

To this end, the course provides modules that cover topics in strategic management, enterprise, research and innovation, as well as exploring issues that are of special importance to the future of the aerospace industry, such as safety, security, and sustainability.

Course Content

The MSc Aerospace Engineering course consists of five taught modules, a group project, and an individual project and dissertation.

Compulsory Modules

Design and Analysis of Aerospace Vehicles
Advanced Aerodynamics, Propulsion Systems, and Space Mechanics
Current Topics in Aerospace
Strategic Management Innovation and Enterprise
Research Methodology and Sustainable Engineering
Group Project in Aerospace Engineering
Aircraft Structures, Loads and Aeroelasticity
Dissertation

Special Features

Highly rated by students

Mechanical Engineering at Brunel ranks highly in the Guardian league tables for UK universities, with a student satisfaction score of 86.4% in 2015. Postgraduate students can therefore expect to benefit from an experienced and supportive teaching base whilst having the opportunity to thrive in a dynamic and high-profile research environment.

Outstanding facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Strong links with industry

We regularly consult aerospace engineering experts to keep our programmes up to date with industry needs. Read more about how we integrated industrial expertise into an MEng Aerospace Engineering module.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

Aerospace Engineering is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Assessment

Modules are taught over eight months (from October to May) and are assessed by a balanced combination of examination and assignment.

Read less
This course aims to produce graduates with qualities and transferable skills for demanding employment in the engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level. Read more

About the course

This course aims to produce graduates with qualities and transferable skills for demanding employment in the engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Students may elect to follow one of two streams: Thermofluids or Solid Body Mechanics.

Engineering courses within the Department are underpinned by research activities in aerospace engineering, automotive/motorsport engineering, solid and fluid mechanics, and energy and the environment. Staff generate numerous publications, conference presentations and patents, and have links with a wide range of institutions both within and outside the UK.

Aims

Mechanical engineers apply their scientific knowledge to solve problems and design machines that help us enjoy a better lifestyle. They have an enviable choice of industries open to them and this advanced course helps you develop the versatility to deal with complex challenges faced by senior engineers.

On this course you will:
Develop the versatility and depth to deal with new and unusual challenges across a range of engineering areas
Develop imagination and creativity to enable you to follow a successful engineering career with national and international companies and organisations
Continue your professional development to Chartered Engineer status with confidence and acquire new skills at the highest level.

Brunel offer a number of mechanical engineering MSc courses, all accredited by professional institutes as appropriate additional academic study (further learning) for thos seeking to become qualified to register as Chartered Engineers (CEng).

Our collaborative research with numerous outside organisations includes major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Accrediting professional institutes vary by course and include The Institute of Mechanical Engineers (IMechE),The Energy Institute (EI) and The Chartered Institute of Building Services Engineers (CIBSE).

Course Content

During the first two terms (September - March) you will take eight modules, out of which:
Four are the same for both streams (compulsory modules - 15 credits each)
The other four (15 credits each) are different for the two streams.

In May the final examinations for the taught modules will take place and in their third term (June - September) students will complete the final dissertation.

You have the option to choose one of two specialisations, or ‘streams,’ for your dissertation:
Thermofluids, or
Solid Body Mechanics.

Compulsory Modules

Strategic Management, Innovation and Enterprise
Research Methods and Sustainable Engineering
Advanced Modelling and Design
Computer Aided Engineering 1
Dissertation (Individual project)

Optional Modules

Choose one of the two themes below:

Theme 1 – Thermofluids
Advanced Thermofluids
Advanced Heat and Mass Transfer
Energy Conversion Technologies
Renewable Energy Technologies

Theme 2 – Solid Body Mechanics
Advanced Solid Body Mechanics
Dynamics and Modal Analysis
Structural Design and FEA
Human Factors in Design

Special Features

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students

The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Accreditation

Advanced Mechanical Engineering is accredited by the Institution of Mechanical Engineering (IMechE). This will provide a route to Chartered Engineer status in the UK.
At Brunel we provide many opportunities and experiences within your degree programme and beyond – work-based learning, professional support services, volunteering, mentoring, sports, arts, clubs, societies, and much, much more – and we encourage you to make the most of them, so that you can make the most of yourself.

Read less
This MSc programme offers very relevant modules in highly sought-after engineering and scientific subjects. Read more
This MSc programme offers very relevant modules in highly sought-after engineering and scientific subjects. Computational modelling has become an essential part of industrial product development; the manufacturing sector in particular has been experiencing a significant uptake of computational engineering technologies to increase its competitiveness in the global market. This programme is designed for engineering and science graduates, providing a wide exploration of these new and advanced technologies. Problem based learning facilities the application of the modelling techniques.

Subject guide and modules

The range of modules reflects the nature of engineering modelling and the uses it is put to in engineering and commercial practice.
Core modules:
-Computational Fluid Dynamics and Applications (ME4501)
-Practical Numerical Methods (ME4510)
-CAD Principles and Materials Selection (ME4505)
-Advanced Computer Aided Design (ADVCAD) (ME4518)
-Major Project (PD4000)
-Research Project (PD4001)
-Renewable Energy (ME4504)
-Sustainable Design (PD4005)

Elective Modules:
-Solid Mechanics and Finite Element Analysis (ME3070)
-Strategic Finance (EM4001)
-Project Management (EM4003)
-New Product Development (EM4006)
-Innovation Business Development (PD4008)
-Finite Element Analysis: Theory and Application (ME4502)

Learning, teaching & assessment

The modules in this programme are delivered with lectures and lab-based tutorials giving a good balance between scientific methodologies and hands-on practice.

There is a heavy emphasis on the use of computational engineering methods and this is reflected in the way the programme is delivered and assessed.

Modules are assessed through either course work or exams. The major project is assessed by dissertation; examples of past major projects include development of CFD code, aero and structural dynamics of vehicles and aircraft, and analysis of development of industrial machines.

Personal development

Along with the range of technical skills, the Programme aims to develop self reliance, project management, IT communications and research skills.

You will develop and deliver a major dissertation and the necessary project management processes. You will also make several individual presentations and get chance to hone your interview techniques.

Career prospects

Career prospects for graduates are excellent. The programme puts practical engineering modelling, research and project management skills in to the hands of graduate. This helps career progression in industries where computer-based technology is required including manufacturing, R&D, science, IT, design and academia.

Recent graduates have been employed in a range of jobs including:
-Product development with a manufacturer of domestic heating products
-Computer aided design with a manufacturer of military/surveillance equipment

Professional accreditation

The MSc Mechanical Engineering (Modelling) is accredited by the Institution of Mechanical Engineers (IMechE) for the purpose of meeting the educational requirements of Chartered Engineer (CEng).

Read less
This highly focused MSc explores some of the mathematics behind modern secure information and communications systems, specialising in mathematics relevant for public key cryptography, coding theory and information theory. Read more
This highly focused MSc explores some of the mathematics behind modern secure information and communications systems, specialising in mathematics relevant for public key cryptography, coding theory and information theory. During the course critical awareness of problems in information transmission, data compression and cryptography is raised, and the mathematical techniques which are commonly used to solve these problems are explored.

The Mathematics Department at Royal Holloway is well known for its expertise in information security and cryptography and our academic staff include several leading researchers in these areas. Students on the programme have the opportunity to carry out their dissertation projects in cutting-edge research areas and to be supervised by experts.

The transferable skills gained during the MSc will open up a range of career options as well as provide a solid foundation for advanced research at PhD level.

See the website https://www.royalholloway.ac.uk/mathematics/coursefinder/mscmathematicsofcryptographyandcommunications(msc).aspx

Why choose this course?

- You will be provided with a solid mathematical foundation and a knowledge and understanding of the subjects of cryptography and communications preparing you for research or professional employment in this area.

- The mathematical foundations needed for applications in communication theory and cryptography are covered including Algebra, Combinatorics Complexity Theory/Algorithms and Number Theory.

- You will have the opportunity to carry out your dissertation project in a cutting-edge research area; our dissertation supervisors are experts in their fields who publish regularly in internationally competitive journals and there are several joint projects with industrial partners and Royal Holloway staff.

- After completing the course former students have a good foundation for the next step of their career both inside and outside academia.

Department research and industry highlights

The members of the Mathematics Department cover a range of research areas. There are particularly strong groups in information security, number theory, quantum theory, group theory and combinatorics. The Information Security Group has particularly strong links to industry.

Course content and structure

You will study eight courses as well as complete a main project under the supervision of a member of staff.

Core courses:
Advanced Cipher Systems
Mathematical and security properties of both symmetric key cipher systems and public key cryptography are discussed as well as methods for obtaining confidentiality and authentication.

Channels
In this unit, you will investigate the problems of data compression and information transmission in both noiseless and noisy environments.

Theory of Error-Correcting Codes
The aim of this unit is to provide you with an introduction to the theory of error-correcting codes employing the methods of elementary enumeration, linear algebra and finite fields.

Public Key Cryptography
This course introduces some of the mathematical ideas essential for an understanding of public key cryptography, such as discrete logarithms, lattices and elliptic curves. Several important public key cryptosystems are studied, such as RSA, Rabin, ElGamal Encryption, Schnorr signatures; and modern notions of security and attack models for public key cryptosystems are discussed.

Main project
The main project (dissertation) accounts for 25% of the assessment of the course and you will conduct this under the supervision of a member of academic staff.

Additional courses:
Applications of Field Theory
You will be introduced to some of the basic theory of field extensions, with special emphasis on applications in the context of finite fields.

Quantum Information Theory
‘Anybody who is not shocked by quantum theory has not understood it' (Niels Bohr). The aim of this unit is to provide you with a sufficient understanding of quantum theory in the spirit of the above quote. Many applications of the novel field of quantum information theory can be studied using undergraduate mathematics.

Network Algorithms
In this unit you will be introduced to the formal idea of an algorithm, when it is a good algorithm and techniques for constructing algorithms and checking that they work; explore connectivity and colourings of graphs, from an algorithmic perspective; and study how algebraic methods such as path algebras and cycle spaces may be used to solve network problems.

Advanced Financial Mathematics
In this unit you will investigate the validity of various linear and non-linear time series occurring in finance and extend the use of stochastic calculus to interest rate movements and credit rating;

Combinatorics
The aim of this unit is to introduce some standard techniques and concepts of combinatorics, including: methods of counting including the principle of inclusion and exclusion; generating functions; probabilistic methods; and permutations, Ramsey theory.

Computational Number Theory
You will be provided with an introduction to many major methods currently used for testing/proving primality and for the factorisation of composite integers. The course will develop the mathematical theory that underlies these methods, as well as describing the methods themselves.

Complexity Theory
Several classes of computational complexity are introduced. You will discuss how to recognise when different problems have different computational hardness, and be able to deduce cryptographic properties of related algorithms and protocols.

On completion of the course graduates will have:
- a suitable mathematical foundation for undertaking research or professional employment in cryptography and/or communications

- the appropriate background in information theory and coding theory enabling them to understand and be able to apply the theory of communication through noisy channels

- the appropriate background in algebra and number theory to develop an understanding of modern public key cryptosystems

- a critical awareness of problems in information transmission and data compression, and the mathematical techniques which are commonly used to solve these problems

- a critical awareness of problems in cryptography and the mathematical techniques which are commonly used to provide solutions to these problems

- a range of transferable skills including familiarity with a computer algebra package, experience with independent research and managing the writing of a dissertation.

Assessment

Assessment is carried out by a variety of methods including coursework, examinations and a dissertation. The examinations in May/June count for 75% of the final average and the dissertation, which has to be submitted in September, counts for the remaining 25%.

Employability & career opportunities

Our students have gone on to successful careers in a variety of industries, such as information security, IT consultancy, banking and finance, higher education and telecommunication. In recent years our graduates have entered into roles including Principal Information Security Consultant at Abbey National PLC; Senior Manager at Enterprise Risk Services, Deloitte & Touche; Global IT Security Director at Reuters; and Information Security manager at London Underground.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
This course covers a wide range of topics from both applied and applicable mathematics and is aimed at students who want to study the field in greater depth, in areas which are relevant to real life applications. Read more
This course covers a wide range of topics from both applied and applicable mathematics and is aimed at students who want to study the field in greater depth, in areas which are relevant to real life applications.

You will explore the mathematical techniques that are commonly used to solve problems in the real world, in particular in communication theory and in physics. As part of the course you will carry out an independent research investigation under the supervision of a member of staff. Popular dissertation topics chosen by students include projects in the areas of communication theory, mathematical physics, and financial mathematics.

The transferable skills gained on this course will open you up to a range of career options as well as provide a solid foundation for advanced research at PhD level.

See the website https://www.royalholloway.ac.uk/mathematics/coursefinder/mscmathematicsforapplications.aspx

Why choose this course?

- You will be provided with a solid mathematical foundation and knowledge and understanding of the subjects of cryptography and communications, preparing you for research or professional employment in this area.

- The Mathematics Department at Royal Holloway is well known for its expertise in information security and cryptography. The academics who teach on this course include several leading researchers in these areas.

- The mathematical foundations needed for applications in communication theory and cryptography are covered including Algebra, Combinatorics Complexity Theory/Algorithms and Number Theory.

- You will have the opportunity to carry out your dissertation project in a cutting-edge research area; our dissertation supervisors are experts in their fields who publish regularly in internationally competitive journals and there are several joint projects with industrial partners and Royal Holloway staff.

- After completing the course students have a good foundation for the next step of their career both inside and outside academia.

Department research and industry highlights

The members of the Mathematics Department cover a range of research areas. There are particularly strong groups in information security, number theory, quantum theory, group theory and combinatorics. The Information Security Group has particularly strong links to industry.

Course content and structure

You will study eight courses and complete a main project under the supervision of a member of staff.

Core courses:
Theory of Error-Correcting Codes
The aim of this unit is to provide you with an introduction to the theory of error-correcting codes employing the methods of elementary enumeration, linear algebra and finite fields.

Advanced Cipher Systems
Mathematical and security properties of both symmetric key cipher systems and public key cryptography are discussed, as well as methods for obtaining confidentiality and authentication.

Main project
The main project (dissertation) accounts for 25% of the assessment of the course and you will conduct this under the supervision of a member of academic staff.

Additional courses:
Applications of Field Theory
You will be introduced to some of the basic theory of field extensions, with special emphasis on applications in the context of finite fields.

Quantum Information Theory
‘Anybody who is not shocked by quantum theory has not understood it' (Niels Bohr). The aim of this unit is to provide you with a sufficient understanding of quantum theory in the spirit of the above quote. Many applications of the novel field of quantum information theory can be studied using undergraduate mathematics.

Network Algorithms
In this unit you will be introduced to the formal idea of an algorithm, when it is a good algorithm and techniques for constructing algorithms and checking that they work; explore connectivity and colourings of graphs, from an algorithmic perspective; and study how algebraic methods such as path algebras and cycle spaces may be used to solve network problems.

Advanced Financial Mathematics
In this unit you will investigate the validity of various linear and non-linear time series occurring in finance and extend the use of stochastic calculus to interest rate movements and credit rating;

Combinatorics
The aim of this unit is to introduce some standard techniques and concepts of combinatorics, including: methods of counting including the principle of inclusion and exclusion; generating functions; probabilistic methods; and permutations, Ramsey theory.

Computational Number Theory
You will be provided with an introduction to many major methods currently used for testing/proving primality and for the factorisation of composite integers. The course will develop the mathematical theory that underlies these methods, as well as describing the methods themselves.

Complexity Theory
Several classes of computational complexity are introduced. You will discuss how to recognise when different problems have different computational hardness, and be able to deduce cryptographic properties of related algorithms and protocols.

On completion of the course graduates will have:
- knowledge and understanding of: the principles of communication through noisy channels using coding theory; the principles of cryptography as a tool for securing data; and the role and limitations of mathematics in the solution of problems arising in the real world

- a high level of ability in subject-specific skills, such as algebra and number theory

- developed the capacity to synthesise information from a number of sources with critical awareness

- critically analysed the strengths and weaknesses of solutions to problems in applications of mathematics

- the ability to clearly formulate problems and express technical content and conclusions in written form

- personal skills of time management, self-motivation, flexibility and adaptability.

Assessment

Assessment is carried out by a variety of methods including coursework, examinations and a dissertation. The examinations in May/June count for 75% of the final average and the dissertation, which has to be submitted in September, counts for the remaining 25%.

Employability & career opportunities

Our students have gone on to successful careers in a variety of industries, such as information security, IT consultancy, banking and finance, higher education and telecommunication. In recent years our graduates have entered into roles including Principal Information Security Consultant at Abbey National PLC; Senior Manager at Enterprise Risk Services, Deloitte & Touche; Global IT Security Director at Reuters; and Information Security Manager at London Underground.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
This course is designed to respond to a growing shortage of workforce in mechanical engineering sectors. It intends to equip our students with relevant and up-to-date knowledge and skills for their engineering competencies and careers. Read more

Why take this course?

This course is designed to respond to a growing shortage of workforce in mechanical engineering sectors. It intends to equip our students with relevant and up-to-date knowledge and skills for their engineering competencies and careers. Students have a chance to broaden and deepen their knowledge in wide range of mechanical engineering subjects. This enables our students to undertake an advanced treatment of core mechanical engineering disciplines such as design and critical evaluation of structural integrity, computation fluid dynamics, advanced materials, energy and control systems.

What will I experience?

On this course you can:

Use simulation and modelling application software for virtual design and manufacturing
Utilise our strong links with companies and investigate real industrial problems to enhance your understanding of the profession
Tie in the topic of your individual project with one of our research groups and benefit from the expertise of our actively researching academics

What opportunities might it lead to?

This course has been accredited by the Institution of Mechanical Engineers (IMechE) and Institution of Engineering and Technology (IET), meeting the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Design
Research and development
Product manufacture
Project management

Module Details

You will study several key topics that will help equip you to work as a mechanical engineer in a broad spectrum of mechanical engineering business activity management, research, design and development roles. You will also complete a four-month individual project tailored to your individual interests that can take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

Structural Integrity: Contemporary approaches are applied to the evaluation of mixed mode fracture and fatigue failure. Dynamic plastic responses of structures and the performance of composite structures are evaluated.

Industrial Control Systems: This unit covers mathematical representation of control system models is developed principally using Laplace transforms. System behaviour and simulation is analysed with practical case studies, leading to control system specifications.

Advanced Materials: This unit is designed to deal with a wide range of advanced materials for engineering applications. Teaching will address analytical and numerical methods to assess the strength, stiffness, toughness, non-linearity behaviours, vibration and failures of engineering materials for component and structure design.

Energy Systems: This unit is designed to study the principles and techniques of operation of thermodynamics and combustion systems, as well as the provision and management of energy. The current and future requirements and trends in energy production and consumption are addressed.

Structural Application of Finite Elements: The use of finite element analysis techniques and software applied to structural problems is developed. Modelling with both isotropic and orthotropic materials is investigated, as well as such topics as cracking in dissimilar materials and composite laminates.

Computational Fluid Dynamics: A practical case study analysis approach is used for model formulation and CFD simulation. Fundamental principles are used to appraise the results of CFD analysis of problems with industrial applications.

Individual Project: A strong feature of the course is the individual project, which comprises a third of the course. We encourage students to undertake projects in industrial companies, but we can also use our extensive resources and staff skills to undertake projects within the University.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis with a significant amount of your time spent our laboratories. We pride ourselves on working at the leading-edge of technology and learning practices.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

The demand for more highly skilled mechanical engineers is always present and it is generally accepted that there is a current shortage of engineers.

When you graduate from this course you could find employment in a wide range of mechanical engineering-based careers, such as design, research and development and manufacturing. You could work for a large company, in the Armed Forces or in one of the many small companies within this sector. You could even start your own specialist company.

Roles our graduates have taken on include:

Mechanical engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
This course is for practising engineers or graduates who want to become technical specialists or managers in industrial and manufacturing companies. Read more
This course is for practising engineers or graduates who want to become technical specialists or managers in industrial and manufacturing companies. It increases your career potential by improving your:
-Knowledge and experience of materials engineering.
-Technical and problem solving skills.
-Management skills.
-Ability to take on greater responsibility.

You also develop your understanding of current best practice in the theory and application of leading edge technologies, processes and systems in materials engineering.

You study:
-Two management modules
-Five technical modules
-One optional module (option modules include: advanced manufacturing technology; CAD/CAM; engineering for sustainability; equipment engineering and design; finite element / finite difference analysis)

The international product development module involves working in multidisciplinary teams to develop a new product within a global market. This develops much sought after advanced technical and business skills. The project provides a supported environment to develop your ability in an area of your interest.

Professional recognition

Accredited by the Institute of Materials, Minerals and Mining (IOM3), on behalf of the Engineering Council for the purposes of partly meeting the academic requirement for registration as a Chartered Engineer; graduates who have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the further learning requirement for CEng accreditation.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-advanced-materials-engineering

Course structure

Full time – 12 to 18 months.
Part time – typically 3 years, maximum 6 years.
Starts September and January.

Core management modules
-Finance and marketing
-Project and quality management

Core technical modules
-Fatigue and fracture mechanics
-Advance investigatory techniques for materials engineers
-Advanced metallic materials
-Competitive materials technology
-Group project – international product development

Option modules (one from)
-Advanced manufacturing technology
-CAD/CAM
-Sustainability energy and environmental management

MSc
-Project and dissertation (60 credits)

Assessment: examination, coursework, project reports.

Other admission requirements

Overseas applicants from countries whose first language is not English must normally produce evidence of competence in English. An IELTS score of 6.0 with 5.5 in all skills (or equivalent) is the standard for non-native speakers of English. If your English language skill is currently below an IELTS score of 6.0 with a minimum of 5.5 in all skills we recommend you consider a Sheffield Hallam University Pre-sessional English course which will enable you to achieve an equivalent English level.

India
-A first class BE in an relevant discipline, or a good second class BE with a strong performance in mechanical and manufacturing subjects.

China
-A four year Bachelors degree in an relevant discipline, with an overall average of at least 80 per cent or equivalent.

Other countries
-A good honours degree or equivalent in an relevant subject.

Read less

Show 10 15 30 per page



Cookie Policy    X