• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Coventry University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
De Montfort University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Northumbria University Featured Masters Courses
"financial" AND "engineer…×
0 miles

Masters Degrees (Financial Engineer)

  • "financial" AND "engineer" ×
  • clear all
Showing 1 to 15 of 128
Order by 
The rigorous training on our MSc Financial Computing focuses on software engineering for large, dynamic and automated financial systems and finance models. Read more
The rigorous training on our MSc Financial Computing focuses on software engineering for large, dynamic and automated financial systems and finance models. This, alongside work on software design in a number of real-world financial systems, will enable you to become a leader in this field.

This course should interest you if you have a good first degree in computer science or engineering, or a BSc degree that provided a high level of programming expertise such as C++ and/or .NET. You receive training on the structure, instruments and institutional aspects of financial markets, banking, payment and settlement systems.

You will attain a high level of competence in software development, in the area of financial computing, for implementation in an electronic market environment, as we introduce you to information and communication technology and automation that underpins financial systems, including:
-Design issues relating to parallel and distributed networks
-Encryption, security and real-time constraints
-Straight Through Processing (STP)
-Quantitative finance
-Financial software architecture

Our Centre for Computational Finance and Economic Agents is an innovative and laboratory-based teaching and research centre, with an international reputation for leading-edge, interdisciplinary work combining economic and financial modelling with computational implementation.

Our research is geared towards real-world, practical applications, and many of our academic staff have experience of applying their findings in industry and in advising the UK government.

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

This course is taught by experts with both academic and industrial expertise in the financial and IT sectors. We bring together leading academics in the field from our Department of Economics, School of Computer Science and Electronic Engineering, and Essex Business School.

Our staff are currently researching the development of real-time trading platforms, new financial econometric models for real-time data, the use of artificially intelligent agents in the study of risk and market-based institutions, operational aspects of financial markets, financial engineering, portfolio and risk management.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

We have an extensive network of industrial contacts through our City Associates Board and our alumni, while our expert seminar series gives you the opportunity to work with leading figures from industry.

Our recent graduates have gone on to become quantitative analysts, portfolio managers and software engineers at various institutions, including:
-HSBC
-Mitsubishi UFJ Securities
-Old Mutual
-Bank of England

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-CCFEA MSc Dissertation
-Big-Data for Computational Finance
-Cloud Technologies and Systems
-High Performance Computing
-Introduction to Financial Market Analysis
-Professional Practice and Research Methodology
-Quantitative Methods in Finance and Trading
-Computer Security (optional)
-Constraint Satisfaction for Decision Making (optional)
-Creating and Growing a New Business Venture (optional)
-Digital Signal Processing (optional)
-E-Commerce Programming (optional)
-Financial Engineering and Risk Management (optional)
-High Frequency Finance and Empirical Market Microstructure (optional)
-IP Networking and Applications (optional)
-Learning and Computational Intelligence in Economics and Finance (optional)
-Mathematical Research Techniques Using Matlab (optional)
-Mobile & Social Application Programming (optional)
-Programming in Python (optional)
-Industry Expert Lectures in Finance (optional)

Read less
This MSc provides an ideal foundation for graduates who wish to pursue a career as software engineers. Read more
This MSc provides an ideal foundation for graduates who wish to pursue a career as software engineers. The programme provides the opportunity to undertake a significant group software engineering project sponsored by a financial services company, allowing students to specialise in software systems engineering from a financial computing perspective.

Degree information

Students gain instruction in all aspects of software engineering needed for the development of large, complex, highly dynamic, distributed software-intensive systems. The programme covers requirements engineering, software design, validation and verification, tools for the development of software intensive systems, and provides instruction in financial information systems.

Students undertake modules to the value of 180 credits.

The programme consists of seven core modules (105 credits), one optional module (15 credits) and a group project (60 credits).

Core modules
-Requirements Engineering and Software Architecture
-Software Abstractions and Systems Integration
-Validation and Verification
-Tools and Environments
-Financial Institutions and Markets
-Professional Practice
-Financial Information Systems

Optional modules
-Compliance, Risk and Regulation
-People and Security
-Networked Systems
-Distributed Systems and Security

Dissertation/report
All students participate in a group project, encompassing the full software development lifecycle and applying techniques learned, such as the technical skills of analysis, design and implementation.

Teaching and learning
The programme is delivered through a combination of lectures, written and laboratory exercises, and project work. Student performance is assessed through written exercises with modelling notations, laboratory exercises with tools and environments, unseen examination papers, and a significant, comprehensive group project.

Careers

This professionally oriented programme provides an ideal foundation for graduates who wish to pursue a career as a software architect or leader of software development organisations. It also provides an excellent introduction for those who want to pursue research in software systems engineering.

Graduates from UCL are keenly sought by the world's leading organisations, and many progress in their careers to secure senior and influential positions. UCL Computer Science graduates are particularly valued as a result of the department's international reputation, strong links with industry, and ideal location close to the City of London.

Graduates have found positions at global companies such as RBS and UBS.

Top career destinations for this degree:
-IT Developer, Microsoft
-Financial Assistant, ZhenHua Oil
-Software Engineer, Epsilon Net
-International Company Law, Université Paris-Sorbonne (Paris-Sorbonne University)
-MBA (Master of Business Administration), IFMR (Institute of Financial Management and Research)

Employability
There is, throughout the world, a strong demand for software engineers with solid foundations covering not only the programming aspects of software development, but also aspects related to requirements engineering, software architectures, system integration, and testing. Many surveys rank software engineering positions as among the best jobs in the world.

Following graduation, our students are generally hired as software engineers or software architects by large financial institutions, sometimes by institutions they have engaged with in the context of their MSc project.

Why study this degree at UCL?

UCL Computer Science is recognised as a world leader in teaching and research, and was one of the top-rated departments in the country according to the UK government's recent research assessment exercise.

Our Master's programmes have some of the highest employment rates and starting salaries, with graduates entering a wide variety of industries from entertainment to finance.

We take an experimental approach to our subject and place a high value on our extensive range of industrial collaborations. In the recent past, students have worked on projects and coursework in collaboration with Microsoft, IBM, and financial institutions such as JP Morgan, Citigroup and BNP Paribas.

Read less
Our MSc Computational Finance equips you with the core concepts and mathematical principles of modern quantitative finance, plus the operational skills to use computational packages (mainly Matlab) for financial modelling. Read more
Our MSc Computational Finance equips you with the core concepts and mathematical principles of modern quantitative finance, plus the operational skills to use computational packages (mainly Matlab) for financial modelling.

We provide practical, hands-on learning about how modern, highly computerised financial markets work, how assets should be priced, and how investors should construct a portfolio of assets. In addition to traditional topics in derivatives and asset pricing, we place a special emphasis on risk management in non-Gaussian environment with extreme events.

You master these areas through studying topics including:
-Non-linear and evolutionary computational methods for derivatives pricing and portfolio management
-Applications of calculus and statistical methods
-Computational intelligence in finance and economics
-Financial markets

You also graduate with an understanding of the use of artificial financial market environments for stress testing, and the design of auctions and other financial contracts.

Our Centre for Computational Finance and Economic Agents is an innovative and laboratory-based teaching and research centre, with an international reputation for leading-edge, interdisciplinary work combining economic and financial modelling with computational implementation.

Our research is geared towards real-world, practical applications, and many of our academic staff have experience of applying their findings in industry and in advising the UK government.

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

This course is taught by experts with both academic and industrial expertise in the financial and IT sectors. We bring together leading academics in the field from our departments of economics, computer science and business.

Our staff are currently researching the development of real-time trading platforms, new financial econometric models for real-time data, the use of artificially intelligent agents in the study of risk and market-based institutions, operational aspects of financial markets, financial engineering, portfolio and risk management.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

We have an extensive network of industrial contacts through our City Associates Board and our alumni, while our expert seminar series gives you the opportunity to work with leading figures from industry.

Our recent graduates have gone on to become quantitative analysts, portfolio managers and software engineers at various institutions, including:
-HSBC
-Mitsubishi UFJ Securities
-Old Mutual
-Bank of England

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-CCFEA MSc Dissertation
-Financial Engineering and Risk Management
-Introduction to Financial Market Analysis
-Learning and Computational Intelligence in Economics and Finance
-Professional Practice and Research Methodology
-Quantitative Methods in Finance and Trading
-Big-Data for Computational Finance (optional)
-Industry Expert Lectures in Finance (optional)
-Mathematical Research Techniques Using Matlab (optional)
-Programming in Python (optional)
-Artificial Neural Networks (optional)
-High Frequency Finance and Empirical Market Microstructure (optional)
-Machine Learning and Data Mining (optional)
-Trading Global Financial Markets (optional)
-Creating and Growing a New Business Venture (optional)
-Evolutionary Computation and Genetic Programming (optional)
-Constraint Satisfaction for Decision Making (optional)

Read less
On our MSc Algorithmic Trading, we equip you with the core concepts and quantitative methods in high frequency finance, along with the operational skills to use state-of-the-art computational methods for financial modelling. Read more
On our MSc Algorithmic Trading, we equip you with the core concepts and quantitative methods in high frequency finance, along with the operational skills to use state-of-the-art computational methods for financial modelling.

We enable you to attain an understanding of financial markets at the level of individual trades occurring over sub-millisecond timescales, and apply this to the development of real-time approaches to trading and risk-management.

The course includes hands-on projects on topics such as order book analysis, VWAP & TWAP, pairs trading, statistical arbitrage, and market impact functions. You have the opportunity to study the use of financial market simulators for stress testing trading strategies, and designing electronic trading platforms.

In addition to traditional topics in financial econometrics and market microstructure theory, we put special emphasis on areas:
-Statistical and computational methods
-Modelling trading strategies and predictive services that are deployed by hedge funds
-Algorithmic trading groups
-Derivatives desks
-Risk management departments

Our Centre for Computational Finance and Economic Agents is an innovative and laboratory-based teaching and research centre, with an international reputation for leading-edge, interdisciplinary work combining economic and financial modelling with computational implementation. We are supported by Essex’s highly rated Department of Economics, School of Computer Science and Electronic Engineering, and Essex Business School.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

This course is taught by experts with both academic and industrial expertise in the financial and IT sectors. We bring together leading academics in the field from our departments of economics, computer science and business.

Our staff are currently researching the development of real-time trading platforms, new financial econometric models for real-time data, the use of artificially intelligent agents in the study of risk and market-based institutions, operational aspects of financial markets, financial engineering, portfolio and risk management.

More broadly, our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

We have an extensive network of industrial contacts through our City Associates Board and our alumni, while our expert seminar series gives you the opportunity to work with leading figures from industry.

Our recent graduates have gone on to become quantitative analysts, portfolio managers and software engineers at various institutions, including:
-HSBC
-Mitsubishi UFJ Securities
-Old Mutual
-Bank of England

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-CCFEA MSc Dissertation
-Big-Data for Computational Finance
-High Frequency Finance and Empirical Market Microstructure
-Introduction to Financial Market Analysis
-Professional Practice and Research Methodology
-Quantitative Methods in Finance and Trading
-Trading Global Financial Markets
-Cloud Technologies and Systems (optional)
-Constraint Satisfaction for Decision Making (optional)
-Creating and Growing a New Business Venture (optional)
-Digital Signal Processing (optional)
-Evolutionary Computation and Genetic Programming (optional)
-Financial Engineering and Risk Management (optional)
-High Performance Computing (optional)
-Industry Expert Lectures in Finance (optional)
-Learning and Computational Intelligence in Economics and Finance (optional)
-Mathematical Research Techniques Using Matlab (optional)
-Programming in Python (optional)
-Text Analytics (optional)

Read less
The MSc Financial Mathematics draws on tools from applied mathematics, computer science, statistics and economic theory to prepare you for roles in which you will combine in-depth knowledge of financial products and risk with sophisticated technical and programming skills. Read more
The MSc Financial Mathematics draws on tools from applied mathematics, computer science, statistics and economic theory to prepare you for roles in which you will combine in-depth knowledge of financial products and risk with sophisticated technical and programming skills.

You will acquire solid knowledge of probability theory and stochastic processes, numerical analysis and programming languages, asset pricing theory and risk analysis, with special emphasis on valuation and risk management.

Typical career paths of graduates from our MSc Financial Mathematics include research positions (in both financial and academic institutions), or roles involving the development, management and improvement of derivatives models using advanced programming languages, and model validation such as Equity/Equity Derivatives Quant, Quantitative Financial Engineer, or Quantitative Risk Analyst.

This programme is rigorous with respect to the mathematics but also places great emphasis on linking theory with real world developments. You will often be exposed to the teaching of real world practitioners from the City of London.

Cass's proximity to the City of London, and our close links to many of its institutions, will help you to access outstanding networking and career opportunities.

Visit the website: http://www.cass.city.ac.uk/courses/masters/courses/financial-mathematics

Course detail

There are two Induction Weeks The Financial Mathematics course starts with two compulsory induction weeks, focused on:

• an introduction to careers in finance and the opportunity to speak to representatives from over 75 companies during a number of different industry specific fairs.

• a reminder course of advanced financial mathematics, statistics and basic computing which forms a prerequisite of the core modules in term 1.

Attendance is mandatory.

Format

To satisfy the requirements of the degree course students must complete:

• eight core courses (15 credits each)
and
• two additional core modules plus three electives (10 credits each)
or
• three electives (10 credits each) and an Applied Research Project (20 credits)
or
• one elective (10 credits) and a Business Research Project (40 credits)

Assessment

Assessment of modules on the MSc in Financial Mathematics, in most cases, is by means of coursework and unseen examination. Coursework may consist of standard essays, individual and group presentations, group reports, classwork, unseen tests and problem sets. Please note that any group work may include an element of peer assessment.

Career opportunities

Many graduates from the MSc in Financial Mathematics progress to one of two fields:

• derivatives valuation and portfolio management within investment houses
• research departments within banks and consultancy firms

Some examples of where graduates from the MSc in Financial Mathematics class of 2014 are working are:

• Bank of China - Management Trainee
• Santander - Credit Fraud Analyst
• Renaissance Re - Analyst
• Deutsche Bank - Bookrunner

How to apply

Apply here: http://www.city.ac.uk/study/postgraduate/applying-to-city

Funding

For information on funding, please follow this link: http://www.city.ac.uk/study/postgraduate/funding-and-financial-support

Read less
This MSc provides an ideal foundation for students wishing to advance their mathematical modelling skills. The programme teaches students the basic concepts which arise in a broad range of technical and scientific problems and illustrates how these may be applied in a research context to provide powerful solutions. Read more
This MSc provides an ideal foundation for students wishing to advance their mathematical modelling skills. The programme teaches students the basic concepts which arise in a broad range of technical and scientific problems and illustrates how these may be applied in a research context to provide powerful solutions.

Degree information

Students develop an understanding of the processes undertaken to arrive at a suitable mathematical model and are taught the fundamental analytical techniques and computational methods used to develop insight into system behaviour. The programme introduces a range of problems - industrial, biological and environmental - and associated conceptual models and solutions.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), three optional modules (45 credits), and a research dissertation (60 credits). The part-time option normally spans two years. The eight taught modules are spread over the two years. The research dissertation is taken in the summer of the second year.

Core modules
-Advanced Modelling Mathematical Techniques
-Nonlinear Systems
-Operational Research
-Computational and Simulation Methods
-Frontiers in Mathematical Modelling and its Applications

Optional modules
-Asymptotic Methods & Boundary Layer Theory
-Biomathematics
-Cosmology
-Evolutionary Game Theory and Population Genetics
-Financial Mathematics
-Geophysical Fluid Dynamics
-Mathematical Ecology
-Quantitative and Computational Finance
-Real Fluids
-Traffic Flow
-Waves and Wave Scattering

Dissertation/report
All MSc students undertake an independent research project, which culminates in a dissertation of approximately 15,000-words and a project presentation.

Teaching and learning
The programme is delivered through seminar-style lectures and problem and computer-based classes. Student performance is assessed through a combination of unseen examination and coursework. For the majority of courses, the examination makes up between 90–100% of the assessment. The project is assessed through the dissertation and an oral presentation.

Careers

Our graduates have found employment in a wide variety of organisations such as Hillier-Parker, IBM, Swissbank, Commerzbank Global Equities, British Gas, Harrow Public School, Building Research Establishment and the European Centre for Medium-Range Weather-Forecasting. First destinations of recent graduates include:
-R.T.E: Engineer
-Tower Perrins: Actuarist
-Deloitte: Quantitative Analyst
-UCL: Research Associate
-C-View: Quantitative Trader
-One-to-One: Maths Tutor
-UCL Research Degree - Mathematics
-Duff & Phelps Ltd: Financial Engineer
-Bank of Tokyo Mitsubishi: Assistant Compliance Officer

Employability
The finance, actuarial and accountancy professionals are constantly in demand for high-level mathematical skills and recent graduates have taken positions in leading finance-related companies such as UBS, Royal Bank of Scotland, Societe Generale, PricewaterhouseCoopers, Deloitte, and KPMG.

In the engineering sector, recent graduates from the MSc include a mathematical modeller at Steet Davies Gleave, a leading Transportation Planning Consultancy; and a graduate trainee at WesternGreco, a business segment of Schlumberger that provides reservoir imaging, monitoring, and development services. In addition, a number of graduates have remained in education either progressing to a PhD or entering the teaching profession.

Why study this degree at UCL?

UCL Mathematics is internationally renowned for its excellent individual and group research that involves applying modelling techniques to problems in industrial, biological and environmental areas.

The department hosts a stream of distinguished international visitors. In recent years four staff members have been elected fellows of the Royal Society, and the department publishes the highly regarded research journal Mathematika.

This MSc enables students to consolidate their mathematical knowledge and formulate basic concepts of modelling before moving on to case studies in which models have been developed for issues motivated by industrial, biological or environmental considerations.

Read less
The objective of the Specialised Programme in Quantitative Finance is to train top level specialists able to advance in today’s global financial sector characterised by constant change and continuous innovation. Read more
The objective of the Specialised Programme in Quantitative Finance is to train top level specialists able to advance in today’s global financial sector characterised by constant change and continuous innovation.

This 12-month programme has been developed to help graduates from engineering schools and universities, possessing a strong background in mathematics, computer science, physics and similar areas of expertise, launch their career in quantitative finance. After completing this specialised programme, graduates take up various positions like Risk Manager, Financial Engineer or ‘Quant’, Asset Manager, Fund Manager and others.

The academic courses include both the fundamentals of management as well as specialised courses like quantitative methods, economic and financial environments, life insurance and pension funds management. This academic part is complemented by a 6 month period in-company.

The Specialised Programme in Quantitative Finance takes place in our campus in Paris.

Read less
The master of science in computational finance is designed for students interested in computational or quantitative finance careers in banking, finance, and a growing number of additional industries. Read more

Program overview

The master of science in computational finance is designed for students interested in computational or quantitative finance careers in banking, finance, and a growing number of additional industries. Professionals in these fields use their strengths in business, modeling, and data analysis to understand and use complex financial models, often involving differential and stochastic calculus.

The program addresses a vital and growing career field, reaching beyond banking and finance. Typical job titles include risk analyst, research associate, quantitative analyst, quantitative structured credit analyst, credit risk analyst, quantitative investment analyst, quantitative strategist, data analyst, senior data analyst, fixed income quantitative analyst, and financial engineer. Computational finance is an excellent career option for technically-oriented professionals in the fields of business, math, engineering, economics, statistics, and computer science. Programming knowledge is highly preferred.

Plan of study

The curriculum offers an integration of finance, mathematics, and computing. The required mathematics courses have substantial financial content and the experiential computational finance course, which students take during the summer, makes use of skills learned in the mathematics, analytics, and finance courses taken up to that point. The program has a strong multidisciplinary nature and combines the expertise of four of RIT's colleges. The program is a full-time, 17-month curriculum beginning exclusively in the fall. The program ends with a required non-credit comprehensive exam based on the courses completed by the student.

Curriculum

Computational finance, MS degree, typical course sequence:
-Accounting for Decision Makers
-Survey of Finance
-Equity Analysis
-Debt Analysis
-Advanced Derivatives
-Mathematics for Finance I
-Mathematics for Finance II
-Analytics Electives
-Electives
-Computational Finance Experience

Other admission requirements

-Submit official transcripts (in English) from all previously completed undergraduate and graduate course work.
-Submit the results of the Graduate Management Admission Test (GMAT) or Graduate Record Exam (GRE) (GMAT preferred).
-Submit a personal statement (Applicants should explain why their background, please indicate mathematical and programming knowledge, and interests make them suitable for the program).
-Submit a current resume, and complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language. Minimum scores of 580 (paper-based) or 92 (Internet-based) are required. Scores from the International English Language Testing System (IELTS) will be accepted in place of the TOEFL exam. The minimum acceptable score is 7.0. The TOEFL or IELTS requirement is waived for native speakers of English or for those submitting transcripts from degrees earned at American institutions. For additional information on the IELTS, visit http://www.ielts.org.
-Completed applications for admission should be on file in the Office of Graduate Enrollment Services at least four weeks prior to registration for the next academic semester for students from the United States, and up to 10 weeks prior for international students applying for student visas.
-Accepted students can defer enrollment for up to one year. After one year, a new application must be submitted and will be re-evaluated based on the most current admission standards.

Read less
Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in the field… Read more
Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in the field, this MSc programme aims to provide a broad understanding of the basic principles of space technology and satellite communications together with specialised training in research methods and transferable skills, directly applicable to a career in the public and private space sectors.

Degree information

The Space Technology pathway is focussed on the application of space technology in industrial settings, and therefore has as its main objective to provide a sound knowledge of the underlying principles which form a thorough basis for careers in space technology, satellite communications and related fields. Students develop a thorough understanding of the fundamentals of:
-Spacecraft, satellite communications, the space environment, space operations and space project management.
-The electromagnetics of optical and microwave transmission, and of communication systems modelling.
-A range of subjects relating to spacecraft technology and satellite communications.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), four optional modules (60 credits), a Group Project (15 credits) and an Individual research Project (60 credits).

Core modules
-Space Science, Environment and Satellite Missions
-Space Systems Engineering
-Communications Systems Modelling Type
-Group Project

Optional modules - at least one module from the following:
-Spacecraft Design – Electronic Sub-systems
-Mechanical Design of Spacecraft
-Antennas and Propagation
-Radar Systems
-Space-based Communication Systems

At least one module from:
-Space Instrumentation and Applications
-Space Plasma and Magnetospheric Physics
-Principles and Practice of Remote Sensing
-Global Monitoring and Security
-Space Data Systems and Processing

Dissertation/report
All MSc students undertake an Individual research Project, which normally involves attachment to a research group, and culminates in a report of 10,000–12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, coursework problem tasks, team-based coursework exercises, presentations and tutorials. Student performance is assessed through unseen written examinations, coursework, and the individual and group projects.

Careers

The programme aims to prepare students for careers in space research or the space industry, or further research degrees.

First destinations of recent graduates include:
-ONERA: Research Engineer
-Hispassat: Telecommunications Engineer
-Detica: Engineer
-Equinox Consulting: Financial Consultant
-Murex: Financial Consultant
-Risk Management Solutions: Risk Analyst
-Defence Science and Technology Laboratory: Analyst
-School of Electronics & Computer Science IT-Innovation: Research Engineer
-EADS Astrium Ltd: Engineer
-Thales Space: Engineer

Why study this degree at UCL?

UCL Space & Climate Physics, located at the Mullard Space Science Laboratory, is a world-leading research organisation and is the largest university space science group in the UK.

It offers a unique environment at the forefront of space science research, where scientists and research students work alongside top engineers building and testing instruments for space as well as studying the data from these and other spaceborne and ground-based instruments.

The close contact that the laboratory enjoys with space agencies such as ESA and NASA and with industrial research teams encourages the development of transferable skills which enhance job prospects in industrial and research centres in the public and private space sectors.

Read less
The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles. Read more

About the course

The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles.

Brunel’s MSc in Water Engineering is unique in providing specialist knowledge on the critical sub-topics of water and wastewater management and engineering, desalination systems, building water services engineering, industrial waste water management, and water in health care.

The programme demonstrates the links between theory and practice by including input from our industrial partners and through site visits. This is a key aspect for establishing a competitive and high added value course that provides adequate links with industry.

Features of the course include:

Students’ skills in gathering and understanding complex information from a variety of sources (including engineering, scientific and socio-economic information) will be developed in an advanced research methods module. 

Issues relating to risk and health and safety will be introduced in the research methods module and built on in specialist modules. 

Generic modules in financial and project management will underpin specialist modules focusing on water engineering topics.

Real problem-solving examples – starting from basic principles, to the identified problem, the solution, the implementation process and was implemented and the end result. 

Real case studies – demonstrating how environmental and economic sustainability is considered within civil engineering, particularly in water resources management.

Aims

Problems associated with water resources, access, distribution and quality are amongst the most important global issues in this century. Water quality and scarcity issues are being exacerbated by rising populations, economic growth and climate change*.

Brunel's programme in Water Engineering aims to develop world class and leading edge experts on water sustainability who are able to tackle the industry’s complex challenges at a senior level. During the programme you will also learn about the development and application of models that estimate the carbon and water footprint within the energy and food sector.

The MSc is delivered by experienced industry professionals who bring significant practical experience to the course – and the University’s complete suite of engineering facilities and world-class research experience are set up for development and engineering of advanced systems, testing a variety of processes, designs and software tools.

*Recent figures indicate that 1.1 billion people worldwide do not have access to clean drinking water, while 2.6 billion do not have adequate sanitation (source: WHO/UNICEF 2005). 

Course Content

The primary aim of this programme is to create master’s degree graduates with qualities and transferable skills for demanding employment in the water engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Specific aims are as follows:

- To provide education at postgraduate level in civil engineering. 
- To develop the versatility and depth to deal with new, complex and unusual challenges across a range of water engineering issues, drawing on an understanding of all aspects of water engineering principles. 
- To develop imagination, initiative and creativity to enable graduates to follow a successful engineering career with national and international companies and organisations. 
- To provide a pathway that will prepare graduates for successful careers including, where appropriate, progression to Chartered Engineer status.

The programme will provide opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas:

Knowledge and understanding of:

- The principles of water engineering, including fluid mechanics, hydrology, and sustainable design. 
- Specialist areas that impact on the successful application of water engineering knowledge projects, e.g. sustainable construction management, financial management and risk analysis. 
- The interplay between engineering and sustainability in complex, real-world situations.

At the cognitive level students will be able to:

- Select, use and evaluate appropriate investigative techniques.
- Assemble and critically analyse relevant primary and secondary data.
- Recognise and assess the problems and critically evaluate solutions to challenges in managing water engineering projects.
- Evaluate the environmental and financial sustainability of current and potential civil engineering activities.

Personal and transferable skills that students develop will allow them to:

- Define and organise a substantial advanced investigation. 
- Select and employ appropriate advanced research methods. 
- Organise technical information into a concise, coherent document.
- Effectively employ a variety of communication styles aimed at different audiences. 
- Plan, manage, evaluate and orally-presented personal projects. 
- Work as part of, and lead, a team.

Typical Modules

Each taught module will count for 15 credits, approximating to 150 learning hours. The Master's programme can be taken full time, over 12 months. The first eight months of the full time course will eight taught modules. For the final four months, students will complete a dissertation counting for 60 credits. Modules cover:

Sustainable Project Management
GIS and Data Analysis
Water Infrastructure Engineering
Risk and Financial Management
Hydrology & Hydraulics
Water Treatment Engineering
Water Process Engineering
Research Methods
Civil Engineering Dissertation

Teaching

Our philosophy is to underpin theoretical aspects of the subject with hands-on experience in applying water engineering techniques. Although you may move on to project management and supervision roles, we feel it important that your knowledge is firmly based on an understanding of how things are done. To this end, industrial partners will provide guest lectures on specialist topics.

In addition to teaching, water engineering staff at Brunel are active researchers. This keeps us at the cutting edge of developments and, we hope, allows us to pass on our enthusiasm for the subject.

How many hours of study are involved?

Contact between students and academic staff is relatively high at around 20 hours per week to assist you in adjusting to university life. As the course progresses the number of contact hours is steadily reduced as you undertake more project-based work.

How will I be taught?

Lectures:
These provide a broad overview of the main concepts and ideas you need to understand and give you a framework on which to expand your knowledge by private study.
Laboratories:
Practicals are generally two- or three-hour sessions in which you can practise your observational and analytical skills, and develop a deeper understanding of theoretical concepts.
Design Studios:
In a studio you will work on individual and group projects with guidance from members of staff. You may be required to produce a design or develop a solution to an engineering problem. These sessions allow you to develop your intellectual ability and practice your teamwork skills.
Site visits:
Learning from real-world examples in an important part of the course. You will visit sites featuring a range of water engineering approaches and asked to evaluate what you see.
One-to-one:
On registration for the course you will be allocated a personal tutor who will be available to provide academic and pastoral support during your time at university. You will get one-to-one supervision on all project work.

Assessment

Several methods of assessment are employed on the course. There are written examinations and coursework. You will undertake projects, assignments, essays, laboratory work and short tests.

Project work is commonplace and is usually completed in groups to imitate the everyday experience in an engineering firm, where specialists must pool their talents to design a solution to a problem.

In this situation you can develop your management and leadership skills and ensure that all members of the group deliver their best. Group members share the mark gained, so it is up to each individual to get the most out of everyone else.

Special Features

Extensive facilities
Students can make the most of laboratory facilities which are extensive, modern and well equipped. We have recently made a major investment in our Joseph Bazalgette Laboratories which includes hydraulic testing laboratory equipment and facilities such as our open channel flow flumes.

Personal tutors
Although we recruit a large number of highly qualified students to our undergraduate, postgraduate and research degrees each year, we don’t forget that you are an individual. From the beginning of your time here, you are allocated a personal tutor who will guide you through academic and pastoral issues.

World-class research
The College is 'research intensive' – most of our academics are actively involved in cutting-edge research. Much of this research is undertaken with collaborators outside the University, including construction companies, water utilities, and other leading industrial firms. We work with universities in China, Poland, Egypt, Turkey, Italy, Denmark and Japan. This research is fed directly into our courses, providing a challenging investigative culture and ensuring that you are exposed to up-to-date and relevant material throughout your time at Brunel.

Strong industry links
We have excellent links with business and industry in the UK and overseas. This means:
Your degree is designed to meet the needs of industry and the marketplace.
The latest developments in the commercial world feed into your course.
You have greater choice and quality of professional placements.
We have more contacts to help you find a job when you graduate.

Visting Professors 
The Royal Academy of Engineering - UK’s national academy for engineering has appointed senior industrial engineers as visiting professors at Brunel University London.
The Visting Professors Scheme provides financial support for experienced industrial engineers to deliver face-to-face teaching and mentoring at a host of institutions. Our engineering undergraduates will benefit from an enhanced understanding of the role of engineering and the way it is practised, along with its challenges and demands. 

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course has been designed in close consultation with the industry and is accredited as a designated 'technical' MSc degree by the Join Board of Moderators (JBM). The JBM is made up of Institution of Highways and Transport and the Institution of Highway Engineeres respectively.

1. This means this course provides Further Learning for a Chartered Engineer who holds a CEng accredited first degree (full JBM listing of accredited degrees).
2. As a designated ‘technical’ MSc, it will also allow suitable holders of an IEng accredited first degree to meet the educational base for a Chartered Engineer.

Read less
This course will train physicists and engineers in the area of photonics, which is a key enabling technology, underpinning many areas of industry. Read more

Why this course?

This course will train physicists and engineers in the area of photonics, which is a key enabling technology, underpinning many areas of industry.

You'll have the opportunity to undertake a three-month research or development project based with one of our industrial partners such as M Squared Lasers.

We have a long tradition of cutting-edge photonics research, which supports our courses. Much of this work has resulted in significant industrial impact through our spin-out companies and academic-industrial collaborations.

You'll also have the opportunity to develop your entrepreneurial skills by taking courses delivered by the Hunter Centre for Entrepreneurship.

You’ll study

The course is made up of two semesters of taught classes, followed by a three-month research project based with one of our industrial partners. The majority of your classes are delivered by the Department of Physics and cover the following:
-research and grant writing skills, which are valuable in both academic and commercial settings
-project training, including entrepreneurial and innovation skills training and a literature survey preparing for the project in the company
-topics in photonics, covering laser physics, laser optics and non-linear optics
-optical design, where you will learn about advanced geometrical optics and apply this knowledge to the design of optical systems, through the use of modern optical design software
-photonic materials and devices, focusing on semiconductor materials physics and micro/nano-structures
-advanced photonic devices and applications, covering quantum well structures, waveguides and photonic crystals

These classes are complemented by two classes delivered by the Department of Electronic & Electrical Engineering, which look at:
-system engineering and electronic control which forms a key part of modern optical systems
-photonic systems, where fibre optic communications systems and principles of photonic networks are discussed

Work placement

You'll be based with one of our industrial partners for a three-month project placement. This is your opportunity to experience how research and development operate within a commercial environment. It'll also give you a chance to form strong links with industry contacts.

The project is put forward by the company and supervised by both industrial and academic staff. Training on relevant skills and background will be received before and during the project.

Facilities:
Scotland has a world-leading position in optics and photonics industry.Your project will be carried out mainly in the excellent facilities of our Scottish industry partners. Projects elsewhere in the UK and with international companies may also be possible.

Advanced research facilities are also available in:
-the Department of Physics here at Strathclyde
-the Institute of Photonics
-the Fraunhofer Centre for Applied Photonics

Our research is strongly supported in equipment and infrastructure. This includes a newly opened 3-storey wing in the John Anderson Building as part of a £13M investment programme in Physics. Furthermore, the IoP and FCAP have recently relocated into the University's Technology & Innovation Centre (TIC) which at £90 million TIC is Strathclyde’s single-biggest investment in research and technology collaboration capacity. This new centre will accelerate the way in which researchers in academia and industry collaborate and innovate together in a new specifically designed state-of-the-art building in the heart of Glasgow.

Guest lectures

You'll attend the seminar series of the Institute of Photonics and Fraunhofer Centre of Applied Photonics with distinguished guest speakers giving a first-hand overview of the rapid development in applied photonics research.

Learning & teaching

In semesters one and two, the course involves:
-lectures
-tutorials
-various assignments including a literature review
-workshops where you'll gain presentation experience

The courses include compulsory and elective classes from the Department of Electronic & Electrical Engineering.
Over the summer, you'll undertake a three-month project based on practical laboratory work in a partner company. You'll be supervised by the industrial partner and supported by an academic supervisor.

Assessment

Assessment methods are different for each class and include:
-written examinations
-marked homework consisting of problems and/or essay assignments
-presentations

Your practical project is assessed on a combination of a written report, an oral presentation, and a viva in which you're questioned on the project.

How can I fund my course?

Financial support for Scottish and EU students may be available on a case-by-case basis which will be supported by the industrial partners. Selection will be based on an excellent academic record and/or industrial experience and the promise of a successful career in Industrial Photonics.

Please indicate that you apply for such a scholarship in the "Funding" section of the application form. You'll also need to provide a CV and a statement explaining your interests and motivation with your application. This will inform the decision on a possible scholarship.

For more information, just get in touch with the Department of Physics.

Available scholarships:
We currently have a scholarship available for this course.

You must be able to demonstrate academic excellence based on your previous study along with the promise of a successful career in Industrial Photonics. Relevant previous industrial experience will be considered.

Deadline:
The first round of applications closes on 20th May 2016, and a second one will close on the 30th June 2016.

How to apply:
Apply for this scholarship via our scholarship search: https://www.strath.ac.uk/studywithus/scholarships/sciencescholarships/physicsscholarships/physicsindustrialphotonicsscholarships/

Careers

A degree in industrial photonics can set you up to work in a range of jobs in physics and positions in other industries.

Typically, it can lead you to photonic technologies in industrial corporate research and development units, production engineering and applied academic laboratories.

Work experience is key:
Employers want to know you can do the job so work experience is key.

This course has a strong focus on the relationship between academia and industry. It's a great opportunity to enhance your skills and provides a direct transition from university to the work place.

We have an excellent record of graduate employment in the Scottish, national and international optics and photonics industries.

Doctorate study:
If you're interested in practical work with impact but are also interested in a further academic qualification, you can move on to study an EngD or a CASE PhD studentship. These can lead to a doctorate within industry or in close collaboration with industry.

Job roles:
Our Physics graduates from photonics related courses have found employment in a number of different roles including:

-Medical Physicist
-Optical engineer
-Laser engineer
-Optical and laser production engineer
-Research and production engineer
-Senior Engineer
-Systems Engineer
-Software Engineer
-Spacecraft Project Manager
-Defence Scientist
-Oscar winner

Read less
The Earthquake Engineering with Disaster Management MSc combines specialist earthquake engineering knowledge with an understanding of the social, economic and political impact of earthquake events in order to produce engineers who can deliver holistic design solutions and are able to work in both engineering and disaster management roles. Read more
The Earthquake Engineering with Disaster Management MSc combines specialist earthquake engineering knowledge with an understanding of the social, economic and political impact of earthquake events in order to produce engineers who can deliver holistic design solutions and are able to work in both engineering and disaster management roles.

Degree information

Graduates will be able to:
-Determine the vulnerability of ordinary and special structures to seismic actions.
-Apply both current seismic codes and novel unconventional methodologies of seismic design, repair and assessment.
-Assess the adequacy, economic viability and life-saving effectiveness of pre-event risk mitigation and post-event risk management solutions.

Students undertake modules to the value of 180 credits. The programme consists of seven core modules (105 credits), one optional module (15 credits) and a research project (60 credits). A Postgraduate Diploma (120 credits) consisting of seven core modules (105 credits) and one optional module (15 credits) is offered.

Core modules
-Engineering Seismology & Earthquake Geotechnics
-Structural Dynamics
-Disaster Risk Reduction
-Introduction to Seismic Design of Structures
-Advanced Seismic Design Structures
-Seismic Risk Assessment
-Seismic Loss Mitigation and Strengthening of Low-Engineered Buildings

Optional modules
-Advanced Structural Analysis
-Earthquake Seismology and Earthquake Hazard
-Finite Element Modelling and Numerical Methods
-Natural and Environmental Disasters
-Integrating Science into Risk and Disaster Reduction

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of approximately 12,000 words

Teaching and learning
Taught modules have been developed and are delivered in collaboration with experts from industry and non-governmental organisations. In addition a field trip is organised every year to an earthquake affected region.

Careers

Students graduate with strong technical engineering skills and rarely taught knowledge of risk evaluation. They are also able to understand the wider implications of disasters and are exposed to both industry and non-governmental organisations (NGOs). Graduates have gone on to successful careers in the civil engineering industry, in international NGOs, in the financial sector, and in academia.

Top career destinations for this degree:
-Assistant Engineer, Mott MacDonald
-Engineer in HSE and Disaster Management, MHS, Mabna Sazeh Houshmand , Iran
-Road Maintenance Engineer, AKTOR
-PhD in Earthquake Sciences, University College London (UCL)
-PhD in Strengthening Buildings and Structure, The Cyprus University of Technology

Employability
The programme aims to create a new type of global earthquake engineer able to take a holistic approach to earthquake engineering and disaster management. Graduates of the programme will have developed the specialist skills necessary for a career in the engineering sector and other areas that require knowledge and understanding of earthquake engineering and disaster risk management/mitigation principles. The MSc is accredited by the Institute of Civil Engineers as a further learning programme that can count towards chartership.

Why study this degree at UCL?

UCL Civil, Environmental & Geomatic Engineering hosts EPICentre, a leading research centre in earthquake engineering, and provides an exciting environment in which to explore this new, multidisciplinary and constantly evolving science.

The programme has extensive links to industry through professional engineers and disaster managers who deliver lectures and seminars and support students on their research projects as industrial supervisors.

Students benefit from a voluntary field trip to the closest location of a recent major earthquake to study disaster management and the effects of the earthquake on the built environment, structural strengthening techniques and disaster management.

Read less
If numbers drive you, let Applied Statistics be your destination. Applied Statistics is a challenging field. With a Manderson degree, even when the numbers are stacked against them, our graduates are ready. Read more
If numbers drive you, let Applied Statistics be your destination. Applied Statistics is a challenging field. With a Manderson degree, even when the numbers are stacked against them, our graduates are ready.

Visit the website: http://manderson.cba.ua.edu/academics/departments/masters_program/master_of_science_in_applied_statistics

Course detail

The candidate for a graduate degree in Applied Statistics is normally expected to have completed courses in mathematics equivalent to two semesters of undergraduate calculus, and to have a working knowledge of computer programming and linear or matrix algebra.

Format and assessment

The M.S. degree in Applied Statistics requires 30 hours, half of which are track specific. There are two different tracks within this degree. These include: Statistics and Analytics. There are five required courses common to both tracks of study.

The electives may be earned in additional coursework with the approval of a faculty advisor. The program of related courses may vary from student to student and depends on the student's interests and academic background. When most of the coursework is completed, the student must pass a written comprehensive examination OR a professional exam such as the Actuarial P Exam, SAS Predictive Modeler Exam, or the ASQ Certified Quality Engineer Exam.

Required modules:

- ST 552 Applied Regression Analysis
- ST 553 Applied Multivariate Analysis
- ST 554 Mathematical Statistics I
- ST 555 Mathematical Statistics II
- ST 560 Statistical Methods

How to apply: http://graduate.ua.edu/prospects/application/

Fund your studies

Student Financial Aid provides comprehensive information and services regarding opportunities to finance the cost of education at The University of Alabama. We recognize that financial assistance is an important key to helping reach your educational and career goals. The financial aid staff is dedicated to making the financial aid process as straightforward as possible. Visit the website to find out more: http://financialaid.ua.edu/

Read less
Computer security is one of the key challenges in contemporary computing. You will gain critical knowledge within the cyber security and digital forensic domains, combining academic principles and industrial practice. Read more
Computer security is one of the key challenges in contemporary computing. You will gain critical knowledge within the cyber security and digital forensic domains, combining academic principles and industrial practice. The course is informed by current research in security and digital forensics, and is underpinned by our experience with external partners in law enforcement, financial institutions, and other knowledge transfer activities. Course specialisms include network security, penetration testing, incident response, malware analysis, cryptography, audit and compliance, and host and mobile digital forensics. The specialisation you gain in the taught modules is further developed through an extensive research-based MSc dissertation project, leading towards a mastery of a subject area and enhancing your particular specialism.

This MSc is also one of a very small number of courses certified by GCHQ, recognising UK universities which are excellent in Cyber Security.

What you’ll learn

This course focuses on the areas of securing computer, network and communications systems, incident response, and the forensic investigation of digital devices and networks. Computer security is a growth industry, and is vital in modern computing environments. You will gain foundation knowledge in all the key areas of computing cyber security, both defensive and offensive, as well as post incident response. The digital forensic aspects of the course include network and computer forensics, allowing you to develop the knowledge required to conduct computer-related investigations across networks, systems, and other digital devices. Cyber security and digital forensics are becoming significant computing disciplines, with an acknowledged skill shortage coupled with growing employment opportunities.

Our industry informed course combines thorough coverage of academic theory aligned with extensive hands-on practical activities, supported by online and blended materials with virtualised lab environments that complement our on-campus specialist facilities.

The School of Computing has developed close ties with industry, law enforcement, and the public sector, through partnerships with organisations such as Cisco Systems, Guidance Software, Dell Secure Works, NCA, NCC, Police Scotland, and many others. The course benefits from this by including many guest lecturers by industry experts. Through the dedicated cyber security and forensic research group extensive cutting edge research is also carried out in key domains by an ever growing cohort of Phd students. The programme also has an affiliation with The Cyber Academy here at Edinburgh Napier, which integrates formally with a range of international initiatives including into a European Centre of Excellence, along with the EU-funded DFET project, which is building a world class virtualised infrastructure for Cyber Security teaching and training, with strong links into law enforcement industry and academia across the World.

Modules

• Host-Based Forensics
• Network Security
• Security Audit and Compliance
• e-Security
• Incident Response and Malware Analysis
• Computer Penetration Testing
• Dissertation

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

The continued growth in the current requirement for cyber security and digital forensics professionals means there are a wide range of careers which can be followed after graduating from the course, such as security consultant/analyst, penetration tester, network security analyst, forensic investigator, audit/compliance consultant, security certification engineer, incident response analyst, cisco security engineer/architect, sys admin, network engineer.

The programme develops a range of key skills currently needed in industry, covering areas such as network security, penetration testing, security monitoring, incident response, malware analysis, operating systems, network and computer forensics, virtualisation and malware analysis. Materials from many professional courses are integrated into the curriculum, towards helping students prepare for sought after professional certification such as Cisco Security Certifications, CISSP, and CREST.

Study mode

This is a full-time course studied over one year. It requires an intensive period of study, involving lectures, tutorials, laboratory sessions and independent study.As a full-time student you'll take three 20 credit modules per trimester for the first two trimesters, and then complete a Project.
http://www.napier.ac.uk/courses/msc-advanced-security-and-digital-forensics-postgraduate-fulltime

This course is also available part-time, with one or two modules studied per trimester.
http://www.napier.ac.uk/courses/msc-advanced-security-and-digital-forensics-postgraduate-parttime

This course is also available distance learning , with one or two modules studied per trimester.
http://www.napier.ac.uk/courses/msc-advanced-security-and-digital-forensics-postgraduate-distance-learning-part-time

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

Fees and Funding

We have lots of funding options available such as the postgraduate tuition fee loan for Scottish & EU students, specifics scholarships for students from North or South America, Asia and Africa, as well as bursaries & grants for those closer to home in England, Northern Ireland and Wales.

Please see our website for up-to-date information about fee and funding and what you could be eligible for.
http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Information for International Students

For applications whose first language is not English, the following is generally required: minimum IELTS 6.0, with no individual component score of less than 5.5 or equivalent. We also offer a range of pre-sessional English language courses to help you meet the English language requirement prior to starting your masters programme. Please see our website for up-to-date information.
http://www.napier.ac.uk/study-with-us/international-students/english-language/english-language-requirements

Read less
This postgraduate course has been specifically developed to enable students to professionally enhance their commercial skills. The course has been developed in close collaboration with industry and includes a contemporary industry perspective from sector experts from all parts of the supply chain. Read more
This postgraduate course has been specifically developed to enable students to professionally enhance their commercial skills. The course has been developed in close collaboration with industry and includes a contemporary industry perspective from sector experts from all parts of the supply chain.

The course will allow you to gain a professionally accredited qualification and develop the demonstrable core commercial competencies much in demand by the oil, gas, renewables and decommissioning industries.

Visit the website: http://www.rgu.ac.uk/architecture-construction-and-surveying/study-options/part-time-learning/commercial-practice-for-the-energy-sector

Course detail

Building on our expertise in providing surveying, commercial and project management education, the course has been designed to meet the particular requirements of the energy sectors, in alignment with the Royal Institution of Chartered Surveyors (RICS) competency framework, namely:

•Commercial management
•Design economics
•Risk and supply chain management
•Contract practice
•Procurement and tendering practices
•Project financial control
•Project Management

Every module includes input and learning from industry experts so you will gain knowledge and skills which are directly applicable to the workplace. Individual modules can be studied on a stand-alone basis for CPD or personal development. Modules may also be delivered on a commercial bespoke basis for organisation learning and development.

Stage 1:

•Commercial Business Dynamics
•Core Business Skills
•Commercial Project Management
•Contractual Approaches to Procurement

Exit award: PgCert Commercial Practice for the Energy Sectors

Stage 2:

•Commercial Value Creation
•Contract Performance Management
•Risk Management & Supply Chain Vulnerability

Pick one elective module from:
•Corporate Governance and Value Assurance
•Advanced Supply Chain & Category Management

Exit award: PgDip Commercial Practice for the Energy Sectors

Stage 3:

•Dissertation

Award: MSc Commercial Practice for the Energy Sectors

Format

Our supported distance learning mode of delivery allows you to study online from any location and is designed to fit in around your work commitments. You will be taught and supported by experienced industry professionals who will recreate the same challenging interactive format of the on-campus courses for those studying at a distance.

Our virtual learning environment, CampusMoodle offers students flexibility of where and when they can study, offering full and open access to tutors and other class members. Students have the benefit of being part of a group of learners with the invaluable opportunity to participate in active, group-related learning within a supportive online community setting. The online campus provides students with lectures and course materials and it also includes:

•Virtual tutorials
•Live chat
•Discussion forums - student and tutor led
•Up-to-date web technology for delivery methods
•User friendly material
•Access to our online library

As online learners, students are part of a 'virtual cohort' and the communication and interaction amongst members of the cohort is a significant aspect of the learning process. If you would like to find out more about our online learning environment get in touch to access our pre-enrolment Campus Moodle area where you will be able to see how the system works and take a look at sample teaching materials.

Assessment

All our Modules on this MSc course are assessed entirely by coursework. The main assessment is normally by means of one significant piece of integrative coursework (which may include a combination of individual and group work) which would be submitted electronically via the Moodle Dropbox facility. This coursework will be graded in accordance with our procedures.

In addition to this significant piece of coursework, you will be asked to undertake a minimum of 2 activities or tests within the teaching programme which will be short concise submissions as determined by the Module tutors; these will be graded pass/fail but you must pass these short activities in order to be awarded the Module credits.

Placements and Accreditation

This course is accredited by the Chartered Institute of Building (CIOB). The course is also fully accredited by The Royal Institution of Chartered Surveyors. This will allow you, upon successful completion of the course, to enrol for the RICS Assessment of Professional Competence (APC), the final step to becoming a Chartered Surveyor.

Careers

Aberdeen is Europe's Energy Capital and our School has an excellent reputation for graduate employment.

Over the last two decades a large number of our surveying and project management graduates have found employment in the oil and gas industries in positions such as: Commercial Manager, Contracts Engineer, Surveyor, Cost Engineer, Project Manager, Contracts Manager, Estimator, Purchasing and Supply Chain Manager.

How to apply

To find out how to apply, use the following link: http://www.rgu.ac.uk/applyonline

Funding

For information on funding, including loans, scholarships and Disabled Students Allowance (DSA) please click the following link: http://www.rgu.ac.uk/future-students/finance-and-scholarships/financial-support/uk-students/postgraduate-students/postgraduate-students/

Read less

Show 10 15 30 per page



Cookie Policy    X