• Aberystwyth University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
Cranfield University Featured Masters Courses
University College London Featured Masters Courses
Cass Business School Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
Swansea University Featured Masters Courses
"fibre" AND "optic"×
0 miles

Masters Degrees (Fibre Optic)

We have 5 Masters Degrees (Fibre Optic)

  • "fibre" AND "optic" ×
  • clear all
Showing 1 to 5 of 5
Order by 
This programme comprises a major research project and six taught modules, four compulsory and two optional. The research project can be taken full-time or part-time and can be carried out in the University or by industrial collaboration with a company. Read more

This programme comprises a major research project and six taught modules, four compulsory and two optional.

The research project can be taken full-time or part-time and can be carried out in the University or by industrial collaboration with a company.

Course details

This programme can be taken on a full- or part-time basis. This one-year Course (full-time) comprises a major research project (two-thirds of the year) and six taught modules (one-third of the year), which are taken intermittently throughout the year. 

Students with an appropriate technical background (a Materials Science first degree) can start the course at any time. Students without a background in Materials Science are required to take the Introduction to Materials module (see module section), and must start the MRes Course at the beginning of the academic year, in September. 

Related links 

Learning and teaching

The programme is currently delivered through a combination of lectures, seminars, tutorials, project-based and laboratory-based teaching and learning methods.

Examples of MRes in the Science and Engineering of Materials Research Projects

  • Reliability of optical fibre sensors for smart structures 
  • Mechanical reliability of optical fibres for telecommunications
  • Chemistry and stability of localised corrosion sites
  • High Resolution Synchrotron X-ray studies of pitting corrosion
  • Simultaneous thermal (DSC), spectral (FTIR) and physical (TMA) analyses of polymers
  • Design, fabrication and evaluation of a novel fibre optic acoustic emission sensor 
  • Detection (and modelling) of moisture ingress in composites using optical fibre sensors 
  • Self-sensing glass fibre composites: Chemical process monitoring
  • Self-sensing glass fibre composites: Damage detection
  • Characterisation of photo-curable dental resins using a non-contact probe

Employability

University Careers Network

Preparation for your career should be one of the first things you think about as you start university. Whether you have a clear idea of where your future aspirations lie or want to consider the broad range of opportunities available once you have a Birmingham degree, our Careers Network can help you achieve your goal.

Our unique careers guidance service is tailored to your academic subject area, offering a specialised team (in each of the five academic colleges) who can give you expert advice. Our team source exclusive work experience opportunities to help you stand out amongst the competition, with mentoring, global internships and placements available to you. Once you have a career in your sights, one-to-one support with CVs and job applications will help give you the edge.

If you make the most of the wide range of services you will be able to develop your career from the moment you arrive.



Read less
Why this course?. This course will train highly qualified physicists and engineers in the area of photonics, which is a key enabling technology, underpinning many areas of industry. Read more

Why this course?

This course will train highly qualified physicists and engineers in the area of photonics, which is a key enabling technology, underpinning many areas of industry.

You'll have the opportunity to undertake a three-month research or development project based with one of our industrial partners such as M Squared Lasers.

We have a long tradition of cutting-edge photonics research, which supports our courses. Much of this work has resulted in significant industrial impact through our spin-out companies and academic-industrial collaborations.

You'll also have the opportunity to develop your entrepreneurial skills by taking courses delivered by the Hunter Centre for Entrepreneurship.

You’ll study

The course is made up of two semesters of taught classes, followed by a three-month research project based with one of our industrial partners. The majority of your classes are delivered by the Department of Physics and cover the following:

  • research and grant writing skills, which are valuable in both academic and commercial settings
  • project training, including entrepreneurial and innovation skills training and a literature survey preparing for the project in the company
  • topics in photonics, covering laser physics, laser optics and non-linear optics
  • optical design, where you will learn about advanced geometrical optics and apply this knowledge to the design of optical systems, through the use of modern optical design software
  • photonic materials and devices, focusing on semiconductor materials physics and micro/nano-structures
  • advanced photonic devices and applications, covering quantum well structures, waveguides and photonic crystals

These classes are complemented by two classes delivered by the Department of Electronic & Electrical Engineering, which look at:

  • system engineering and electronic control which forms a key part of modern optical systems
  • photonic systems, where fibre optic communications systems and principles of photonic networks are discussed

Work placement

You'll be based with one of our industrial partners for a three-month project placement. This is your opportunity to experience how research and development operate within a commercial environment. It'll also give you a chance to form strong links with industry contacts.

The project is put forward by the company and supervised by both industrial and academic staff. Training on relevant skills and background will be received before and during the project.

Facilities

Scotland has a world-leading position in optics and photonics industry.Your project will be carried out mainly in the excellent facilities of our Scottish industry partners. Projects elsewhere in the UK and with international companies may also be possible.

Advanced research facilities are also available in:

Our research is strongly supported in equipment and infrastructure. This includes a newly opened 3-storey wing in the John Anderson Building as part of a £13M investment programme in Physics. Furthermore, the IoP and FCAP have recently relocated into the University's Technology & Innovation Centre (TIC) which at £90 million TIC is Strathclyde’s single-biggest investment in research and technology collaboration capacity. This new centre will accelerate the way in which researchers in academia and industry collaborate and innovate together in a new specifically designed state-of-the-art building in the heart of Glasgow.

Learning & teaching

In semesters one and two, the course involves:

  • lectures
  • tutorials
  • various assignments including a literature review
  • workshops where you'll gain presentation experience

The courses include compulsory and elective classes from the Department of Electronic & Electrical Engineering.

Over the summer, you'll undertake a three-month project based on practical laboratory work in a partner company. You'll be supervised by the industrial partner and supported by an academic supervisor.

Assessment

Assessment methods are different for each class and include:

  • written examinations
  • marked homework consisting of problems and/or essay assignments
  • presentations 

Your practical project is assessed on a combination of a written report, an oral presentation, and a viva in which you're questioned on the project.

Careers

A degree in industrial photonics can set you up to work in a range of jobs in physics and positions in other industries.

Typically, it can lead you to photonic technologies in industrial corporate research and development units, production engineering and applied academic laboratories.

Work experience is key

Employers want to know you can do the job so work experience is key.

This course has a strong focus on the relationship between academia and industry. It's a great opportunity to enhance your skills and provides a direct transition from university to the work place.

We have an excellent record of graduate employment in the Scottish, national and international optics and photonics industries.

Doctorate study

If you're interested in practical work with impact but are also interested in a further academic qualification, you can move on to study an EngD or a CASE PhD studentship. These can lead to a doctorate within industry or in close collaboration with industry.

Job roles

Our Physics graduates from photonics related courses have found employment in a number of different roles including:

  • Medical Physicist
  • Optical engineer
  • Laser engineer
  • Optical and laser production engineer
  • Research and production engineer
  • Senior Engineer
  • Systems Engineer
  • Software Engineer
  • Spacecraft Project Manager
  • Defence Scientist
  • Oscar winner


Read less
This MSc programme targets the needs of a rapidly evolving communications engineering sector and provides an industrially relevant and exciting qualification in the latest advanced communications technologies being employed and developed. Read more

This MSc programme targets the needs of a rapidly evolving communications engineering sector and provides an industrially relevant and exciting qualification in the latest advanced communications technologies being employed and developed.

Study the techniques and technologies that enable advanced communications provision through fixed and wireless/mobile networks, and that modernise the core networks to provide ultra-high bit-rates and multi-service support.The Advanced Communications Engineering (RF Technology and Telecommunications) MSc at Kent is well-supported by companies and research establishments in the UK and overseas.

The programme reflects the latest issues and developments in the telecommunications industry delivering high quality systems level education and training. Gain deep knowledge of next generation wireless communication systems including antenna technology, components and systems, and fibre optic and converged access networks.

Visit the website https://www.kent.ac.uk/courses/postgraduate/1708/advanced-communications-engineering-rf-technology-telecommunications

About the School of Engineering and Digital Arts

The School of Engineering and Digital Arts (http://www.eda.kent.ac.uk/) successfully combines modern engineering and technology with the exciting field of digital media. The School was established over 40 years ago and has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research that has had significant national and international impact, and our expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. We have a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X