• Leeds Beckett University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
King’s College London Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of St Andrews Featured Masters Courses
University of Leeds Featured Masters Courses
University of London International Programmes Featured Masters Courses
0 miles

Masters Degrees (Fiber)

  • "fiber" ×
  • clear all
Showing 1 to 10 of 10
Order by 
Research projects are available in the field of Molecular Cell Biology that include; the analysis of structure, function and dynamics of telomeres in yeast… Read more
Research projects are available in the field of Molecular Cell Biology that include; the analysis of structure, function and dynamics of telomeres in yeast and parasites, and of centromeric DNA in mammalian cells; investigation of stress-response networks in the nematode Caenorhabditis elegans and of micro RNAs during the evolution of developmental processes in Drosophila; establishment of the relationship between nuclear structure and function using the giant nuclei of amphibian oocytes; analysis of biological membranes, biomaterials and biophysical aspects of cellular interactions as well as filopodia, lamellipodia and stress fiber formation; investigation of blood substitutes from microbial cell factories and of artificial gas-carrying fluids for enhancing growth of cells in culture.


After identifying which Masters you wish to pursue please complete an on-line application form
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.


Read less
The Integrated Photonic and Electronic Systems MRes, taught at the University of Cambridge and at the UCL Centre for Doctoral Training in Integrated Photonic and Electronic Systems, aims to train students to PhD level in the skills needed to produce new integrated photonic systems for applications ranging from information display to ultra-fast communications and industrial materials processing. Read more
The Integrated Photonic and Electronic Systems MRes, taught at the University of Cambridge and at the UCL Centre for Doctoral Training in Integrated Photonic and Electronic Systems, aims to train students to PhD level in the skills needed to produce new integrated photonic systems for applications ranging from information display to ultra-fast communications and industrial materials processing.

Degree information

The programme offers a wide range of specialised modules, including electronics and biotechnology. Students gain a foundation training in the scientific basis of photonics and systems, and develop a good understanding of the industry. They are able to design an individual bespoke programme to reflect their prior experience and future interests.

Students undertake modules to the value of 180 credits. Students take two compulsory research projects (90 credits), one transferable skills module (15 credits), three optional modules (45 credits) and two elective modules (30 credits).
-Project Report 1 at either UCL or Cambridge
-Project Report 2 at either UCL, Cambridge or industry
-Transferable Business Skills

Optional modules - students choose three optional modules from the following:
-Advanced Photonic Devices
-Photonic Systems
-Solar-Electrical Power: Generation and Distribution
-Photonic Sub-systems
-Broadband Technologies and Components
-Management of Technology
-Strategic Management
-Telecommunication Business Environment

Elective modules - students choose a further two elective modules from the list below:
-Solid State Devices and Chemical/Biological Sensors
-Display Technology
-Analogue Integrated Circuits
-Robust and Nonlinear Systems and Control
-Digital Filters and Spectrum Estimation
-Image Processing and Image Coding
-Computer Vision and Robotics
-Materials and Processes for Microsystems
-Building an Internet Router
-Network Architecture
-Software for Network Services
-Optical Transmission and Networks
-Nanotechnology and Healthcare
-RF Circuits and Sub-systems
-Physics and Optics of Nano-Structure
-Broadband Communications Lab
-Analogue CMOS IC Design Applications

All students undertake two research projects. An independent research project (45 credits) and an industry-focused project (45 credits).

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, projects, seminars, and laboratory work. Student performance is assessed through unseen written examination and coursework (written assignments and design work).


Dramatic progress has been made in the past few years in the field of photonic technologies. These advances have set the scene for a major change in commercialisation activity where photonics and electronics will converge in a wide range of information, sensing, display, and personal healthcare systems. Importantly, photonics will become a fundamental underpinning technology for a much greater range of companies outside the conventional photonics arena, who will in turn require those skilled in photonic systems to have a much greater degree of interdisciplinary training, and indeed be expert in certain fields outside photonics.

Our students are highly employable and have the opportunity to gain industry experience during their MRes year in large aerospace companies like Qioptiq, BAE Systems, Selex ES; medical equipment companies such as Hitachi; and technology and communications companies such as Toshiba through placements based both in the UK and overseas. Several smaller spin-out companies from both UCL and Cambridge also offer projects. The Centre organises industry day events which provide an excellent opportunity to network with senior technologists and managers interested in recruiting photonics engineers. A recent 2014 graduate is now working as a Fiber Laser Development Engineer for Coherent Scotland. Another is a Patent Attorney for HGF Ltd.

Why study this degree at UCL?

The University of Cambridge and UCL have recently established an exciting Centre for Doctoral Training (CDT) in Integrated Photonic and Electronic Systems, leveraging their current strong collaborations in research and innovation.

The centre provides doctoral training using expertise drawn from a range of disciplines, and collaborates closely with a wide range of UK industries, using innovative teaching and learning techniques.

This centre, aims to create graduates with the skills and confidence able to drive future technology research, development and exploitation, as photonics becomes fully embedded in electronics-based systems applications ranging from communications to sensing, industrial manufacture and biomedicine.

Read less
The Department of Metallurgical and Materials Engineering offers a master of science in metallurgical engineering. Visit the website http://mte.eng.ua.edu/graduate/ms-program/. Read more
The Department of Metallurgical and Materials Engineering offers a master of science in metallurgical engineering.

Visit the website http://mte.eng.ua.edu/graduate/ms-program/

The program options include coursework only or by a combination of coursework and approved thesis work. Most on-campus students supported on assistantships are expected to complete an approved thesis on a research topic.

Plan I is the standard master’s degree plan. However, in exceptional cases, a student who has the approval of his or her supervisory committee may follow Plan II. A student who believes there are valid reasons for using Plan II must submit a written request detailing these reasons to the department head no later than midterm of the first semester in residence.

All graduate students, during the first part and the last part of their programs, will be required to satisfactorily complete MTE 595/MTE 596. This hour of required credit is in addition to the other degree requirements.

Course Descriptions

MTE 519 Principles of Casting and Solidification Processing. Three hours.
Overview of the principles of solidification processing, the evolution of solidification microstructure, segregation, and defects, and the use of analytical and computational tools for the design, understanding, and use of solidification processes.

MTE 520 Simulation of Casting Processes Three hours.
This course will cover the rationale and approach of numerical simulation techniques, casting simulation and casting process design, and specifically the prediction of solidification, mold filling, microstructure, shrinkage, microporosity, distortion and hot tearing. Students will learn casting simulation through lectures and hands-on laboratory/tutorial sessions.

MTE 539 Metallurgy of Welding. Three hours.
Prerequisite: MTE 380 or permission of the instructor.
Thermal, chemical, and mechanical aspects of welding using the fusion welding process. The metallurgical aspects of welding, including microstructure and properties of the weld, are also covered. Various topics on recent trends in welding research.

MTE 542 Magnetic Recording Media. Three hours.
Prerequisite: MTE 271.
Basic ferromagnetism, preparation and properties of magnetic recording materials, magnetic particles, thin magnetic films, soft and hard film media, multilayered magnetoresistive media, and magneto-optical disk media.

MTE 546 Macroscopic Transport in Materials Processing. Three hours.
Prerequisite: MTE 353 or permission of the instructor.
Elements of laminar and turbulent flow; heat transfer by conduction, convection, and radiation; and mass transfer in laminar and in turbulent flow; mathematical modeling of transport phenomena in metallurgical systems including melting and refining processes, solidification processes, packed bed systems, and fluidized bed systems.

MTE 547 Intro to Comp Mat. Science Three hours.
This course introduces computational techniques for simulating materials. It covers principles of quantum and statistical mechanics, modeling strategies and formulation of various aspects of materials structure, and solution techniques with particular reference to Monte Carlo and Molecular Dynamic methods.

MTE 549 Powder Metallurgy. Three hours.
Prerequisite: MTE 380 or permission of the instructor.
Describing the various types of powder processing and how these affect properties of the components made. Current issues in the subject area from high-production to nanomaterials will be discussed.

MTE 550 Plasma Processing of Thin Films: Basics and Applications. Three hours.
Prerequisite: By permission of instructor.
Fundamental physics and materials science of plasma processes for thin film deposition and etch are covered. Topics include evaporation, sputtering (special emphasis), ion beam deposition, chemical vapor deposition, and reactive ion etching. Applications to semiconductor devices, displays, and data storage are discussed.

MTE 556 Advanced Mechanical Behavior of Materials I: Strengthening Methods in Solids. Three hours. Same as AEM 556.
Prerequisite: MTE 455 or permission of the instructor.
Topics include elementary elasticity, plasticity, and dislocation theory; strengthening by dislocation substructure, and solid solution strengthening; precipitation and dispersion strengthening; fiber reinforcement; martensitic strengthening; grain-size strengthening; order hardening; dual phase microstructures, etc.

MTE 562 Metallurgical Thermodynamics. Three hours.
Prerequisite: MTE 362 or permission of instructor.
Laws of thermodynamics, equilibria, chemical potentials and equilibria in heterogeneous systems, activity functions, chemical reactions, phase diagrams, and electrochemical equilibria; thermodynamic models and computations; and application to metallurgical processes.

MTE 574 Phase Transformation in Solids. Three hours.
Prerequisites: MTE 373 and or permission of the instructor.
Topics include applied thermodynamics, nucleation theory, diffusional growth, and precipitation.

MTE 579 Advanced Physical Metallurgy. Three hours.
Prerequisite: Permission of the instructor.
Graduate-level treatments of the fundamentals of symmetry, crystallography, crystal structures, defects in crystals (including dislocation theory), and atomic diffusion.

MTE 583 Advanced Structure of Metals. Three hours.
Prerequisite: Permission of the instructor.
The use of X-ray analysis for the study of single crystals and deformation texture of polycrystalline materials.

MTE 585 Materials at Elevated Temperatures. Three hours.
Prerequisite: Permission of the instructor.
Influence of temperatures on behavior and properties of materials.

MTE 587 Corrosion Science and Engineering. Three hours.
Prerequisite: MTE 271 and CH 102 or permission of the instructor.
Fundamental causes of corrosion problems and failures. Emphasis is placed on tools and knowledge necessary for predicting corrosion, measuring corrosion rates, and combining this with prevention and materials selection.

MTE 591:592 Special Problems (Area). One to three hours.
Advanced work of an investigative nature. Credit awarded is based on the work accomplished.

MTE 595:596 Seminar. One hour.
Discussion of current advances and research in metallurgical engineering; presented by graduate students and the staff.

MTE 598 Research Not Related to Thesis. One to six hours.

MTE 599 Master's Thesis Research. One to twelve hours. Pass/fail.

MTE 622 Solidification Processes and Microstructures Three hours.
Prerequisite: MTE 519
This course will cover the fundamentals of microstructure formation and microstructure control during the solidification of alloys and composites.

MTE 643 Magnetic Recording. Three hours.
Prerequisite: ECE 341 or MTE 271.
Static magnetic fields; inductive head fields; playback process in recording; recording process; recording noise; and MR heads.

MTE 644 Optical Data Storage. Three hours.
Prerequisite: ECE 341 or MTE 271.
Characteristics of optical disk systems; read-only (CD-ROM) systems; write-once (WORM) disks; erasable disks; M-O recording materials; optical heads; laser diodes; focus and tracking servos; and signal channels.

MTE 655 Electron Microscopy of Materials. One to four hours.
Prerequisite: MTE 481 or permission of the instructor.
Topics include basic principles of operation of the transmission electron microscope, principles of electron diffraction, image interpretation, and various analytical electron-microscopy techniques as they apply to crystalline materials.

MTE 670 Scanning Electron Microscopy. Three hours
Theory, construction, and operation of the scanning electron microscope. Both imaging and x-ray spectroscopy are covered. Emphasis is placed on application and uses in metallurgical engineering and materials-related fields.

MTE 680 Advanced Phase Diagrams. Three hours.
Prerequisite: MTE 362 or permission of the instructor.
Advanced phase studies of binary, ternary, and more complex systems; experimental methods of construction and interpretation.

MTE 684 Fundamentals of Solid State Engineering. Three hours.
Prerequisite: Modern physics, physics with calculus, or by permission of the instructor.
Fundamentals of solid state physics and quantum mechanics are covered to explain the physical principles underlying the design and operation of semiconductor devices. The second part covers applications to semiconductor microdevices and nanodevices such as diodes, transistors, lasers, and photodetectors incorporating quantum structures.

MTE 691:692 Special Problems (Area). One to six hours.
Credit awarded is based on the amount of work undertaken.

MTE 693 Selected Topics (Area). One to six hours.
Topics of current research in thermodynamics of melts, phase equilibra, computer modeling of solidification, electrodynamics of molten metals, corrosion phenomena, microstructural evolution, and specialized alloy systems, nanomaterials, fuel cells, and composite materials.

MTE 694 Special Project. One to six hours.
Proposing, planning, executing, and presenting the results of an individual project.

MTE 695:696 Seminar. One hour.
Presentations on dissertation-related research or on items of current interest in materials and metallurgical engineering.

MTE 698 Research Not Related to Dissertation. One to six hours.

MTE 699 Doctoral Dissertation Research. Three to twelve hours. Pass/Fail.

Find out how to apply here - http://graduate.ua.edu/prospects/application/

Read less
See the department website - https://www.rit.edu/cast/ectet/ms-telecommunications-engineering-technology. The telecommunications industry has driven technological innovation and provided outstanding career opportunities for people with the right technical and leadership skills. Read more
See the department website - https://www.rit.edu/cast/ectet/ms-telecommunications-engineering-technology

The telecommunications industry has driven technological innovation and provided outstanding career opportunities for people with the right technical and leadership skills. New services offered through the internet, mobility offered by wireless technology, and extreme capacity offered by fiber optics, as well as the evolution of policy and regulation, are shaping the telecommunication network of the future. The MS in telecommunications engineering technology focuses on developing the advanced level of skill and knowledge needed by future leaders in the industry. The program is designed for individuals who seek advancement into managerial roles in the dynamic telecommunications environment.

Plan of study

The program requires 33 semester credit hours of study and includes eight core courses that introduce essential fundamental concepts and skills. Each student is required to complete a comprehensive exam or, with faculty approval, a capstone project or a master’s thesis. The remaining credits consist of technical electives or other approved graduate courses.

Comprehensive Exam/Project/Thesis options

All students are required to complete a comprehensive exam at the conclusion of their course work. The comprehensive exam focuses on knowledge of the core competencies, theory and foundation principles, and application of this knowledge to a variety of scenarios. Students who wish to complete a graduate project or thesis under the supervision of a faculty adviser (in place of the comprehensive exam) must have the approval of the faculty and the graduate program director.

Additional information

- Transfer credit

A limited number of credit hours may be transferred from an accredited institution to the program. Please consult the department chair for more information.

- Other approved electives

All students may take three credit hours of graduate elective course work from other graduate programs subject to the approval of the graduate program director. Students often choose to include courses from Saunders College of Business, B. Thomas Golisano College of Computing and Information Sciences, or Kate Gleason College of Engineering. The number of elective credits depends on which completion strategy faculty have approved for the student, the student's choice of thesis, project, or comprehensive exam option.

- Research and cooperative education

Students have the opportunity to apply for research projects or a cooperative education experience. While not a requirement of the program, these opportunities increase the value of the program and the marketability of its graduates.

International Students

International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). Minimum scores of 570 (paper-based), or 88-89 (Internet-based) are required. Applicants with a lower TOEFL score may be admitted conditionally and may be required to take a prescribed program in English and a reduced program course load. International applicants from universities outside the United States must submit scores from the Graduate Record Examination (GRE).

Read less
The graduate programs in Electrical and Computer Engineering (ECE) attract students from all over the globe; approximately 26 countries have been represented by our graduate students over the past decade. Read more
The graduate programs in Electrical and Computer Engineering (ECE) attract students from all over the globe; approximately 26 countries have been represented by our graduate students over the past decade. The department endeavors to create a warm, friendly, and collaborative atmosphere in which graduate students are encouraged to develop their full potential.

Graduate class sizes are typically small, allowing for substantial interaction between students and professors. In addition to various research opportunities, there are numerous teaching assistant (TA) positions available during the Fall and Winter terms; graduate students may also participate in the engineering co-op program once eligibility requirements are met.

ECE has developed research strengths in the areas listed below. Of special note is the world-class research conducted by the Sustainable Power Research Group and Emera & NB Power Research Centre for Smart Grid Techologies and the Optical Fiber Systems Research Laboratory (housed within ECE), as well as the research conducted by the Institute of Biomedical Engineering (closely affiliated with ECE) and COBRA (Collaboration Based Robotics and Automation). Emera & NB Power Research Centre for Smart Grid Technologies Our recent graduates have moved on to successful and rewarding careers at other universities, research institutions, power utilities, IT companies and numerous others ranging from local start-ups to large multi-national corporations.

Research Areas

-Biomedical Engineering
-Controls and Instrumentation
-Electromagnetic Systems
-Electronics and Digital / Embedded Systems
-Signal Processing
-Software Systems
-Sustainable Energy

Read less
Humber’s Wireless Telecommunications graduate certificate program prepares you with electronics, computer engineering, physics and telecommunications skills for work on the cutting-edge technologies in the wireless telecommunications industry. Read more
Humber’s Wireless Telecommunications graduate certificate program prepares you with electronics, computer engineering, physics and telecommunications skills for work on the cutting-edge technologies in the wireless telecommunications industry.

Students will become familiar with the infrastructure of communications systems and how to be successful in the communications industry. This wireless program focuses on three main outcomes: RF/optical test and measurement, networking, and troubleshooting a number of wireless telecommunications systems.You will learn to use engineering tools and equipment for testing of systems including LTE/UMTS/GSM drive test tools, spectrum analyzers, network analyzers, optical time domain reflectometers. You will also learn how to troubleshoot and configure local- and wide-area networks (LAN/WANs) at the device and at the protocol levels. Our courses cover additional networking topics relevant to telecom carriers such as MPLS, VPNs, QoS and VoIP. You will be prepared to understand the technology roadmap leading into Internet of Things (IoT), 5G and data center virtualization technologies.

This program is an established program with industry with over two decades of expertise. Students will have access to learn on some of the best equipment available. Curriculum is kept current with the collaboration of our industry partners in the wireless field. Students utilize the latest technologies in small classes taught by experienced faculty and industry leaders.

Course detail

Upon successful completion of the program, a graduate will:

• Analyze, test, measure and troubleshoot RF (radio frequency) signals, attenuation and antenna systems, and test and troubleshoot linear and non-linear circuit modules.
• Manage network performance issues and problems against user needs through the design, implementation, testing, and troubleshooting of a variety of current and relevant protocols.
• Build wired and/or wireless networks using design documentation, and measure the performance of both the wired and wireless networks’ components and the networks’ applications using basic and advanced network management tools and applications.
• Design, install and configure networks - implementing various network configurations using different standard protocols, and upgrade network hardware (e.g. workstations, servers, wireless access points, routers, switches, firewalls etc.) and related components and software according to the best practices in the industry.
• Monitor and evaluate network security issues and perform basic security audits on both wired and wireless networks.
• Utilize change control, issue documentation and problem escalation procedures and processes, generate and maintain “as-built” network documentation following industry best practices.
• Apply RF analog and digital circuit analysis and design concepts to analyze voice and data communication using different modulation techniques.
• Use simulation tools to mathematically model and solve RF (radio frequency) electrical and electronics networks which are essential components of telecommunications and wireless technologies.
• Install, or use existing, operating systems & its components and manage users, processes, memory management, peripheral devices, telecommunication, networking and security, and troubleshoot hardware and software components of computer and operating systems using system level commands and scripts.
• Assist in the design and development of a wide area of networks using a variety of network layer-one, layer-two and layer-three protocols, microwave communication links, and fiber optics links.
• Describe the infrastructures, components, and protocols of a wide range of wireless technologies.
• Develop the infrastructure required for VoIP transport through IP networks, and be able to configure VoIP clients such as IP telephones and soft phones.


Semester 1
• WLS 5000: Applied Electromagnetics
• WLS 5002: RF Technology
• WLS 5003: Telecommunication Systems
• WLS 5004: Data Networks
• WLS 5500: Microwave and Fibre Optics

Semester 2
• WLS 5501: Broadband Communications and Security
• WLS 5503: Mobile Technologies
• WLS 5505: Wireless Data Networks
• WLS 5506: LTE Core
• WLS 5507: Wireless Project and ITIL

Your Career

The Canadian wireless industry supports over 280,000 jobs with sector salary average more than Canada’s average salary. In addition, the international wireless telecommunications market is growing. There are numerous employment opportunities in the planning, developing, manufacturing, co-ordinating, implementing, maintaining and managing of telecommunications systems for businesses and government.

As the rate of technology adoption increases in Canadian industry, the Wireless Telecommunications program is preparing graduates for these new markets. A 2015-2019 labour market report by the Information and Communications Technology Council (ICTC) indicates that by 2019, over 182,000 critical ICT positions will be left unfilled.

Graduates of the program work at cell phone service providers, equipment manufacturers, in house information technology (IT) departments, sales departments, and specialized telecommunication and networking companies.

How to apply

Click here to apply: http://humber.ca/admissions/how-apply.html


For information on funding, please use the following link: http://humber.ca/admissions/financial-aid.html

Read less

  • 1
Show 10 15 30 per page

Share this page:

Cookie Policy    X