• University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Nottingham Trent University Featured Masters Courses
University College London Featured Masters Courses
University of Reading Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Teesside University Featured Masters Courses
"fiber"×
0 miles

Masters Degrees (Fiber)

We have 10 Masters Degrees (Fiber)

  • "fiber" ×
  • clear all
Showing 1 to 10 of 10
Order by 
The Specializing Master in Fiber Design and Textile Processes was created because there is a need to explore this topic by paying particular attention to these types of new materials. Read more
The Specializing Master in Fiber Design and Textile Processes was created because there is a need to explore this topic by paying particular attention to these types of new materials.
Founded and launched by two centers of excellence: Città Studi Biella with its tradition of technical skills and POLI.design.
The goal is to offer a unique educational program by providing quality knowledge and skills for designing innovative fibers and new materials including the Internet of Things (IoT) and environmental sustainability, thanks to the local companies involved throughout the academic program and their generous support.

For more info visit the page: http://www.polidesign.net/it/fiber

Read less
Research projects are available in the field of Molecular Cell Biology that include; the analysis of structure, function and dynamics of telomeres in yeast… Read more
Research projects are available in the field of Molecular Cell Biology that include; the analysis of structure, function and dynamics of telomeres in yeast and parasites, and of centromeric DNA in mammalian cells; investigation of stress-response networks in the nematode Caenorhabditis elegans and of micro RNAs during the evolution of developmental processes in Drosophila; establishment of the relationship between nuclear structure and function using the giant nuclei of amphibian oocytes; analysis of biological membranes, biomaterials and biophysical aspects of cellular interactions as well as filopodia, lamellipodia and stress fiber formation; investigation of blood substitutes from microbial cell factories and of artificial gas-carrying fluids for enhancing growth of cells in culture.

APPLICATION PROCEDURES

After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
The Integrated Photonic and Electronic Systems MRes, taught at the University of Cambridge and at the UCL Centre for Doctoral Training in Integrated Photonic and Electronic Systems, aims to train students to PhD level in the skills needed to produce new integrated photonic systems for applications ranging from information display to ultra-fast communications and industrial materials processing. Read more

The Integrated Photonic and Electronic Systems MRes, taught at the University of Cambridge and at the UCL Centre for Doctoral Training in Integrated Photonic and Electronic Systems, aims to train students to PhD level in the skills needed to produce new integrated photonic systems for applications ranging from information display to ultra-fast communications and industrial materials processing.

About this degree

The programme offers a wide range of specialised modules, including electronics and biotechnology. Students gain a foundation training in the scientific basis of photonics and systems, and develop a good understanding of the industry. They are able to design an individual bespoke programme to reflect their prior experience and future interests.

Students undertake modules to the value of 180 credits.

Students take two compulsory research projects (90 credits), one transferable skills module (15 credits), three optional modules (45 credits) and two elective modules (30 credits).

  • Project Report 1 at either UCL or Cambridge
  • Project Report 2 at either UCL, Cambridge or in industry
  • Transferable Business Skills

Optional modules

Students choose three optional modules from the following:

  • Biosensors
  • Advanced Photonic Devices
  • Photonic Systems
  • Broadband Technologies and Components
  • Management of Technology
  • Strategic Management
  • Telecommunication Business Environment

Elective modules

Students choose a further two elective modules from the list below:

  • Electronic Sensors and Instrumentation
  • Display Technology
  • Analogue Integrated Circuits
  • Robust and Nonlinear Systems and Control
  • Digital Filters and Spectrum Estimation
  • Image Processing and Image Coding
  • Computer Vision and Robotics
  • Materials and Processes for Microsystems
  • Building an Internet Router
  • Network Architecture
  • Sensors for Network Services and Design
  • Optical Transmission and Networks
  • Nanotechnology and Healthcare
  • RF Circuits and Sub-systems
  • Physics and Optics of Nano-Structure
  • Broadband Communications Lab
  • Analogue CMOS IC Design Applications
  • Embedded systems for the Internet of Things
  • Flexible Electronics

Dissertation/report

All students undertake two research projects. An independent research project (45 credits) and an industry-focused project (45 credits).

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, projects, seminars, and laboratory work. Student performance is assessed through unseen written examination and coursework (written assignments and design work).

Further information on modules and degree structure is available on the department website: Integrated Photonic and Electronic Systems MRes

Careers

Dramatic progress has been made in the past few years in the field of photonic technologies. These advances have set the scene for a major change in commercialisation activity where photonics and electronics will converge in a wide range of information, sensing, display, and personal healthcare systems. Importantly, photonics will become a fundamental underpinning technology for a much greater range of companies outside the conventional photonics arena, who will in turn require those skilled in photonic systems to have a much greater degree of interdisciplinary training, and indeed be expert in certain fields outside photonics.

Employability

Our students are highly employable and have the opportunity to gain industry experience during their MRes year in large aerospace companies like Qioptiq, medical equipment companies such as Hitachi; and technology and communications companies such as Toshiba through industry placements. Several smaller spin-out companies from both UCL and Cambridge also offer projects. The CDT organises industry day events which provide an excellent opportunity to network with senior technologists and managers interested in recruiting photonics engineers. One recent graduate is now working as a fiber laser development engineer; another is a patent attorney.

Why study this degree at UCL?

The University of Cambridge and UCL have recently established an exciting Centre for Doctoral Training (CDT) in Integrated Photonic and Electronic Systems, leveraging their current strong collaborations in research and innovation.

The CDT provides doctoral training using expertise drawn from a range of disciplines, and collaborates closely with a wide range of UK industries, using innovative teaching and learning techniques.

The centre aims to create graduates with the skills and confidence able to drive future technology research, development and exploitation, as photonics becomes fully embedded in electronics-based systems applications ranging from communications to sensing, industrial manufacture and biomedicine.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Electronic & Electrical Engineering

97% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
See the department website - https://www.rit.edu/cast/ectet/ms-telecommunications-engineering-technology. The telecommunications industry has driven technological innovation and provided outstanding career opportunities for people with the right technical and leadership skills. Read more
See the department website - https://www.rit.edu/cast/ectet/ms-telecommunications-engineering-technology

The telecommunications industry has driven technological innovation and provided outstanding career opportunities for people with the right technical and leadership skills. New services offered through the internet, mobility offered by wireless technology, and extreme capacity offered by fiber optics, as well as the evolution of policy and regulation, are shaping the telecommunication network of the future. The MS in telecommunications engineering technology focuses on developing the advanced level of skill and knowledge needed by future leaders in the industry. The program is designed for individuals who seek advancement into managerial roles in the dynamic telecommunications environment.

Plan of study

The program requires 33 semester credit hours of study and includes eight core courses that introduce essential fundamental concepts and skills. Each student is required to complete a comprehensive exam or, with faculty approval, a capstone project or a master’s thesis. The remaining credits consist of technical electives or other approved graduate courses.

Comprehensive Exam/Project/Thesis options

All students are required to complete a comprehensive exam at the conclusion of their course work. The comprehensive exam focuses on knowledge of the core competencies, theory and foundation principles, and application of this knowledge to a variety of scenarios. Students who wish to complete a graduate project or thesis under the supervision of a faculty adviser (in place of the comprehensive exam) must have the approval of the faculty and the graduate program director.

Additional information

- Transfer credit

A limited number of credit hours may be transferred from an accredited institution to the program. Please consult the department chair for more information.

- Other approved electives

All students may take three credit hours of graduate elective course work from other graduate programs subject to the approval of the graduate program director. Students often choose to include courses from Saunders College of Business, B. Thomas Golisano College of Computing and Information Sciences, or Kate Gleason College of Engineering. The number of elective credits depends on which completion strategy faculty have approved for the student, the student's choice of thesis, project, or comprehensive exam option.

- Research and cooperative education

Students have the opportunity to apply for research projects or a cooperative education experience. While not a requirement of the program, these opportunities increase the value of the program and the marketability of its graduates.

International Students

International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). Minimum scores of 570 (paper-based), or 88-89 (Internet-based) are required. Applicants with a lower TOEFL score may be admitted conditionally and may be required to take a prescribed program in English and a reduced program course load. International applicants from universities outside the United States must submit scores from the Graduate Record Examination (GRE).

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X