• Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
King’s College London Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Leeds Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
Aberdeen University Featured Masters Courses
"fea"×
0 miles

Masters Degrees (Fea)

We have 22 Masters Degrees (Fea)

  • "fea" ×
  • clear all
Showing 1 to 15 of 22
Order by 
The MSc/Diploma in Structural and Foundation Engineering is designed for graduates and practising engineers who wish to improve their knowledge of structural and foundation engineering. Read more

Programme Background

The MSc/Diploma in Structural and Foundation Engineering is designed for graduates and practising engineers who wish to improve their knowledge of structural and foundation engineering. The structure and content of the programme has been carefully designed following liaison with a wide range of employers in the sector.

The staff members who deliver the programme have wide ranging expertise in specialist subjects which include reinforced concrete technology, dynamic and impact testing of materials, offshore engineering, structural safety, soil-structure interaction and numerical modelling.

The research activities of the programme involve combinations of experimental, numerical and theoretical work. The School has excellent practical facilities for static, dynamic, and impact testing and it has access to advanced computer and networking facilities that include a state-of-the-art parallel processing computer.

Professional Recognition

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. See http://www.jbm.org.uk for further information.

Programme Content

The curriculum covers the specialist technical and computational skills necessary for today’s construction industry and therefore offers excellent preparation for employment across an industry that includes consulting and contracting engineers, public authorities and local government. In addition, the programme also provides a suitable springboard for graduates seeking a career in a research lead environment.

Both MSc and Diploma students undertake the eight taught courses listed below. MSc students also complete a Masters dissertation.

Semester 1:
Indeterminate Structures
Stability and Dynamics
Ground Engineering
FEA & Stress Analysis A

Semester 2:
Safety, Risk and Reliability
Earthquake Engineering
Foundation Engineering
FEA & Stress Analysis B

Dissertation

MSc students are also required to submit a research dissertation, the research topic normally aligns with the research interests of the staff in the School but can be tailored to suit the interests of the student or student’s employer. Distance learning and part time students are encouraged to suggest project topics based on their own work experience.

At the discretion of the Programme Leader, MSc students may choose to nominate a research project which enables them to investigate a problem they have encountered in their workplace or elsewhere. The research project can be undertaken in conjunction with a suitable industrial partner on campus or in industry if the industrial partner has the facilities to provide adequate supervision.

Mode of Study

The programme may be studied on a part-time basis and will therefore appeal to practising engineers. It is also delivered via distance learning which enables students from all around the globe to study without the need to interrupt their career and travel to Scotland. Examinations may be organised in each student’s country of residence to avoid unnecessary travel costs.

Read less
This course aims to produce graduates with qualities and transferable skills for demanding employment in the engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level. Read more

About the course

This course aims to produce graduates with qualities and transferable skills for demanding employment in the engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Students may elect to follow one of two streams: Thermofluids or Solid Body Mechanics.

Engineering courses within the Department are underpinned by research activities in aerospace engineering, automotive/motorsport engineering, solid and fluid mechanics, and energy and the environment. Staff generate numerous publications, conference presentations and patents, and have links with a wide range of institutions both within and outside the UK.

Aims

Mechanical engineers apply their scientific knowledge to solve problems and design machines that help us enjoy a better lifestyle. They have an enviable choice of industries open to them and this advanced course helps you develop the versatility to deal with complex challenges faced by senior engineers.

On this course you will:
Develop the versatility and depth to deal with new and unusual challenges across a range of engineering areas
Develop imagination and creativity to enable you to follow a successful engineering career with national and international companies and organisations
Continue your professional development to Chartered Engineer status with confidence and acquire new skills at the highest level.

Brunel offer a number of mechanical engineering MSc courses, all accredited by professional institutes as appropriate additional academic study (further learning) for thos seeking to become qualified to register as Chartered Engineers (CEng).

Our collaborative research with numerous outside organisations includes major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Accrediting professional institutes vary by course and include The Institute of Mechanical Engineers (IMechE),The Energy Institute (EI) and The Chartered Institute of Building Services Engineers (CIBSE).

Course Content

During the first two terms (September - March) you will take eight modules, out of which:
Four are the same for both streams (compulsory modules - 15 credits each)
The other four (15 credits each) are different for the two streams.

In May the final examinations for the taught modules will take place and in their third term (June - September) students will complete the final dissertation.

You have the option to choose one of two specialisations, or ‘streams,’ for your dissertation:
Thermofluids, or
Solid Body Mechanics.

Compulsory Modules

Strategic Management, Innovation and Enterprise
Research Methods and Sustainable Engineering
Advanced Modelling and Design
Computer Aided Engineering 1
Dissertation (Individual project)

Optional Modules

Choose one of the two themes below:

Theme 1 – Thermofluids
Advanced Thermofluids
Advanced Heat and Mass Transfer
Energy Conversion Technologies
Renewable Energy Technologies

Theme 2 – Solid Body Mechanics
Advanced Solid Body Mechanics
Dynamics and Modal Analysis
Structural Design and FEA
Human Factors in Design

Special Features

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students

The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Accreditation

Advanced Mechanical Engineering is accredited by the Institution of Mechanical Engineering (IMechE). This will provide a route to Chartered Engineer status in the UK.
At Brunel we provide many opportunities and experiences within your degree programme and beyond – work-based learning, professional support services, volunteering, mentoring, sports, arts, clubs, societies, and much, much more – and we encourage you to make the most of them, so that you can make the most of yourself.

Read less
Important. if you are an international student requiring a Tier 4 student visa to study in the UK you will also need an ATAS certificate for this course. Read more
Important: if you are an international student requiring a Tier 4 student visa to study in the UK you will also need an ATAS certificate for this course.

Choose Kingston's Mechanical Engineering MSc

This course, accredited by the Institution of Mechanical Engineers, is designed to provide you with the latest technological knowledge and industrial management skills, at an advanced level of study, in specific aspects of mechanical engineering that are in demand from industry. The course also provides you with a strategic overview of engineering and management skills necessary to take on leadership roles in major engineering projects.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-Teaching in many technical modules is backed up by appropriate hands-on experience and workshops, which can be transferred directly to your working environment.
-Academic teaching is complemented by visits from industry experts. You will also have plenty of opportunities to attend relevant technical seminars, both within and outside the University.
-You can tailor your course to enhance your career ambitions through your module choices, whilst the project dissertation gives you the opportunity to choose a field of study in which to establish yourself as a specialist.

What will you study?

This course will provide a broad and in-depth understanding of mechanical design engineering, modern materials application and advanced manufacturing technology. You will employ advanced computer-based mechanical engineering design analysis and problem solving, using cutting-edge technologies such as finite elements analysis (FEA), computational fluid dynamics (CFD) and mechanism design analysis and control. What's more, you will develop the entrepreneurial management and business skills necessary to take on leadership roles in major engineering projects.

The project dissertation challenges you to investigate a theoretical area in depth and solve a real-world problem.

Assessment

Coursework and/or exams, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Computational Fluid Dynamics for Engineering Applications
-Advanced Stress Analysis and Materials
-Engineering Individual Project

Option modules (choose one)
-Advanced CAD/CAM Systems
-Green Engineering and Energy Efficiency
-Mechatronics Design and Automation

Read less
This course focuses on the latest technology in modern CAD/CAM/CAE/PLM applications to enable students to acquire knowledge and understanding of rapid design and manufacture of a new product from a single computer terminal, without the need for lengthy prototype and test cycles. Read more
This course focuses on the latest technology in modern CAD/CAM/CAE/PLM applications to enable students to acquire knowledge and understanding of rapid design and manufacture of a new product from a single computer terminal, without the need for lengthy prototype and test cycles. Implementing this technology is essential in today's global marketplace, where survival relies on being first to market.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-Teaching in many technical modules is backed up by appropriate hands-on experience and workshops, which can be transferred directly to your working environment.
-Academic teaching is complemented by visits from industry experts. You will also have plenty of opportunities to attend relevant technical seminars, both within and outside the University.
-You can tailor your course to enhance your career ambitions through your module choices and the project dissertation gives you the opportunity to choose a field of study in which to establish yourself as a specialist.

What will you study?

This programme is structured to provide you with the latest developments in this still-evolving discipline, and focuses on providing you with hands-on experience of the latest computing applications throughout the entire product development cycle. The course covers a range of topics from 3D solid modelling and the techniques required to extend the capabilities of a 3D modelling system to gaining practical and theoretical knowledge of analytical computer tools by using finite element analysis (FEA) techniques. It also examines the importance of modern materials in advanced manufacturing processes, as well as computer-aided manufacturing (CAM) and application of rapid prototyping technologies. Additionally, the programme enables you to gain the entrepreneurship, management and business skills necessary to take on leadership roles in major product design engineering projects.

The project dissertation challenges you to investigate a theoretical area in depth and also to undertake a real-world product design problem-solving project.

Assessment

Coursework and/or exams, presentations, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.
-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Computer Integrated Product Development
-Advanced CAD/CAM Systems
-Engineering Individual Project

Option modules (choose one)
-Industrial Operation Management and Resources Simulation
-Green Engineering and Energy Efficiency
-Mechatronics Design and Automation

Read less
Develop skills in the analysis, design and assessment of engineering structures subject to normal, seismic and extreme loading and environmental conditions. Read more
Develop skills in the analysis, design and assessment of engineering structures subject to normal, seismic and extreme loading and environmental conditions.

Accredited by relevant professional bodies and designed to meet the needs of the modern construction industry, this course offers a wide range of structural engineering principles, as you learn about issues relating to steel and concrete structures and foundations.

Through this highly technical course, studied one year full-time or two years part-time, you will develop skills in numerical simulation using a variety of advanced software.

Part-time study is flexible. Normally students will take three years to complete the programme if they undertake one module per week but the length of the course can be reduced to two years, if two modules are taken each week. Many part-time students undertake projects in their place of work.

See the website http://www.napier.ac.uk/en/Courses/MScPGDipPGCert-Advanced-Structural-Engineering-Postgraduate-FullTime

What you'll learn

You will also learn failure analysis methods, the Eurocodes and the code of practice for the design of various construction materials, research skills and the legal issues surrounding construction.

The course is accredited by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE) and the Chartered Institution of Highways & Transportation (CIHT). Industry practitioners are regularly invited as guest speakers and lecturers.

Modules

• Advanced mechanics of materials and FEA
• Advanced structural concrete
• Advanced; structural steel design
• Forensic engineering;
• Foundation design to eurocode 7
• Structural; dynamics and earthquake design
• MSc thesis

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

As a qualified structural engineer with advanced training, you will be in demand in the construction industry worldwide. Alternatively, you may choose to use this course as the basis for further education or extensive research.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
This is an integrated degree programme that brings together the key generic skills of management and research methods with specific modules focusing on aerodynamics and flight mechanics. Read more
This is an integrated degree programme that brings together the key generic skills of management and research methods with specific modules focusing on aerodynamics and flight mechanics. This approach will help you to develop your critical thinking skills as a future engineering manager, or technical specialist enabling you effectively to analyse technical and or management issues. The programme aims to:
-Equip you with the theory and the practice of relevant subjects, technologies and analytical tools to provide solutions for aerospace and related manufacturing problems
-Provide a blend of knowledge and application experience through case studies and project work
-Focus on the links between analysis and design and the supporting skills of management
-Provide education and experience which enhances prospects of professional employment within the industry

Why choose this course?

-The School has over 50 years' experience of teaching aerospace, and has established an excellent international reputation in this field
-We offer extensive lab facilities for aerospace engineering students, including a flight simulator, the latest software packages and windtunnels
-This MSc combines analysis and design with management skills to produce highly-employable postgraduates.

Professional Accreditations

Accredited for Chartered Engineer (CEng) status by the Institution of Engineering and Technology (IET) and by the Royal Aeronautical Society (RAeS).

Careers

This programme will help you to develop your critical thinking skills as a future engineering manager or technical specialist as it will enable you to effectively analyse technical and management issues. This blend of technical and managerial content is invaluable in job applications as well as helping to fast-track your career in the industry.

Teaching methods

The School has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility. StudyNet allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Core Modules
-Aeroelasticity
-CFD Analysis for Aerospace Applications
-CFD Techniques
-Control of Engineering Systems
-FEA & Applications
-Flight Mechanics
-MSc Project
-Operations Management
-Operations Research

Read less
This MSc in Automotive Engineering is specifically designed to enhance the employment and promotional opportunities of graduates in mechanical and automotive engineering. Read more
This MSc in Automotive Engineering is specifically designed to enhance the employment and promotional opportunities of graduates in mechanical and automotive engineering. The programme considers in depth key areas of automotive technology. Its integrated design covers both the technological and management aspects of the motor industry. The programme aims to:
-Equip you with the theory and the practice of relevant materials, technologies and analytical tools to provide solutions for automotive design and manufacturing problems
-Provide the opportunity for you to use creativity and innovation in the application of technology to the development of the automobile
-Focus on the links between vehicle programmes and the supporting skills of project management
-Develop your skills and application experience through case studies and project work
-Enhance your prospects of professional employment within the industry

Why choose this course?

-The University has been running automotive degree courses for almost forty years and is very well-established within the automotive industry
-The University of Hertfordshire is one of the top 5 UK universities whose automotive engineering degree programmes have been recognised in 2002 by the Society of Motor Manufacturers and Traders (SMMT), the trade association representing the UK automotive industry
-We have some 250 undergraduate and postgraduate students reading automotive engineering so are one of the largest providers of automotive engineering degree courses in the UK
-We have excellent facilities in automotive engineering technology including a new automotive centre with engine test facilities

Professional Accreditations

Accredited for Chartered Engineer (CEng) status by the Institution of Engineering and Technology (IET) and by the Royal Aeronautical Society (RAeS).

Careers

This programme is specifically designed to enhance the employment and promotional opportunities of graduates in mechanical and automotive engineering. It offers you an overview of the automotive industry which will be invaluable in job applications and will help to fast-track your career in the new product introduction phase of the industry.

Teaching methods

The School of Engineering and Technology has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility. StudyNet allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School of Engineering and Technology has a policy of using industrial standard software wherever possible. The School of Engineering and Technology also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Core Modules
-Advanced Engines & Power Systems
-Auto Materials & Manufacture
-Automotive Dynamics & Safety
-Automotive Electrical Systems
-CFD Techniques
-FEA & Applications
-Integrated Product Engineering
-MSc Project
-Operations Research

Read less
This programme has been developed to meet the growing need for postgraduate skills within the engineering industry, and the demand for professional development for graduate engineers. Read more
This programme has been developed to meet the growing need for postgraduate skills within the engineering industry, and the demand for professional development for graduate engineers. The programme integrates the mechanical engineering subjects with key generic skills in management and research methods. This approach will help to develop your critical thinking skills as a future engineering manager, or technical specialist enabling you to effectively analyse technical and management issues. The University of Hertfordshire has a worldwide reputation for excellence in applied mechanical engineering. This international reputation will give you the opportunity to study with graduates from universities worldwide. You will benefit from the expertise of guest speakers from industry where relevant and appropriate.

The programme will:
-Provide education and experience to support your professional employment and career development within the industry
-Focus on the links between engineering analysis and design and supporting management skills management
-Provide a blend of knowledge and application experience through case studies and project work
-Equip you with the theory and practice of relevant subjects, technologies and analytical tools to provide solutions for mechanical and related manufacturing problems

Why choose this course?

-The School has over 50 years' experience of teaching mechanical engineering and has established an excellent international reputation in this field
-We offer extensive lab facilities for engineering students as well as the latest software packages and windtunnels
-This MSc combines mechanical engineering subjects with key management and research methods

Professional Accreditations

Accredited for Chartered Engineer (CEng) status by the Institution of Engineering and Technology (IET) and by the Royal Aeronautical Society (RAeS).

Careers

This programme will help you to develop your critical thinking skills as a future engineering manager or technical specialist as it will enable you to effectively analyse technical and management issues. This blend of technical and managerial content is invaluable in job applications as well as helping to fast-track your career in the industry.

Teaching methods

The School of Engineering and Technology has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility. StudyNet allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and AADE has a policy of using industrial standard software wherever possible. AADE also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Modules
-Advanced Thermodynamics & Thermal Systems
-CFD Techniques
-Control of Engineering Systems
-Dynamics and Performance of Mechanical Systems
-FEA & Applications
-MSc Project
-Operations Management
-Operations Research
-Quality Reliability & Maintenance

Read less
Climate change is a major challenge for the 21st century, requiring an alternative supply of cleaner energy from renewable sources. Read more
Climate change is a major challenge for the 21st century, requiring an alternative supply of cleaner energy from renewable sources. This course is designed with an engineering focus that deals with applications, combined with the business element; applicable whether you work for a large organisation or a small to medium-size enterprise.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-The programme provides hands-on skills in 3D CAD and solid modelling, FEA and CFD analysis, Polysun and WindPRO simulations using industry-standard software.
-You can undertake a wide range of challenging and interesting sponsored and non-sponsored projects in the specific areas of wind power, solar power, biofuels and fuel-cells-related technologies.
-Excellent career progression and internship with leading renewable companies: around 80% of students who have graduated from this programme have been recruited by the relevant industries as a consultant such as Atkins, Alstom Power, Inditex, Vattenfall, Shell, SGS UK Ltd and many others.
-Completion of this programme would be an ideal progression to PhD level of research studies if you are interested in following an academic or research career in novel areas of renewable energy.

What will you study?

The course provides an in-depth knowledge of renewable energy systems design and development, commercial and technical consultancy and project management within the sustainable engineering environment.

You will gain technical skills in and knowledge of solar power, wind power, biofuel and fuel cell technologies, as well as renewable energy business and management. In addition, you will gain practical skills in up-to-date computer-aided simulation technologies such as Polysun for solar energy applications, WindPRO for wind farm applications and ECLIPSE for biomass applications.

Option modules enable you to specialise in project engineering and management, as well as risk management or engineering design and development. Advanced topics, such as 3D solid modelling, computer-aided product development and simulation, and computational fluid dynamics (CFD) analysis and simulation allow you to gain further practical and theoretical knowledge of analytical software tools used in product design.

Assessment

Coursework, exams, individual project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

If you start this course in January, you will complete the same modules as students who started in September but in a different format – please contact us at for more information.

Core modules
-Biomass and Fuel Cell Renewable Technology
-Solar Power Engineering
-Wind Power Engineering
-Project Dissertation

Option modules (choose one)
-Engineering Projects and Risk Management
-Computational Fluid Dynamics for Engineering Applications
-Computer Integrated Product Development

Read less
NOTE Are you a student from outside the EU?. If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Automotive Engineering. Read more
NOTE Are you a student from outside the EU?

If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Automotive Engineering. It includes an extra semester of preliminary study to prepare you for postgraduate learning in the UK. We strongly recommend that all international students take this option as it is proven to improve your chances of success. Take a look at this alternative course here.

The Automotive courses are based around the use of industry standard engineering software and hardware provided by our partners. The student will gain an in depth understanding of Pro Engineer Wildfire, Alias Auto Studio, Cambridge Engineering Selector, ANSYS FEA, Cham Phoenics CFD, Boothroyd Dewhurst DFMA software and will gain hands on experience of related hardware such as Minolta Vi910 laser scanner, TESA coordinate measuring machine, ZCorporation and Startasys rapid prototyping, KRYLE 3 Axis Machining Centre and Beavor Turning Centre, Lister Petter Diesel engine dyno, Race Technology real time data acquisition.

This virtual design and analysis approach is backed up by experimental analysis on real vehicles which will be supported by partners such as James Watt Automotive who have a wealth of experience in developing and running vehicles for motorsport.

Course content

The course consists of 8 taught modules plus a major personal project leading to a written thesis. The taught modules cover the broad range of activities involved in vehicle design. You will study topics such as solid and surface modelling, rapid prototyping, Finite Element Analysis, advanced engine design and aerodynamics. The subject area of your final thesis can be selected to suit your own aspirations and interests. You will be assigned a supervisor with whom you will work closely to develop an academically challenging portfolio of work. The focus of this project will determine whether you will opt for the title of MSc Automotive or MSc Autosport.

Core modules are:
-Research Methods & Project Management
-Design Technologies for Master
-Structural Integrity
-Advanced Engine Design
-Advanced Vehicle Aerodynamics
-Advanced Vehicle Dynamics
-Control Systems
-Project

Option Modules are:
-Applied Structural Integrity
-Sustainable Design & Manufacture
-Advanced Engineering Materials
-Industrial Placement MSc Engineering Handbook

Read less
NOTE. Are you a student from outside the EU? If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Aeronautical Engineering. Read more
NOTE: Are you a student from outside the EU? If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Aeronautical Engineering. It includes an extra semester of preliminary study to prepare you for postgraduate learning in the UK. We strongly recommend that all international students take this option as it is proven to improve your chances of success. Take a look at this alternative course here.

About the Course A focus on the practical application of the advanced theories learnt. Familiarisation with a range of industry standard design and analysis software. The opportunity to undertake low cost gliding, with reduced price club membership for students. Good career prospects. The aerospace industry is one of the UK's most successful industrial sectors, with its involvement in major international project groups including Airbus, Rolls Royce, British Aerospace to name but a few. Not every university that teaches engineering includes Aeronautical Engineering in its portfolio, but Staffordshire University is proud to be running a new and innovative MSc award in this area which started September 2012.

The MSc in Aeronautical Engineering builds upon the success of the undergraduate Aeronautical programme which has been running at Staffordshire for over ten years. The MSc is an award for the graduate engineer (who will have usually studied a BEng(hons) in Mechanical or Aeronautical Engineering or equivalent, or possibly a BSc(hons) in Aeronautical Technology) and who wishes to expand and deepen their knowledge of aeronautical engineering.

The MSc covers a broad range of areas including fixed wing and rotary aircraft, subsonic and supersonic flight regimes, aircraft propulsion systems, aircraft control systems, materials, etc. As well as taught classes, students use our extensive range of laboratories which include industry standard design and analysis software, including Pro Engineer, Phoenix CFD, ANSYS FEA, etc.

Course content

Students study eight taught modules then undertake a research-based dissertation, the length of the course being about 12 months in total.

Modules studied include: ​​​
-Technical and Study Skills
-Research Methods and Project Management
-Control Systems for Aeronautics
-Structural Integrity
-Aircraft Propulsion Systems
-Advanced Aeronautics
-Advanced Vehicle Aerodynamics
-MSc Project the 60 credit dissertation module, student centred but with close staff guidance.

Options include:
-MSc Project by Distance Learning (as an alternative to the MSc Project)
-Advanced Engineering Materials
-Technical Paper Authoring
-Industrial Responsibility

Employment opportunities

It is envisaged that graduates from the MSc in Aeronautical Engineering will be in a position to apply for a large range of technical, engineering, analytical, operation or management jobs within the aerospace and airline industries.

Read less
Summary. This MSc programme is designed for engineering, mathematics or physical science graduates. The academically challenging course provides exposure to modern issues in advanced mechanical engineering science, with the opportunity to specialise in computational engineering – and design. Read more

Summary

This MSc programme is designed for engineering, mathematics or physical science graduates. The academically challenging course provides exposure to modern issues in advanced mechanical engineering science, with the opportunity to specialise in computational engineering – and design. The programme covers the latest techniques, methods and simulation software to give accurate insights into how innovative design ideas will work in practice and how to work effectively with industry.

Modules

Compulsory modules: Introduction to Advanced Mechanical Engineering Science; Numerical Methods; Advanced Computational Methods I; Design Search and Optimisation; MSc Research Project

Optional modules: Finite Element Analysis in Solid Mechanics; Advanced FEA; Advanced Computational Methods II; Aircraft Structural Design; Engineering Design with Management; Computational Methods in Biomedical Engineering Design; Advanced Management; Applications of CFD; Machine Learning; Advanced Partial Differential Equations

Visit our website for further information.



Read less
The MSc course in Autosport Engineering covers the latest state of the art computer based analysis and design techniques used in the automotive industry. Read more
The MSc course in Autosport Engineering covers the latest state of the art computer based analysis and design techniques used in the automotive industry. The course has been developed in conjunction with the Automotive Industry and will provide the graduate with an indepth insight into the key technological areas that are driving automotive engineering design.

Students gain a deep understanding of the engineering principles that affect all aspects of vehicle performance including engine, suspension and aerodynamics. The course is based around the use of industry standard engineering software and hardware provided by our partners. The student will gain an in depth understanding of PTC CREO, Cambridge Engineering Selector, ANSYS FEA, Cham Phoenics CFD, Boothroyd Dewhurst DFMA software and will gain hands on experience of related hardware such as Minolta Vi910 laser scanner, TESA coordinate measuring machine, ZCorporation and Startasys rapid prototyping, KRYLE 3 Axis Machining Centre and Beavor Turning Centre, Lister Petter Diesel engine dyno, Race Technology real time data acquisition.

Good laboratory support including a design studio with over 70 Design Workstations, Manufacturing facilities including CNC machining and rapid prototyping systems, and fully equipped automotive workshop. A placement opportunity of up to 12 months is designed as an option within the course.

Course content

The course consists of 8 taught modules plus a major personal project leading to a written thesis. The taught modules cover the broad range of activities involved in vehicle design. You will study topics such as solid and surface modelling, rapid prototyping, Finite Element Analysis, advanced engine design and aerodynamics. The subject area of your final thesis can be selected to suit your own aspirations and interests. You will be assigned a supervisor with whom you will work closely to develop an academically challenging portfolio of work. The focus of this project will determine whether you will opt for the title of MSc Automotive or MSc Autosport.

Core modules are:
-Research Methods & Project Management
-Design Technologies for Master
-Structural Integrity
-Advanced Engine Design
-Advanced Vehicle Aerodynamics
-Advanced Vehicle Dynamics
-Control Systems
-Project

Option Modules are:
-Applied Structural Integrity
-Sustainable Design & Manufacture
-Advanced Engineering Materials
-Industrial Placement MSc Engineering Handbook

Employment opportunities

Upon graduation you will be ideally placed to work in an automotive engineering company at a senior level working towards Chartered (CEng) status. The course also gives a good grounding in research techniques which could allow you to continue your personal research interests to PhD level.

Read less
INTRODUCTION. The programme is designed for those aspiring to hold positions requiring economic analyses and a high level of economic proficiency in business, industry and government. Read more
INTRODUCTION

The programme is designed for those aspiring to hold positions requiring economic analyses and a high level of economic proficiency in business, industry and government. The programme provides its graduates with broad knowledge in a wide range of areas in economics. Students are also trained in conducting research to enhance their report writing and problem solving skills in areas related to economics necessary to be effective economic analysts.



ENTRY REQUIREMENT

A Bachelor degree with a minimum of CGPA 3.0 or equivalent and sufficient knowledge in the field of economics or in quantitative oriented fields.



PROGRAMME STRUCTURE



6 CORE COURSES (30 Credits)

–Philosophy and Methodology of Research
–Research Project
–Advanced Microeconomics
–The Malaysian Economy
–Applied Econometrics


ANY 4 OPTIONAL COURSES (12 Credits)

–Economic Development and Planning
–Applied Macroeconomics
–Money and Finance in Economic Development
–Public Economics
–International Trade and Environment
–Islamic Banking and Finance
–Issues in Economic Analysis
–Advanced International Trade
–Urban Economics
–Social Protection
–Time Series Analysis
–Applied Financial Econometrics
–Poverty and Inequality
–Institutions, Industrial Development and Economic Growth


PROGRAMME DURATION

Minimum: 2 Semesters

Maximum: 8 Semesters



LANGUAGE REQUIREMENTS (For International Applicants)

Minimum TOEFL score of 550 or;

Minimum IELTS overall band score of 5.5



FEES STRUCTURE

AVERAGE FEES*

MALAYSIAN

RM 14,130.00*

INTERNATIONAL

RM 27,867.50*

*Subject to change

Facilities

The faculty is equipped with state-of-the-art facilities such as two computer teaching laboratories equipped with LCD and statistical software with a total capacity for 105 students, a student computer laboratory for 51 students and five lecture theatres.

In addition, the beautiful new building for postgraduate studies, houses 15 seminar rooms, a computer laboratory with a capacity for 54 computer workstations, 2 conference halls with a capacity of 100 persons each and 3 wireless LAN coverage (WiFi) zones within the faculty.

Indeed, FEA is one of the few premier institutions that can provide such quality, in terms of facilities.

Read less
The Master of Development Studies equips students with knowledge and tools for understanding and researching today’s development issues. Read more
The Master of Development Studies equips students with knowledge and tools for understanding and researching today’s development issues. The coursework of this programme lays the foundation for studying development in multidisciplinary perspective, covering theoretical and practical aspects. We address contemporary challenges arising from globalization, and transition students to the dissertation portion of the program through training in research methodology. Elective courses focus on major issues in development: poverty and inequality, industrialization, the role of institutions, sustainable development, and entrepreneurship.

INTRODUCTION

The Master of Development Studies is a multidisciplinary programme that sets to provide solid grounding in development from theoretical, conceptual, historical and contemporary perspectives, as well as a good grasp of empirical research, policy analysis, and development in practice particularly applicable to development scholars, practitioners and policymakers. The programme exposes students to development theories and a wide range of topics related to development. The students are also trained to conduct research in development studies.



ENTRY REQUIREMENT

A Bachelor degree with a minimum of CGPA 3.0 or equivalent and sufficient knowledge of development studies or relevant field.



PROGRAMME STRUCTURE

CORE COURSES (24 Credits)

- Philosophy and Methodology of Research

- Research Project

- Development Theory and Practice

- Globalization and Development



OPTIONAL COURSES (A+B)



(A) AT LEAST 3 OPTIONAL COURSES (9 Credits)

- Poverty and Inequality

- Sustainable Development and Environmental Management

- Entrepreneurship and Development

- Institutions, Industrial Development and Economic Growth

- Economics of Education

- Gender and Development Issues



(B) NOT MORE THAN 3 OPTIONAL COURSES (9 Credits)

- The Malaysian Economy

- Economic Development and Planning

- Public Economics

- Islamic Banking and Finance

- Public Policy Analysis

- Social Policy and Development

- Planning Community and Development



PROGRAMME DURATION

Minimum: 2 Semesters

Maximum: 8 Semesters



LANGUAGE REQUIREMENTS (For International Applicants)

Minimum TOEFL score of 550 or;

Minimum IELTS overall band score of 5.5



FEES STRUCTURE

AVERAGE FEES*

MALAYSIAN

RM 14,130.00*

INTERNATIONAL

RM 27,867.50*

*Subject to change

Facilities

The faculty is equipped with state-of-the-art facilities such as two computer teaching laboratories equipped with LCD and statistical software with a total capacity for 105 students, a student computer laboratory for 51 students and five lecture theatres.

In addition, the beautiful new building for postgraduate studies, houses 15 seminar rooms, a computer laboratory with a capacity for 54 computer workstations, 2 conference halls with a capacity of 100 persons each and 3 wireless LAN coverage (WiFi) zones within the faculty.

Indeed, FEA is one of the few premier institutions that can provide such quality, in terms of facilities.

Career Opportunity

- Government agencies ( federal, state, local and others)
- International development agencies
- Non-governmental organizations (NGOs)
- Non-profit organizations
- Educational services (universities, colleges and others)
- Policy and research bodies

Read less

Show 10 15 30 per page



Cookie Policy    X