• University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Southampton Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Coventry University Featured Masters Courses
University of Reading Featured Masters Courses
Bath Spa University Featured Masters Courses
"explosive"×
0 miles

Masters Degrees (Explosive)

We have 18 Masters Degrees (Explosive)

  • "explosive" ×
  • clear all
Showing 1 to 15 of 18
Order by 
This course has been designed specifically to provide an opportunity to a wide range of attendees, which include military officers, defence industry staff, government servants and civilian students. Read more

Course Description

This course has been designed specifically to provide an opportunity to a wide range of attendees, which include military officers, defence industry staff, government servants and civilian students.

The course offers advanced academic background necessary for students to contribute effectively to technically demanding projects in the field of explosives and Explosives Ordnance Engineering (EOE). It does this by introducing them to up-to-date and current research, which enables them to obtain a critical awareness to problem solving and capability to evaluate both military and commercial best practice in the field of EOE.

This course enables students to learn in a flexible manner as it offers both part-time and full-time learning all with full access to an outstanding remote virtual learning environment and on-line literature through our extensive library facilities. Other qualities and transferable skills include opportunities that will enhance employment potential in this field, problem solving, self-direction and informed communication skills.

This course meets the educational requirements for the Engineering Council UK’s register of Chartered Engineers (CEng); the course is accredited by the Institution of Mechanical Engineers (IMechE) and the Institution of Engineering and Technology (IET).

Overview

This course specialises in explosive ordnance and engineering and is world class in teaching and research. We have a diverse student body drawn mainly from personnel linked to the military from numerous industries and institutions in the UK as well as overseas providing a rich educational experience. Our class size is normally 20 - 25 comprising a combination of full and part time students.

Start date: Full-time: September. Part-time: by arrangement

Duration: Full-time MSc - one year, Part-time MSc - up to three years, Full-time PgDip - one year, Part-time PgDip - two years

English Language Requirements

Students whose first language is not English must attain an IELTS score of 7.0

Course overview

Part One of the MSc course contains an introductory period followed by academic instruction, which is in modular form. Students take ten core modules covering the main disciplines and choose two optional modules based upon their particular background, future requirements or research interests. To qualify for the Explosives Ordnance Engineering MSc, students must successfully complete formal examinations, individual coursework, one group project and a research project.

Research project:
In Part Two, students undertake a research project - a list of prospective projects is provided each year by the teaching staff. Alternatively, with the agreement of the teaching staff/supervisor, students may undertake appropriate research of their own choice.

The structure of this course has been devised so that students learn the fundamental elements of EOE from an academic perspective whilst having the opportunity to learn something new by selecting elective modules.

Modules

The MSc is 200 credits of which 90 are compulsory, 80 are for the thesis and 30 credits are elective.

The PgDip is 120 credits of which 90 are compulsory and 30 credits are elective.
Full modules are 10 credits each; half modules are 5 credits each.

Core:
- Ammunition Systems 1 (Warheads)
- Ammunition Systems 2 (Delivery Systems)
- Ammunition Systems 3 (Target Effects)
- Future Developments: Scanning the Horizon in EOE
- Insensitive Munitions (Half Module)
- Introduction to Explosives
- Manufacture and Material Properties of Explosives
- Gun Propellants
- Research Methodology
- Testing and Evaluation of Explosives (Half Module)
- Transitions To Detonation (Half Module)
- EOE Project Phase

Elective:
- Explosives and the Environment (Half Module)
- Explosives for Nuclear Weapons
- Pyrotechnics
- Computer Modelling Tools in Explosives Ordnance Engineering (Half Module)
- Risk Assessment for Explosives (Half Module)
- Forensic Investigation of Explosives and Explosive Devices
- Rocket Motors and Propellants

Individual Project

The aim of the project phase is to give the students an opportunity to apply the skills, knowledge and understanding acquired on the taught phase of the course to a practical problem in EOE. A list of available project titles is produced in the first few months of the course so that a student can make an early choice and begin planning their programmes well before the project phase begins. Suggestions for projects may come from a variety of sources, for example an individual student’s sponsor, a member of staff, or the wider EOE community.

Group Project

To integrate module learning into an overall critical evaluation of new trends in EOE the students undertake a group project, which considers current ‘Hot Topics in EOE’, for example, nanotechnology, insensitive munitions, analysis and detection and environmental initiatives. The group project involves the students working together to research these hot topics and to critically appraise the facts, principles, concepts, and theories relating to a specific area of EOE. They do this as a group and then individually prepare elements of a presentation that they feedback in groups to their peers in an open forum. The presentation is then graded from an individual and group perspective.

The group project enables the students to work as a team, enhances their communication skills and encourages the ability to present scientific ideas in a clear and concise manner. It also gives the students an understanding of the procedures and challenges associated with peer review and grading and prioritisation of presented work against a clear assessment framework.

Assessment

Coursework, examination, group project and individual thesis (MSc only).

Career opportunities

Many of the students are linked to military employment and as such are sponsored through this route. Therefore the majority of the students continue to work for them on completion of the course. However, the course has the potential to take you on to enhanced career opportunities often at a more senior level across a range of roles corresponding with your experience.

For further information

on this course, please visit our course webpage http://www.cranfield.ac.uk/courses/masters/explosives-ordnance-engineering.html

Read less
The photonics research groups in the physics departments of Heriot-Watt and St. Andrews Universities are internationally renowned, and have many links with industrial and university groups around the world. Read more

Overview

The photonics research groups in the physics departments of Heriot-Watt and St. Andrews Universities are internationally renowned, and have many links with industrial and university groups around the world. Major activities are based around optoelectronics, laser development, semiconductor physics, materials technology, ultra-fast phenomena, modern optics, and instrumentation. This expertise is brought to the teaching of our one-year taught MSc course (See http://www.postgraduate.hw.ac.uk/prog/msc-photonics-and-optoelectronic-devices/ ).

Previously called Optoelectronic and Laser Devices, this MSc course has been updated and enhanced, recognising the explosive growth of the UK and global photonics industry, fostered by the world-wide expansion in the exploitation of optical in telecommunications.

Students spend one semester at each university, and then undertake a three-month research project, normally in a UK company. Companies participating in recent years include Bookham Technologies, BAE Systems, Edinburgh Sensors, Cambridge Display Technology, Defence Science and Technology Laboratory, Indigo Photonics, Intense Photonics, Kamelian, Nortel, Renishaw, Rutherford Appleton Laboratory, Thales, Sharp and QinetiQ.

Find more information here http://www.phy.hw.ac.uk/

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Photonics and Optoelectronic Devices. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

Students receive postgraduate training in modern optics and semiconductor physics tailored to the needs of the optoelectronics industries. Graduates gain an understanding of the fundamental properties of optoelectronic materials and optical fibres, and experience of the technology and operation of a wide range of laser semiconductor devices appropriate to the telecommunications, information technology, sensing, and manufacturing industries.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-photonics-and-optoelectronic-devices/

Read less
This programme will not have a 2016 intake as the content is being extensively improved. Read more

NOTE

This programme will not have a 2016 intake as the content is being extensively improved.

The MSc in Wireless Systems & Logistics Technology provides industry with graduates who possess a thorough knowledge of actual modern radio systems and of the fundamental principles and design constraints embodied in those systems as well as a solid appreciation of the benefits of such systems to the Logistics Industry. The main course components include radiowave propagation, radio systems design, digital signal processing techniques, the rapidly expanding field of mobile radio systems, item-attendant data and RFID/AIDC systems. In line with the overall philosophy of the new University of Hull Logistics Institute, students of the course will study the foundations of Logistics & Supply Chain Management alongside management-oriented students and will enhance their experience through this perspective. Each of these subject areas is addressed by the current research interests and undergraduate teaching of the Logistics Institute and the related Centre for Communications Systems and Technology. The output from many of the Radio Communications area's projects over the past five years forms an important contribution to the course material, particularly in the areas of radio system design, propagation analysis and monitoring and signal processing.

Aims and Objectives

* Enable participants to become reflective practitioners in the areas of radio communications and applications of item attendant data, with particular applications in Logistics
* Provide a theoretical underpinning of RFID, Short Range Radio and more general radio communications systems
* Develop participants understanding of the requirements for appropriate support technology in business
* Develop research and critical thinking skills.

Distinctive features

* A broadly-based course which addresses up-to-the-minute systems and issues
* Utilises industrial case studies to convert theory into practice
* Utilises industry-standard hardware and software
* Development of project skills through Industrially relevant 5-month project

The course has clear links with the mobile communications and Logistics industries which currently offer very good career prospects having shown an almost explosive increase of activity related to the mobile communications industry both in the UK and elsewhere. In particular there has been a recent upsurge of interest in Logistics Technology and RFID with many major industries establishing initiative in the field. Graduates of the course will be suitable for entry into engineering posts in these industries or in government service related to the fields of radio systems and communications equipment design, Logistics and AIDC equipment manufacture and marketing.

It is intended that candidates will gain both subject-specific skills (from specialist taught courses) as well as more general communications skills gained from interaction with other students, assignments and investigative project work.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Erasmus Mundus Computational Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Erasmus Mundus Computational Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University has gained a significant international profile as one of the key international centres for research and training in computational mechanics and engineering. As a student on the Master's course in Erasmus Mundus Computational Mechanics, you will be provided with in-depth, multidisciplinary training in the application of the finite element method and related state-of-the-art numerical and computational techniques to the solution and simulation of highly challenging problems in engineering analysis and design.

Key Features of Erasmus Mundus Computational Mechanics MSc

The Zienkiewicz Centre for Computational Engineering is acknowledged internationally as the leading UK centre for computational engineering research. It represents an interdisciplinary group of researchers who are active in computational or applied mechanics. It is unrivalled concentration of knowledge and expertise in this field. Many numerical techniques currently in use in commercial simulation software have originated from Swansea University.

The Erasmus Mundus MSc Computational Mechanics course is a two-year postgraduate programme run by an international consortium of four leading European Universities, namely Swansea University, Universitat Politècnica de Catalunya (Spain), École Centrale de Nantes (France) and University of Stuttgart (Germany) in cooperation with the International Centre for Numerical Methods in Engineering (CIMNE, Spain).

As a student on the Erasmus Mundus MSc Computational Mechanics course, you will gain a general knowledge of the theory of computational mechanics, including the strengths and weaknesses of the approach, appreciate the worth of undertaking a computational simulation in an industrial context, and be provided with training in the development of new software for the improved simulation of current engineering problems.

In the first year of the Erasmus Mundus MSc Computational Mechanics course, you will follow an agreed common set of core modules leading to common examinations in Swansea or Barcelona. In addition, an industrial placement will take place during this year, where you will have the opportunity to be exposed to the use of computational mechanics within an industrial context. For the second year of the Erasmus Mundus MSc Computational Mechanics, you will move to one of the other Universities, depending upon your preferred specialisation, to complete a series of taught modules and the research thesis. There will be a wide choice of specialisation areas (i.e. fluids, structures, aerospace, biomedical) by incorporating modules from the four Universities. This allows you to experience postgraduate education in more than one European institution.

Modules

Modules on the Erasmus Mundus MSc Computational Mechanics course can vary each year but you could expect to study the following core modules (together with elective modules):

Numerical Methods for Partial Differential Equations

Continuum Mechanics

Advanced Fluid Mechanics

Industrial Project

Finite Element Computational Analysis

Entrepreneurship for Engineers

Finite Element in Fluids

Computational Plasticity

Fluid-Structure Interaction

Nonlinear Continuum Mechanics

Computational Fluid Dynamics

Dynamics and Transient Analysis

Reservoir Modelling and Simulation

Accreditation

The Erasmus Mundus Computational Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

See http://www.jbm.org.uk for further information.

This degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

On the Erasmus Mundus MSc Computational Mechanics course, you will have the opportunity to apply your skills and knowledge in computational mechanics in an industrial context.

As a student on the Erasmus Mundus MSc Computational Mechanics course you will be placed in engineering industries, consultancies or research institutions that have an interest and expertise in computational mechanics. Typically, you will be trained by the relevant industry in the use of their in-house or commercial computational mechanics software.

You will also gain knowledge and expertise on the use of the particular range of commercial software used in the industry where you are placed.

Careers

The next decade will experience an explosive growth in the demand for accurate and reliable numerical simulation and optimisation of engineering systems.

Computational mechanics will become even more multidisciplinary than in the past and many technological tools will be, for instance, integrated to explore biological systems and submicron devices. This will have a major impact in our everyday lives.

Employment can be found in a broad range of engineering industries as this course provides the skills for the modelling, formulation, analysis and implementation of simulation tools for advanced engineering problems.

Student Quotes

“I gained immensely from the high quality coursework, extensive research support, confluence of cultures and unforgettable friendship.”

Prabhu Muthuganeisan, MSc Computational Mechanics



Read less
The programme aims to give students a general understanding of all aspects of telecommunications networks and the Internet. The course covers techniques, mechanisms, protocols and network architectures. Read more

The programme aims to give students a general understanding of all aspects of telecommunications networks and the Internet. The course covers techniques, mechanisms, protocols and network architectures. The programme starts from covering basic principles of communications systems and extends to architectural aspects and design of future packet-switched networks.

Key benefits

  • Located in the heart of London.
  • Develop a detailed technical knowledge of current practice in wireless systems and networks.
  • Covers aspects related to both wireless and wireline networks since in the future Internet access will be supported by a combination of different wireless and wireline technologies.
  • Taught modules closely linked with research expertise in the scope area.
  • The Department of Informatics has a reputation for delivering research-led teaching and project supervision from leading experts in their field.

 Description

  • Offers an appreciation of the evolution of mobile technology and Internet protocols together with a detailed understanding of the key technologies that will support the ecosystem of the future Internet.
  • The programme provides a holistic view on the technologies and related architectural paradigms for the evolution of the Internet to the Mobile Internet.
  • The key strength of the programme is its close links with the state-of-the-art research environment at the Centre for Telecommunications Research, providing a rich intellectual environment for students to achieve their goals and gain strong employment prospects,be highly competitive in their employability aspects.

In addition to the taught modules students are required to complete an individual project (and write a Thesis) to be eligible for the award of the MSc degree.

Course purpose

Undoubtedly, the growth of mobile and wireless communication systems and networks over the last few years has been explosive. Interestingly enough, this growth is taking place all over the world in both developed and developing countries. Therefore, in this very dynamic industry the prospects of employment are significant for graduates with well-rounded knowledge of this field. The aim of the programme is to provide the next generation of engineers that will manage and steer the developments in these new emerging Internet technologies. 

Course format and assessment

We use lectures, seminars and group tutorials to deliver most of the modules on the programme. You will also be expected to undertake a significant amount of independent study.

You are expected to spend approximately 150 hours of effort (i.e. about 10 hours per credit) for each module you attend in your degree. These 150 hours cover every aspect of the module: lectures, tutorials, lab-based exercises, independent study based on personal and provided lecture notes, tutorial preparation and completion of exercises, coursework preparation and submission, examination revision and preparation, and examinations.

 Assessment methods will depend on the modules selected. The primary methods of assessment for this course are written examinations and coursework. You may also be assessed by class tests, essays, assessment reports and oral presentations.

Career destinations

Re-engineering the Internet towards its evolution to the Wireless Internet is the current driver of research efforts in both academia and research and development sectors in industry. Graduates from our programme will be very well placed to proceed into employment in both mobile network operators and industrial manufacturers of mobile/wireless network equipment. Due to close links with the current research efforts in the scope areas, graduates are also well placed to further their academic studies towards MPhil and PhD degrees.



Read less
This practitioner-oriented Master’s degree provides students with a practical and theoretical foundation for successful careers in risk management, compliance, regulation and allied work streams within the financial services industry. Read more

This practitioner-oriented Master’s degree provides students with a practical and theoretical foundation for successful careers in risk management, compliance, regulation and allied work streams within the financial services industry. Skills are developed through creating a broader understanding of financial firm risk-taking, accountability, governance.

The emphasis is on a deep analysis of mainstream and critical authorship. We will challenge current and past thinking on the role of financial institutions and markets. The programme particularly encourages students to examine regulatory structures and concepts in the context of recent and past financial crises.

Students will build the skills and knowledge needed to gain an understanding of financial reform processes and their consequences for markets around the world. Rigorous classroom teaching coupled with extensive reading provides students with a sound theoretical basis. An understanding of substantive legal issues is also developed.

Contributions by industry and regulatory experts introduces students to the nuances of real world application of theoretical constructs. Practical case studies, current legal positions and interactive student discussions or presentations are used in most lectures. In addition legal, academic, practitioner and regulatory input is gained through specialist guest lectures and visits as per the ability of the year-group.

Key topics

Some key topics taught within this degree include:

  • The causes and consequences of risk-taking – an in-depth understanding of the financial crisis
  • Solvency II, Basel, UCITS, company law and corporate governance requirements
  • The roles, structure and responsibilities of key regulatory and supervisory bodies including the Basel Committee on Banking Supervision, IAIS, IOSCO, European Systemic Risk Board, SEC, FINRA, UK FSA and its successors, Bank of England and other central banks, EBA, ESMA, EIOPA, BaFin, global, regional and national regulators.
  • Risk appetite and the role of the Board of Directors, Chief Risk Officer and Senior Management
  • How to build a risk management framework and a compliance plan
  • Rationales for regulation and optimal regulatory structures
  • Prudential and conduct of business controls
  • Stakeholders and the consequences of regulatory and governance failures

Highlights

  • Gain European and international insights by learning from and sharing ideas with finance & regulatory practitioners and respected academics
  • Engage with a range of critical and mainstream views 
  • Stand out from the crowd when applying from jobs by develop your own unique and informed voice
  • Broaden your international exposure with practice-centred teaching attuned to the workplace through case-studies, simulations and interactive discussions
  • Benefit from specialist seminars and class interactions, giving you the opportunity to develop critical thinking skills and the ability to work with diverse groups 

Course structure

October – December: Part 1 Autumn Term

January: Part 1 Exams

January-April: Part 2 Spring Term

May – June: Part 2 Exams

June – August (12 month programme only): Part 3

August/Sep (12 month programme only): Part 3 Coursework deadlines

Course content

Part 1 compulsory modules

Part 2 compulsory modules

Part 3 optional modules

Students on the 12-months programme should choose one from the following:

Learning options

Full-time: 9 months Full-time: 12 months

Students will be resident and undertake full-time study in the UK. Under both, the 9 and 12-month programmes students take compulsory and/or elective modules in Part 2.

The 12 month option involves taking an elective 20 credit module between July and August, which would also mean a 20 credit reduction in the number of taught modules taken in the spring term.

Careers

The financial services sector has an ever-expanding need for graduates trained in the fundamentals of compliance, governance and regulation. This increasing demand has been fuelled by implementation of a number and rules and laws, including the EU Market Abuse Directive, Markets in Financial Instruments (MiFID), global standards such as Basel II, and the FSA and US regulators’ focus on principles-based regulation, all of which require significant in-house compliance resources.

With recent explosive growth in capital markets such as China,India, the Middle East and Eastern Europe, combined with the increasing complexity of financial products and a growing sophistication on the part of investors and market participants, there are immense challenges facing institutions, compliance professionals within them and regulators.

Our graduates are in a very strong position to build successful careers in the compliance or legal divisions of investment banks, fund managers and hedge funds, retail banking institutions and other market participants.

Find out more about graduate destinations and career opportunities on our Henley Careers page

Professional accreditation

CISI Diploma

The ICMA Centre is a Chartered Institute of Securities and Investment (CISI) Centre of Excellence. Centres of Excellence are a select group of UK universities, recognised by the CISI as offering leadership in academic education on financial markets. Students who are on a financially-related masters course recognised by the CISI are eligible for exemptions and membership. 

ICMA Centre students who register and successfully complete two CISI Diploma in Capital Markets modules (Securities and Bonds & Fixed Interest Markets) are eligible for an exemption from the third module (Financial Markets).

ICMA Fixed Income Certificate

To obtain the requisite knowledge to pass the rigorous FIC exam, students are required to take the ICMA Centre Fixed Income Cash and Derivatives Markets module at Part 2. In order to receive the FIC certificate, students will need to register and pass the FIC exam through ICMA.



Read less
Why Surrey?. The MSc Physics offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students. Read more

Why Surrey?

The MSc Physics offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students.

We collaborate with a variety of partners across the academic, public and industry communities, including the National Physical Laboratory.

Programme overview

You will select modules from a wide range of fundamental and applied physics topics. The application-focused modules are co-taught by practitioners in public service and industry to ensure that students gain real-world insight.

A module in research skills will prepare you to apply your new knowledge and skills in an eleven-week research project undertaken during the summer.

Your chosen research projects can open the door to many careers, not just further research. They will give you tangible experience of working independently and communicating your work effectively and efficiently in written form: key requirements in many professions.

Why not discover more about the subject in our video?

Programme structure

This programme is studied full-time over one academic year. It consists of eight taught modules and a dissertation. Part-time students take the same content over 2 academic years.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The primary aim of the programme is to provide a flexible high quality postgraduate level qualification in physics. It integrates the acquisition of core scientific knowledge with the development of key practical skills in the student’s chosen area of specialisation.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Serious games and virtual reality represent a large, and actively growing, industry – the application of modern games technology in a wide range of areas around medicine, training, education, security and beyond. Read more
Serious games and virtual reality represent a large, and actively growing, industry – the application of modern games technology in a wide range of areas around medicine, training, education, security and beyond. While educational games already represent a multi-billion dollar global industry, the recent growth in virtual reality has seen predictions that this market will grow to $150 billion dollars by 2020 (Techcrunch, April 6, 2015).

The MSc provides students with the skills to become a key part of this explosive growth, and potential to become key innovators in this exciting and rapidly developing area. The MSc offers students with prior programming/scripting experience the transferable skills to design, develop and analyse games and simulations for a range of application areas and to conduct interdisciplinary research in the serious applications of games technology, particularly in healthcare, education and training.

As Virtual Reality and interaction technologies approach mainstream adoption, new opportunities for the application of immersive games technologies in engineering, medicine and in the home are putting games at the forefront of innovation worldwide.

At the School of Simulation and Visualisation we already have years of experience working on a wide range of serious games based projects for industrial, medical, heritage and education clients, building on our research and our expertise in 3D modeling and animation, motion capture technology and software development. We are pleased to be able to share our experience and expertise with this MSc.

Programme Structure:

Stage 1

Core Research Skills for Postgraduates
Games Programming
Serious Game Design and Research
School of Simulation and Visualisation Elective: Choose one from
Interactive Heritage Visualisation
Applications in Medical Visualisation

Stage 2

Motion Capture & Interaction
Audio for games & interactive applications
Serious Games Development
GSA Elective
Stage 3

MSc Research Project
Part time study is also available. Please see the Part Time Study Guide for more information.

Entry Qualifications:

You should have a Honours degree or equivalent professional practice in any of the following disciplines:

Computer science, computer graphics, computer programming, software development, mathematics, or physics
Computer games programming, game development, game design, game art, 3D modeling and animation, interactive systems
High calibre graduates from other disciplines may be considered if they are able to demonstrate an interest and ability in the field of serious games development.

IELTS 6.0 for overseas applicants for whom English is not their first language.

Scholarships and Funded Places:

Information on career development loans and financial support can be found in the fees and funding pages.

Read less
This Masters-level Forensic Bioscience course from Liverpool John Moores University is ideal for forensic science practitioners and science graduates. Read more
This Masters-level Forensic Bioscience course from Liverpool John Moores University is ideal for forensic science practitioners and science graduates. You will have access to state-of-the-art learning facilities plus a research-informed curriculum.

•Complete this masters degree in one year (full time)
•Suitable for Forensic Science practitioners and science graduates, this course is informed by research and industry links
•Enjoy access to state-of-the-art laboratories, crime scene facilities and a moot room
•Learn from forensic anthropologists, biologists, crime scene and fire investigation specialists and leading in-house academics
•Benefit from a local, national or international work placement
•Develop transferrable skills in legal matters and research methods and specialise in your chosen area


Forensic Bioscience is one of four forensic programmes offered by LJMU. All four options share a number of common modules, but each course has its own distinct identity.

During this course you will:
•explore the criminal justice system as a setting in which a forensic scientist might work (this relates to British and international law)
•discover how to apply appropriate techniques following the analysis and evaluation of complex forensic cases
•learn to critically evaluate current crime scene techniques

Although this year long programme does not have a part time study option, you can work at a slower pace and gain the full Masters over three years by completing the PG Cert in year one, the PG Diploma in year two and the Masters in year three. There is even the option to carry out the dissertation project in your place of work.
On joining the course you will be appointed a personal tutor who will be able to offer academic and pastoral support. The School also operates an open door policy, providing access to members of staff when you need them.

You will study at the Byrom Street site in the University’s City Campus. With an ongoing £12 million investment in laboratory facilities here and state-of-the-art research facilities in the newly developed Life Sciences building, you’ll enjoy a first class study environment.
The Avril Robarts Library, open 24/7 during semesters, is located just minutes away on Tithebarn Street.
Legal aspects of the course are taught in the Moot Room in the multi-million pound Redmonds building on Brownlow Hill.

Please see guidance below on core and option modules for further information on what you will study.
Forensic Bioscience
Combines theory and practical work in post mortem interval determination, entomology, microbiology and pathology.
Law and Court Room Skills
Discusses the criminal justice systems under which a forensic scientist may work and examines expert witness testimony. Aspects of regulation and quality assurance are touched upon.
Research Methods
Covers grant application, critical appraisal of leading research and data interpretation and evaluation. This leads naturally into the dissertation.
Bioanalytical Techniques
Examines state-of-the-art biomolecular techniques, including DNA and protein analysis. Commonly used techniques in the forensic field will be critically analysed and performed along with emerging techniques which can form the basis of the dissertation or further postgraduate study.
Taphonomy and Trauma Analysis
Examines decomposition processes and trauma analysis.


Dissertation
The Dissertation research themes are led by staff and PhD students. Students are encouraged to present their research at conferences.
The following options are typically offered:

Fire Investigation
Offers specialist knowledge of fire and explosive analysis both at the crime scene and in terms of analytical techniques.
Trace Evidence Analysis
Teaches you to identify, differentiate and analyse different types of trace evidence using advanced techniques. Microscopy, including SEM (EDX) and atomic force, form the basis of the practical analysis performed, along with other techniques.

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Please email if you require further guidance or clarification.

Read less
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program. IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN. Read more
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program.

IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN:
- Skills and know-how in the latest and developing technologies in electrical systems
- Practical guidance and feedback from experts from around the world
- Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college
- Credibility and respect as the local electrical systems expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Electrical Systems)** qualification

The next intake will start on the week of June 27, 2016.

Contact us to find out more and apply (http://www.eit.edu.au/course-enquiry).

** A note regarding recognition of this program in the Australian education system: EIT is the owner of this program. The qualification is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA). EIT delivers this program to students worldwide.

Visit the website http://www.eit.edu.au/master-engineering-electrical-systems

PROFESSIONAL RECOGNITION

This Master Degree (or Graduate Diploma) is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA) in Australia.

It is a professional development program and is not currently an entry-to-practice qualification. Engineers Australia are considering this and other programs for those students desiring professional status (e.g. CPEng). However, the outcome of this review may or may not result in a student gaining chartered professional status if he or she does not already possess this.

Additional Entry Requirements

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6.0) or equivalent as outlined in the EIT Admissions Policy.

Congruent field of practice means one of the following with adequate electrical engineering content (with fields not listed below to be considered by the Dean and the Admissions committee on a case-by-case basis):

• Electrical Engineering

• Electronic and Communication Systems

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechatronic Systems

• Manufacturing and Management Systems

• Industrial Automation

• Production Engineering

Overview

Electrical power is an essential infrastructure of our society. Adequate and uninterrupted supply of electrical power of the required quality is essential for industries, commercial establishments and residences; and almost any type of human activity is impossible without the use of electricity. The ever-increasing cost of fuels required for power generation, restricted availability in many parts of the world, demand for electricity fueled by industrial growth and shortage of skilled engineers to design, operate and maintain power network components are problems felt everywhere today. The Master of Engineering (Electrical Systems) is designed to address the last-mentioned constraint, especially in today’s context where the field of electrical power is not perceived as being ‘cool’ unlike computers and communications and other similar nascent fields experiencing explosive growth. But it is often forgotten that even a highly complex and sophisticated data centre needs huge amounts of power of extremely high reliability, without which it is just so much silicon (and copper).

This program presents the topics at two levels. The first year addresses the design level where the student learns how to design the components of a power system such as generation, transmission and distribution as well as the other systems contributing to the safety of operation. The topics in the first year also cover the automation and control components that contribute to the high level of reliability expected from today’s power systems. Because of the constraints imposed by the fuel for power generation and the environmental degradation that accompanies power generation by fossil fuels, the attention today is focused on renewable energy sources and also more importantly how to make the generation of power more efficient and less polluting so that you get a double benefit of lower fuel usage and lower environmental impact. Even the best designed systems need to be put together efficiently. Setting up power generation and transmission facilities involves appreciable capital input and complex techniques for planning, installation and commissioning. Keeping this in view, a unit covering project management is included in the first year.

The second year of the program focuses on the highly complex theory of power systems. If the power system has to perform with a high degree of reliability and tide over various disturbances that invariably occur due to abnormal events in the power system, it is necessary to use simulation techniques that can accurately model a power system and predict its behavior under various possible disturbance conditions. These aspects are covered in the course units dealing with power system analysis and stability studies for steady-state, dynamic and transient conditions. The aspect of power quality and harmonic flow studies is also included as a separate unit.

The study of power systems has an extensive scope and besides the topics listed above, a student may also like to cover some other related topic of special interest. The ‘Special Topics in Electrical Power Systems’ unit aims to provide students with the opportunity for adding one ‘state-of-the art’ topic from a list of suggested fields. Examples are: Smart grids, Micro-grids and Geographic Information System (GIS) application in utility environment.

The Masters Thesis which spans over two complete semesters is the capstone of the program, requiring a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding units. As a significant research component of the course, this program component will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling the students to critique current professional practice in the electrical power industry.

WHO WOULD BENEFIT

Those seeking to achieve advanced know-how and expertise in industrial automation, including but not limited to:

- Electric Utility engineers

- Electrical Engineers and Electricians

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Consulting Engineers

- Production Managers

Read less
The School of Earth Sciences has strong international links and the presence of researchers from all over the world makes for an exciting and stimulating environment. Read more
The School of Earth Sciences has strong international links and the presence of researchers from all over the world makes for an exciting and stimulating environment. Research involves the full breadth of the earth sciences and has benefited from major investment in new laboratories and equipment in the past few years. Important initiatives include experimental and theoretical studies of physical, chemical and biological processes of the Earth.

Please note: If you are applying for this programme, you need to select Geology as the programme choice when completing your online application form.

Research groups

The research programme at Bristol is characterised by an expanding range of exciting subject areas. Research in the School of Earth Sciences encourages interdisciplinary collaboration between its five research groups, which in turn nurtures revolutionary research.

Geochemistry
The Geochemistry group uses fundamental chemical techniques to understand natural processes on a range of temporal and spatial scales. This can be from single atoms on mineral surfaces and the environmental geochemistry of the modern Earth to the large-scale chemical structure of planets and the birth of the solar system. The group has considerable expertise in isotopic measurements, spectroscopy and first-principles calculations.

Geophysics
Geophysics uses physical properties of the solid Earth to measure structure and processes on scales from the single crystal to the entire planet. Members of the Bristol Geophysics group use gravity, seismic and satellite data to image the Earth in a variety of different contexts. These include the Earth's core, mantle and tectonic processes, volcanoes, oil and gas reservoirs and mines.

Palaeobiology
The Palaeobiology group uses the fossil record to study the history of life. Research focuses on major diversifications, mass extinctions, dating the tree of life, phylogenomics and molecular palaeobiology, morphological innovation, biomechanics, and links between evolution and development; the organisms of interest range from foraminifera to dinosaurs.

Petrology
The Petrology group uses a combination of high-pressure and high-temperature experiments, petrology, geochemistry and mineral physics to attack a wide range of problems in the solid Earth - from the core to the surface.

Volcanology
The Volcanology group at Bristol aims to understand the physical processes underlying volcanic phenomena and develop methods of hazard and risk assessment that can be applied to volcanoes worldwide.

Recent case studies and collaborators include the Met Office, Montserrat Volcano Observatory, Eyjafjallajökull, Iceland and INGEOMINAS in Columbia.

Research centres

The School of Earth Sciences is involved in a number of collaborative research groups on an international level. Inter-faculty research centres such as the Biogeochemistry Research Centre and the Cabot Institute involve collaboration across several departments and faculties.

Centre for Environmental and Geophysical Flows
This interdisciplinary research centre brings together expertise from the Schools of Earth Sciences, Geographical Sciences, Mechanical Engineering and Mathematics. This creates diverse research activities and interests, from traffic flow to explosive volcanic flows, meteorology to oceanography.

Biogeochemistry Research Centre
The Biogeochemistry Research Centre involves staff from the Schools of Earth Sciences, Geographical Sciences and Chemistry. The research aims to develop our understanding of the biogeochemistry of modern-day and ancient environments and the way that it is affected by natural processes and the actions of mankind.

Bristol Isotope Group
The Bristol Isotope Group is a world-class research facility for isotope measurements directed at understanding natural processes, from the formation of the solar system, the origin of Earth - its deep structure and atmosphere, through to the evolution of that atmosphere and contemporary climate change.

Interface Analysis Centre
The Interface Analysis Centre specialises in the application of a wide range of analytical techniques and is used by the Schools of Chemistry, Earth Sciences and Physics.

The Cabot Institute
The Cabot Institute carries out fundamental and responsive research on risks and uncertainty in a changing environment. Interests include climate change, natural hazards, food and energy security, resilience and governance, and human impacts on the environment.

Read less
With the explosive presence of Big Data in modern business, employees with skills in data analytics is now essential for success. Read more
With the explosive presence of Big Data in modern business, employees with skills in data analytics is now essential for success. This course will prepare you with the relevant skills to maximise the opportunities that Big Data now offers, knowing how to approach data and ask the right questions. Learning to apply the principles of data handling to inform decision making will make you the glue that aligns information systems in your organisation to business strategies.

Modules:

Data Design
Data Handling and Decision Making
Data Visualisation and Interpretation
IS and Business Strategy Alignment
Technology and Trend Monitoring
Project and Portfolio Management
Research Project

Read less
The course's main feature is the industry internship (FMCS596) paper which gives you industry experience for one whole semester.  As an intern you will be mentored and supported by your employer and University supervisor, as you work on a real-world problem in an industry team setting. Read more

The course's main feature is the industry internship (FMCS596) paper which gives you industry experience for one whole semester.  As an intern you will be mentored and supported by your employer and University supervisor, as you work on a real-world problem in an industry team setting.

The MInfoTech was developed as part of the Auckland ICT Graduate School, a joint initiative between the University of Waikato and the University of Auckland, to develop industry-ready ICT experts. The aim of the programme is to meet the explosive demand for highly-skilled network and data professionals, coders, system architects, web developers and other work-ready ICT professionals. Technology is the fastest growing sector in New Zealand and with a $1.3 trillion projected growth in the global ICT industry from 2013-2020, the MInfoTech prepares you to make the most of the significant opportunities available in this industry.

Our aim is to ensure you move beyond the classroom and into professional work situations with a full complement of employable IT skills.

The Postgraduate Certificate in Information Technology (PGCertInfoTech) provides the ideal pathway to the Master of Information Technology (MInfoTech).

Specialisations

Within the MInfoTech you may choose to specialise in:

Geographic Information Systems (GIS)

Students take 30 points from the following 15 point papers (this list may vary from year to year):

  • GEOG538 Automated Spatial Analysis using Geographic Information Systems
  • GEOG548 Advanced Geographic Information Systems Modelling
  • GEOG568 Applications of Geographic Information Systems

In addition, students will need to have a GIS component in the compulsory 60 point FCMS596 Computer Science Internship.

Career opportunities

  • Internet/Multimedia Developer
  • Database Developer
  • Cloud Computing Developer
  • Data Security Developer
  • Network and Support Developer
  • Software Architect
  • Technical Consultant
  • Systems Administrator
  • GIS Analyst


Read less
Designed for. SCAV is designed for engineering or STEM subject graduates. Read more

Designed for

SCAV is designed for engineering or STEM subject graduates. It is particularly suitable for those with a background in electronics, electrical engineering, control systems, or communications who want to play a role in the development of connected and autonomous vehicles, and the Intelligent Transportation Systems Network.

With the advent of smart, connected and autonomous vehicles on the horizon of technical advancements, the automotive industry is facing a developmental challenge. How do we develop a robust technical infrastructure to support the anticipated explosive growth in smart vehicular functions, communications systems and driverless cars? This demands a comprehensive understanding of the technology and a bottom-up approach ensuring robustness and dependability of Electronics, Communications (e.g. V-2-V, V-2-I) and Control Systems.

The strategic success of any industrial player in this area would depend on a ready availability of a skilled work-force within high level technical competencies, specifically catered for the automotive environment.

What will the course provide?

Through this MSc we aim to address the knowledge-gap in the areas of machine learning, automated control strategies, connectivity, and communication infrastructure, cyber-security protocols, emerging automotive networks and robust automotive embedded systems within the context of smart, connected and autonomous vehicles.

WMG at the University of Warwick has an established legacy of leading automotive research in collaboration with industry. Our unique experimental facilities enable academics and industry practitioners to work together and include:

  • 3xD (Drive-in Driver-in-the-loop Driving) simulator facility
  • Fully-functional complete vehicle electrical/electronic system (labcar)
  • Hardware-in-the-Loop (HIL) facilities
  • National Automotive Innovation Centre (NAIC)

This MSc programme has extensive industrial support with the Industry Advisory Board consisting of Jaguar Land Rover (JLR), RDM and other industrial stakeholders.

Course modules

  • Sensor and Sensor Fusion
  • Networks and Communications for the Connected Car
  • Human-Technology Interaction
  • Machine Intelligence and Data Science
  • Robust Automotive Embedded Systems 

Elective modules

You will need to choose four elective modules from the module list*, which should be chosen to supplement your core modules above (subject to availability). *Important, please note: the list relates to modules available in 2017/18 academic year, and should be regarded as an illustrative guide to modules available in future years.

You are required to pass nine modules in total as part of this Master's course.

Project

Leveraging the close partnerships that WMG has with key organisations within the automotive sector, it is envisaged that your project will have an industrial sponsor, enabling you to work in close collaboration with an industry partner. This valuable experience will further your transferrable skills development, and expand your networking opportunities and understanding in a professional research and development environment.

The project is worth 50% of the final grade, and supports you in developing research and analytical skills.

Work on your project runs concurrently with your module study.

Learning style

The taught component of the course consists of lectures, workshops, practicals, demonstrations, syndicate exercises, extended surgery time and reviews. Module leaders are experts in their fields and are supported by external speakers working in organisations at the forefront of their fields.

Assessment is through post module assignment (PMA) rather than exam and is based on the learning objectives of each module. Your PMA should take around 60 hours of work and consolidate the knowledge you have gained from the module.

Each module usually lasts one week. There is more information here about the course structure.

After you graduate

Graduates of this MSc will understand a myriad of factors contributing towards the performance and dependability of connected and autonomous vehicles and will be well placed to continue professional work within R&D.



Read less

Show 10 15 30 per page



Cookie Policy    X