• Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Hertfordshire Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Cardiff University Featured Masters Courses
Southampton Solent University Featured Masters Courses
Newcastle University Featured Masters Courses
"experimental" AND "physi…×
0 miles

Masters Degrees (Experimental Physics)

We have 213 Masters Degrees (Experimental Physics)

  • "experimental" AND "physics" ×
  • clear all
Showing 1 to 15 of 213
Order by 
EXPLORE THE INTERACTION OF FUNDAMENTAL AND APPLIED RESEARCH. The field of experimental physics offers unique scientific and technological challenges. Read more

EXPLORE THE INTERACTION OF FUNDAMENTAL AND APPLIED RESEARCH

The field of experimental physics offers unique scientific and technological challenges. As a student in the Master’s degree programme in Experimental Physics you will receive advanced training in the fundamental scientific theories that describe the world around us. You will examine the design and use of advanced instrumentation required to study those theories.

The Dutch Master's Selection Guide (Keuzegids Masters 2017) ranked this programme as the best in the field of Physics in the Netherlands.

WHAT YOU'LL LEARN

You will come into contact with forefront technologies in particle detection, such as extremely high-granularity Si-pixel detectors and high-performance computing, as well as state-of-the-art setups for laser cooling and Bose-Einstein condensation. You will also learn to utilise advanced techniques for data analysis and computer modelling.

INTERNATIONAL RESEARCH

The MSc programme offers courses with a strong link to research carried out by experimental research groups in the Department of Physics and Astronomy at Utrecht University. You will have the opportunity to work in close cooperation with groups specialising in the strong nuclear forces, ultra-cold quantum matter, and ultra-fast light-matter interaction.

Research for experimental physics is performed at labs in Utrecht and at the famous CERN laboratory in Geneva. You will also have the opportunity to participate in (inter)national research meetings.

PROGRAMME OBJECTIVE

The Master's programme in Experimental Physics offers excellent preparation for a career in research laboratory in the high-tech industry, or as a PhD student at Universities and research institutes around the world.



Read less
Research degrees in Experimental Physics typically include a mixture of course modules and original research work, which may involve laboratory investigations and computational studies. Read more

Overview

Research degrees in Experimental Physics typically include a mixture of course modules and original research work, which may involve laboratory investigations and computational studies.

Closing date:
Research applications are generally accepted at any time

Course Structure

All research students will be registered onto a Structured Research Programme. Students need to pass a certain number of credits in course modules in addition to successful completion and examination of the thesis. The student’s original research as presented in the thesis is the sole means of assessment for the award of the degree.

MSc by Research students must take a minimum of 10 credits in taught modules (at least 5 in generic/transferable modules and at least 5 in subject specific/advanced specialist modules) from the Structured PhD programme.

Career Options

Research students at the Department of Experimental Physics gain expertise in specialized areas of experimental physics, computational physics or astrophysics during the course of their studies. This means that they are highly sought after by employers in a wide range of high-technology industries such as software engineering, micro-electronics, telecommunication engineering, scientific civil service, medical physics as well as those areas specifically requiring astrophysicists such as space science, satellite communications.

Read less
The Physics master’s programme offers you a research intensive tailor-made study path on current topics in experimental and theoretical physics at an institute of international renown. Read more

The Physics master’s programme offers you a research intensive tailor-made study path on current topics in experimental and theoretical physics at an institute of international renown.

What does this master’s programme entail?

The Physics master’s programme is intimately related to the scientific research carried out at the Leiden Institute of Physics. You will spend approximately 50% of your programme on research, as a member of one of our top-level international research groups. We offer five research specialisations, with emphasis on either experimental or theoretical physics, which train you as an independent researcher. We also offer three specialisations that put Physics in broader societal contexts and train you for careers where a Physics background is an asset. Each of these specialisations aims at providing a combination of research independence and content proficiency that fully prepares you for a successful professional development for your professional development.

Learn more about the Physics programme.

Why study Physics at Leiden University?

  • The programme offers a wide choice of individual study paths that take into account individual needs and interests. You can either build a purely academic profile, or you may combine physics research with education, business studies or science communication.
  • You will carry out at least one research project with one of the research groups of the Leiden Institute of Physics. Research at the department is at the forefront of fundamental modern Physics at an internationally competitive level.
  • At the Leiden Institute of Physics you experience an open, inclusive, and collegial atmosphere. Your weekly routine includes attending colloquia of international speakers, partaking in symposia and participating in lively scientific discussions.

Find more reasons to choose Physics at Leiden University.

Physics: the right master’s programme for you?

Are you looking into furthering your education in fundamental questions in physics? Then our Physics master’s programme is the right choice. Whether you are interested in experimental or theoretical research, or cosmology, we offer it all. You will be trained for a career in research within or outside academia. You can also choose for a more practical-oriented specialisation where you combine one year of Physics research with one year of training in business, communication or education.

Read more about the entry requirements for Physics.

Specialisations



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Laser Physics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Laser Physics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc by Research Laser Physics enables students to pursue a one year individual programme of research. The Laser Physics programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

You will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The two main research groups within the Department of Physics currently focus on the following areas of research:

Atomic, Molecular and Quantum Physics Group

Fundamental Atomic Physics

Condensed Matter and Material Physics

Analytical Laser Spectroscopy

Particle Physics Theory Group

String theory, quantum gravity and the AdS/CFT correspondence

Lattice gauge theories, QCD

Supersymmetric field theory, perturbative gauge theory

Field Theory in curved spacetime

Physics beyond the standard model

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a student of the Laser Physics programme in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of

positronium

CW and pulsed laser systems

Scanning tunnelling electron and nearfield optical microscopes

Raman microscope

CPU parallel cluster

Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Theoretical Particle Physics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Theoretical Particle Physics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc by Research Theoretical Particle Physics enables students to pursue a one year individual programme of research. The Theoretical Particle Physics programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

As a student of Theoretical Particle Physics programme you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as world-leading or internationally excellent in terms of its originality, significance and rigour.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate student in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of

positronium

CW and pulsed laser systems

Scanning tunnelling electron and nearfield optical microscopes

Raman microscope

CPU parallel cluster

Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.



Read less
The MASt in Physics is a taught masters level course in which candidates coming from outside Cambridge work alongside students taking the final year of the integrated Undergraduate + Masters course in Physics. Read more
The MASt in Physics is a taught masters level course in which candidates coming from outside Cambridge work alongside students taking the final year of the integrated Undergraduate + Masters course in Physics. It is designed to act as a top-up course for students who already hold a 3-year undergraduate degree in physics (or an equivalent subject with similar physics content) and who are likely to wish to subsequently pursue research in physics, either within the department or elsewhere.

The course aims to bring students close to the boundaries of current research, and is thus somewhat linked to the expertise from within the specific research groups in the Department of Physics. Candidates make a series of choices as the year proceeds which allow them to select a bias towards particular broad areas of physics such as condensed matter physics, particle physics, astrophysics, biophysics, or semiconductor physics. The emphasis can range over the spectrum from strongly experimental to highly theoretical physics, and a range of specialist options may be chosen.

All students also undertake a substantial research project, which is expected to take up one third of their time for the year. Details of the current Part III physics course can be found at http://www.phy.cam.ac.uk/students/teaching/current-courses/III_overview . Please note that the courses available to students do change from year to year (especially the Minor Topic courses taken in the Lent Term) and so this year's course listing should only be used as a guide to what courses might be available in future.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcphasphy

Learning Outcomes

By the end of the programme, students will have:

- reinforced their broad understanding of physics across the core areas studied in the Cambridge bachelors physics programme.
- developed their knowledge in specialised areas of physics bringing them close to the boundaries of current research.
- developed an understanding of the techniques and literature associated with the project area they have focussed on.
- demonstrated the application of knowledge in a research context and become familiar with the methods of research and enquiry used the further that knowledge.
- shown abilities in the critical evaluation of knowledge.
- demonstrated some level of self-direction and originality in tackling and solving research problems, and acted autonomously in the planning and execution of research.

Format

The course begins with taught courses offered in seven core areas: these "Major Topics" are lectured in the Michaelmas Term and cover substantial areas of physics. Students may choose to attend three or more of these for examination in the Lent term. In the Lent term, students take three or more shorter more specialised "Minor Topic" courses (from about twelve) for examination in the Easter Term. Substitutes for Major and Minor Topic courses are available from a small subset of courses taught by or shared with other departments. Throughout the year students also work on a research project that contributes to roughly a third of their mark and at the end of the year sit a three hour unseen paper on General Physics.

Depending on the lecturer for each course, students may be expected to submit work (i.e. problem sets) in advance of the small group sessions for scrutiny and/or present their work to those attending the sessions.

Assessment

The research project will be assessed on the basis of scrutiny of the student's project laboratory notebook and project report (typically 20-30 pages) and a short (approx 30 minute) oral examination with the project supervisor and another member of staff.

It is not usual for submitted work to be returned with detailed annotations. Rather, feedback will be predominantly oral, but lecturers are expected to submit a short written supervision report at the end of each term for each of their students.

Feedback on the research project will be be primarily oral, during the student/supervisor sessions, though a short written supervision report at the end of the Lent term will be provided by each supervisor

Candidates will normally take:

- A two hour unseen examination on three or more of the Major Topic courses. These will be taken at the start of the Lent Term.
- A one and a half hour unseen examination on three or more of the Minor Topic courses. These will normally be taken at the start of the Easter term.
- One three hour unseen General Physics Paper, taken towards the end of the Easter term.
- A number of additional unseen examination papers, if the candidate has chosen to take any of the interdisciplinary courses, Part III Mathematics courses, or other shared courses in lieu of any of the Major or Minor Topic papers.

Candidates who have chosen to substitute a Minor Topic paper with an additional External Project, will be assessed on that work via scrutiny of the student's project report (typically 20-30 pages) and a short (approx 30 minute) oral examination with two members of staff.

Candidates who have taken the Entrepreneurship course, in lieu of a Minor Topic, will be assessed on the basis of the course assignments set by the course co-ordinator.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
The program deepens the knowledge of basic elements of modern physics (atomic and molecular physics, solid state physics, nuclear and particle physics, astrophysics) and of theoretical physics (analytical mechanics, quantum mechanics, mathematical and numerical methods). Read more

The program deepens the knowledge of basic elements of modern physics (atomic and molecular physics, solid state physics, nuclear and particle physics, astrophysics) and of theoretical physics (analytical mechanics, quantum mechanics, mathematical and numerical methods). It is possible to strengthen the knowledge of specific fields like biophysics, nanoscience, physics of matter, nuclear and particle physics, physics of the fundamental interactions, astrophysics. Finally, the program provides direct experience of the laboratory techniques and computer calculation techniques and data analysis.

The graduate in Physics will know and understand the most relevant phenomena of the physical world at different scales, starting from the macroscopic world down to the atomic physics, the physics of condensed matter, nuclear and subnuclear physics up to the physics of the universe. The understanding of the physical world will be based on experimental evidence and a proper use of the theoretical modelling and its mathematical instruments, including numerical techniques.

Course structure

The second-cycle degree in Physics is divided in three curricula to be chosen by the student: Physics of the fundamental interactions, Physics of matter and Physics of the universe. For further information please check: http://en.didattica.unipd.it

Career opportunities

The graduate in Physics can have jobs opportunities in Italy and abroad in industries involving new technologies regardless of the final products, in service companies aiming to innovation and, more generally, in all activities requiring understanding and modelling of processes and ability in analysis and testing. These include startups and high tech industries, software and consulting companies, research centers and public administration. They can also teach physics and mathematics in schools of different levels.

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
Why Surrey?. Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey. Read more

Why Surrey?

Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey.

Programme overview

The syllabus for the MSc in Medical Physics is designed to provide the knowledge, skills and experience required for a modern graduate medical physicist, placing more emphasis than many other courses on topics beyond ionising radiation (X-rays and radiotherapy).

Examples of other topics include magnetic resonance imaging and the use of lasers in medicine.

You will learn the theoretical foundations underpinning modern imaging and treatment modalities, and will gain a set of experimental skills essential in a modern medical physicist’s job.

These skills are gained through experimental sessions in the physics department and practical experiences at collaborating hospitals using state-of-the-art clinical facilities.

Why not discover more about our programme in our video?

Programme structure

This programme is studied full-time over one academic year. It consists of eight taught modules and a dissertation project. Part-time studemts study the same content over 2 academic years.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that all modules are compulsory, there are no optional modules, and may be subject to change.

Facilities, equipment and academic support

Common room

A student common room is available for the use of all Physics students.

Computers

The University has an extensive range of PC and UNIX machines, full internet access and email. The University has invested in resources to allow students to develop their IT skills. It also has an online learning environment, SurreyLearn. Computers are located in dedicated computer rooms. Access to these rooms is available 24 hours per day.

Prizes

Hounsfield Prize

A prize of £200 is awarded annually for the best dissertation on the Medical Physics programme. Sir Hounsfield was jointly awarded the Nobel Prize for Medicine in 1979 for his work on Computed Tomography.

Mayneord Prize

A prize of £200 in memory of Professor Valentine Mayneord will be awarded to the student with the best overall performance on the Medical Physics course. Professor Mayneord was one of the pioneers of medical physics, who had a long association with the Department and encouraged the growth of teaching and research in the field.

Knoll Prize

A prize of £300 in memory of Professor Glenn Knoll is awarded annually to the student with outstanding performance in Radiation Physics and Radiation Measurement on any of the department's MSc programmes. Professor Knoll was a world-leading authority in radiation detection, with a long association with the department

IPEM Student Prize (MSc Medical Physics)

A prize of £250 is awarded annually to a student with outstanding performance in their dissertation.

Educational aims of the programme

The programme integrates the acquisition of core scientific knowledge with the development of key practical skills with a focus on professional career development within medical physics and related industries. The principle educational aims and outcomes of learning are to provide participants with advanced knowledge, practical skills and understanding applied to medical physics, radiation detection instrumentation, radiation and environmental practice in an industrial or medical context. This is achieved by the development of the participants’ understanding of the underlying science and technology and by the participants gaining an understanding of the legal basis, practical implementation and organisational basis of medical physics and radiation measurement.

Global opportunities

We give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities and through our international research collaboration. Hence, it may be possible to carry out the dissertation project abroad.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
What is the Master of Physics all about?. The programme aims to train physicists capable of working in research institutes or corporate environments. Read more

What is the Master of Physics all about?

The programme aims to train physicists capable of working in research institutes or corporate environments. Upon successful completion of the programme, students will have acquired:

  • thorough knowledge of physics in general as well as more in-depth knowledge of at least one specialized area;
  • the ability to make sound judgments informed by current research;
  • the ability to gain new insights and results and to develop new methods;
  • the ability to solve physical problems using the most appropriate experimental and/or theoretical methods and to report on research findings;
  • the ability to structure and analyse specific problems in different situations;
  • strong teamwork skills;
  • the ability to communicate findings and insights;
  • a critical understanding of the role that physics plays in society.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Structure

After a semester with advanced courses in different disciplines of physics, you choose a major research specialization consisting of advanced and specialized courses and a master’s thesis of 30 ECTS.

The remaining 30 ECTS allow you to follow one of two options: Research or Physics in Society.

  • The Research option prepares you for a research career in academia or industry. You broaden your research skills by choosing a minor research domain, including at least 12 ECTS courses from that domain and complemented by a research internship or with other courses.
  • The Physics and Society option offers you the opportunity to prepare for a career as a physicist outside academia, through courses preparing you for entrepreneurship or via an internship in a company.

Department

The mission of the Department of Physics and Astronomy is exploring, understanding and modelling physical realities using mathematical, computational, experimental and observational techniques. Fifteen teams perform research at an international level. Publication of research results in leading journals and attracting top-level scientists are priorities for the department.

New physics and innovation in the development of new techniques are important aspects of our mission. The interaction with industry (consulting, patents...) and society (science popularisation) are additional points of interest. Furthermore, the department is responsible for teaching basic physics courses in several study programmes.

Objectives

The master students will grow into independent and critical scientists. Masters of physics will have developed sufficient knowledge and skills to participate in competitive national or international PhD programmes. Moreover the acquired research methodology will prepare the student for employment as a scientist in any chosen profession.

The curriculum is constructed in a way that the student can specialize in an area of choice by joining one of the research groups of the department. This specialization can be in the field of nuclear physics, condensed matter physics ortheoretical physics. A major part of the curriculum consists of research resulting in a master thesis. The subject of the thesis is chosen by the student during the course of the second semester of the 1st Master year and students join a research team from the 3th semester onwards.

The students can choose an option to prepare themselves better for a future in research or in industry or society related fields.

In the option "research" the student can take courses from another research specialization than its major one, which can be accompanied by an internship in one of the research teams of this minor discipline. As such our students have the possibility to broaden their knowledge in at least two scientific disciplines (in physics or a related field), which is invaluable when a further research career in or out of academia is considered.

In the option "Physics for society" students can choose for an internship of a full semester in a company or they can take courses from the LCIE Entrepreneurship Academy who wants to prepare academics for entrepreneurschip.

The Erasmus programme of the European Union offers an excellent opportunity for Belgian students who would like to combine their study with experience outside the KU Leuven. All research groups of the department have a network of European collaborators and we advise interested students to integrate this exchange with their thesis research during their second Master year. Choices concerning the Erasmus programme need to be made in December of the 1st Master year. Address the Erasmus coordinator to obtain specific information on this European programme.

Career perspectives

The Department of Physics and Astronomy at KU Leuven generates substantial research funding. Consequently, many research positions are available, and more than half the students obtaining a master’s degree in physics eventually start a PhD programme in one of the department’s research groups.

A number of graduates prefer to pursue a second master’s degree, with medical radiation physics, environmental sciences, and statistics as the most popular subjects. There are also excellent career opportunities in industry (ICT, material research, electronics), consulting, government, banking (statistics), and higher education. Unemployment is nonexistent among newly graduated physicists.



Read less
Goal of the pro­gramme. Read more

Goal of the pro­gramme

What are the laws of nature governing the universe from elementary particles to the formation and evolution of the solar system, stars, and galaxies? In the Master’s Programme in Particle Physics and Astrophysical Sciences, you will focus on gaining a quantitative understanding of these phenomena.

With the expertise in basic research that you will gain in the programme, you can pursue a career in research. You will also acquire proficiency in the use of mathematical methods, IT tools and/or experimental equipment, as well as strong problem-solving and logical deduction skills. These will qualify you for a wide range of positions in the private sector.

After completing the programme, you will:

  • Have wide-ranging knowledge of particle physics and/or astrophysical phenomena.
  • Have good analytical, deductive and computational skills.
  • Be able to apply theoretical, computational and/or experimental methods to the analysis and understanding of various phenomena.
  • Be able to generalize your knowledge of particle physics and astrophysical phenomena as well as identify their interconnections.
  • Be able to formulate hypotheses and test them based your knowledge.

The teaching in particle physics and astrophysical sciences is largely based on the basic research. Basic research conducted at the University of Helsinki has received top ratings in international university rankings. The in-depth learning offered by international research groups will form a solid foundation for your lifelong learning.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The understanding of the microscopic structure of matter, astronomical phenomena and the dynamics of the universe is at the forefront of basic research today. The advancement of such research in the future will require increasingly sophisticated theoretical, computational and experimental methods.

The study track in elementary particle physics and cosmology focuses on experimental or theoretical particle physics or cosmology. The theories that form our current understanding of these issues must be continuously re-evaluated in the light of new experimental results. In addition to analytical computation skills, this requires thorough mastery of numerical analysis methods. In experimental particle physics, the main challenges pertain to the management and processing of continuously increasing amount of data.

The study track in astrophysical sciences focuses on observational or theoretical astronomy or space physics. Our understanding of space, ranging from near Earth space all the way to structure of the universe, is being continuously redefined because of improved experimental equipment located both in space and on the Earth’s surface. Several probes are also carrying out direct measurements of planets, moons and interplanetary plasma in our solar system. Another key discipline is theoretical astrophysics which, with the help of increasingly efficient supercomputers, enables us to create in-depth models of various phenomena in the universe in general and the field of space physics in particular. Finally, plasma physics is an important tool in both space physics and astronomy research.

 



Read less
We have a long history of internationally recognized research in the study and development of new materials. Read more
We have a long history of internationally recognized research in the study and development of new materials. This course gives the possibility of working with and learning from expert researchers in the physics of materials in a friendly and vibrant research atmosphere provided by the international team of scientists at the Department of Physics.

This programme contains a combination of supervised research work, development of research skills and taught material. The programme involves a set of taught modules and an experimental or theoretical research project.

The theme of the project will be dedicated to one of the topical areas in physics of materials including graphene-based materials, thin film materials, shape memory compounds or nanomaterials or experimental study of properties of materials.

Core study areas mathematical methods for interdisciplinary sciences, research methods in physics, superconductivity and nanoscience, characterisation techniques in solid state physics, and a research project.

Optional study areas include polymer properties, polymer science, advanced characterisation techniques, simulation of advanced materials and processes, and materials modelling.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/physics-materials/

Programme modules

Compulsory Modules:
- Mathematical Methods for Interdisciplinary Sciences
- Research Methods in Physics
- Superconductivity and Nanoscience
- Research Project Part 1
- Research Project Part 2
- Characterisation Techniques in Solid State Physics

Optional Modules:
- Polymer Properties
- Polymer Science
- Advanced Characterisation Techniques
- Simulation of Advanced Materials and Processes
- Materials Modelling

Learning and teaching

Knowledge and understanding are acquired through lectures, tutorials, problem classes and guided independent study. Assessment in taught modules is by a combination of examination and coursework. The MSc includes a significant research project completed through guided independent study with a research supervisor.

Careers and further study

The aim of the course is to equip students with key skills they need for employment in industry, public service or academic research.

Why choose physics at Loughborough?

We are a community of approximately 170 undergraduates, 30 postgraduates, 16 full-time academic staff, seven support staff, and several visiting and part-time academic staff.

Our large research student population and wide international links make the Department a great place to work.

- Research
Our research strengths are in the areas of condensed matter and materials, with a good balance between theory and experiment.
The quality of our researchers is recognised internationally and we publish in highly ranked physics journals; one of our former Visiting Professors, Alexei Abrikosov, was awarded the 2003 Nobel Prize in Physics.

- Career Prospects
100% of our graduates were in employment and/or further study six months after graduating. They have gone on to work with companies such as BT, Nikon Metrology, Prysmian Group, Rutherford Appleton Laboratory ISIS and Smart Manufacturing Technology.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/physics-materials/

Read less
Master's specialisation in Physics of Molecules and Materials. Revealing the ‘terra incognita’ between quantum mechanics and the classical world and inspiring new technologies. Read more

Master's specialisation in Physics of Molecules and Materials

Revealing the ‘terra incognita’ between quantum mechanics and the classical world and inspiring new technologies.

As a scientist, you’re a problem solver. But how do you tackle a problem when there are no adequate theories and calculations become far too complicated? In the specialisation in Physics of Molecules and Materials you’ll be trained to take up this challenge in a field of physics that is still largely undiscovered: the interface between quantum and classical physics.

We focus on systems from two atoms to complete nanostructures, with time scales in the order of femtoseconds, picoseconds or nanoseconds. One of our challenges is to understand the origin of phenomena like superconductivity and magnetism. As theory and experiment reinforce each other, you’ll learn about both ‘research languages’. In this way, you’ll be able to understand complex problems by dividing them into manageable parts.

See the website http://www.ru.nl/masters/physicsandastronomy/physics

Why study Physics of Molecules and Materials at Radboud University?

- At Radboud University there’s a strong connection between theory and experiment. Theoretical and experimental physicists will teach you to become acquainted with both methods.

- In your internship(s), you’ll have the opportunity to work with unique research equipment, like free electron lasers and high magnetic fields, and with internationally known scientists.

- We collaborate with several industrial partners, such as Philips and NXP. This extensive network can help you find an internship or job that meets your interests.

If you’re successful in your internship, you have a good chance of obtaining a PhD position at the Institute for Molecules and Materials (IMM).

Admission requirements for international students

1. A completed Bachelor's degree in Physics

2. A proficiency in English

In order to take part in this programme, you need to have fluency in both written and spoken English. Non-native speakers of English* without a Dutch Bachelor's degree or VWO diploma need one of the following:

- A TOEFL score of ≥575 (paper based) or ≥90 (internet based

- An IELTS score of ≥6.5

- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE) with a mark of C or higher.

Career prospects

This Master’s specialisation is an excellent preparation for a career in research, either at a university or at a company. However, many of our students end up in business as well. Whatever job you aspire, you can certainly make use of the fact that you have learned to:

- Solve complex problems

- Make accurate approximations

- Combine theory and experiments

- Work with numerical methods

Graduates have found jobs as for example:

- Consultant Billing at KPN

- Communications advisor at the Foundation for Fundamental Research on Matter (FOM)

- Systems analysis engineer at Thales

- Technical consultant at UL Transaction Security

- Business analyst at Capgemini

PhD positions

At Radboud University, we’re capable of offering many successful students in the field of Physics of Molecules and Materials a PhD position. Many of our students have already attained a PhD position, not just at Radboud University, but at universities all over the world.

Our approach to this field

In this specialisation, you’ll discover the interface between quantum mechanics and the classical world, which is still a ‘terra incognita’. We focus on two-atom systems, multi-atom systems, molecules and nanostructures. This is pioneering work, because these systems are often too complex for quantum calculations and too small for the application of classical theories.

- Theory and experiment

At Radboud University, we believe that the combination of theory and experiments is the best way to push the frontiers of our knowledge. Experiments provide new knowledge and data and sometimes also suggest a model for theoretical studies. The theoretical work leads to new theories, and creative ideas for further experiments. That’s why our leading theoretical physicists collaborate intensively with experimental material physicists at the Institute for Molecules and Materials (IMM). Together, they form the teaching staff of the Master’s specialisation in Physics of Molecules and Materials.

- Themes

This specialisation is focused on two main topics:

- Advanced spectroscopy

Spectroscopy is a technique to look at matter in many different ways. Here you’ll learn the physics behind several spectroscopic techniques, and learn how to design spectroscopic experiments. At Radboud University, you also have access to large experimental infrastructure, such as the High Magnetic field Laboratory (HFML), the FELIX facility for free electron lasers and the NMR laboratory.

- Condensed matter and molecular physics

You’ll dive into material science at the molecular level as well as the macroscopic level, on length scales from a single atom up to nanostructure and crystal. In several courses, you’ll get a solid background in both quantum mechanical and classical theories.

- Revolution

We’re not aiming at mere evolution of current techniques, we want to revolutionize them by developing fundamentally new concepts. Take data storage. The current data elements are near the limits of speed and data capacity. That’s why in the IMM we’re exploring a completely new way to store and process data, using light instead of electrical current. And this is but one example of how our research inspires future technology. As a Master’s student you can participate in this research or make breakthroughs in a field your interested in.

See the website http://www.ru.nl/masters/physicsandastronomy/physics

Radboud University Master's Open Day 10 March 2018



Read less
The Department of Physics and Astronomy is one of the oldest departments at the University of Calgary, and since its establishment it has excelled in both research and teaching. Read more
The Department of Physics and Astronomy is one of the oldest departments at the University of Calgary, and since its establishment it has excelled in both research and teaching.

Master's (MSc) Thesis-based

This degree must be completed on a full-time basis.

Program Requirements
1. The student must choose one of five broad areas of specialization: Astrophysics, Physics, Radiation Oncology Physics, Space Physics, and Medical Imaging (interdisciplinary).

2. All students must have a supervisor. When admitted to our graduate program, you are assigned an interim supervisor to assist you with your course selection, registration, etc., however this may not be your final supervisory. You have a maximum of four months from the time your program begins (either September or January) to finalize your supervisor. Your supervisor is then responsible for directing the research component of your degree, as well as for some fraction of your financial support package.

3. Course requirements:
-For students specializing in Astrophysics, Physics, or Space Physics, four half-course equivalents, including at least two of PHYS 609, PHYS 611, PHYS 613, and PHYS 615, plus two elective courses at the 500- or 600-level, as approved by the Graduate Chair.
-For students specializing in Radiation Oncology Physics, eight half-course equivalents. Six of which are MDPH 623, MDPH 625, MDPH 633, MDPH 637, MDPH 639, MDSC 689.01, then two Physics graduate core courses such as PHYS 609, PHYS 611, PHYS 613 or PHYS 615.
-In addition, all students are required to take a minimum of three terms of the Graduate Seminar, although the normal load is four terms, and additional terms may be required of students on an as need basis.

4. Thesis submission and defense

Master's (MSc) Course-based

This program may be done part time or full time, and in fact we encourage professionals in the field to consider doing this program as a part-time, professional development student.

Suitable for students not necessarily oriented towards research activity.

Program Requirements
1. The student must choose one of three broad areas of specialization: Astrophysics, Physics, or Space Physics. The Radiation Oncology Physics specialization is not available as a course-based degree.

2. All graduate students must have a supervisor. For a course-based MSc program, this is quite straightforward, as the graduate chair acts as supervisor for all course-based MSc students.

3. The student must complete ten half-course equivalents, made up of:
All six of the core experimental and theoretical physics courses: PHYS 603, PHYS 605, PHYS 609, PHYS 611, PHYS 613, PHYS 615. Plus four half course equivalents determined by the specialization area:
-Astrophysics - ASPH 699 plus three half-course equivalents labeled ASPH (two of these may be at the 500-level). PHYS 629 and SPPH 679 may be taken instead of ASPH courses
-Physics - PHYS 699, one half-course equivalent labeled PHYS, at the 600-level or above, and two half-course equivalents labeled ASPH, PHYS, or SPPH (these may be at the 500 level)
-Space Physics - SPPH 699, plus three half-course equivalents labeled SPPH at the 600-level or above. PHYS 509 may replace a SPPH course

4. A comprehensive examination with a written and oral component.

Read less
Working at a frontier of mathematics that intersects with cutting edge research in physics. Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. Read more

Working at a frontier of mathematics that intersects with cutting edge research in physics.

Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. History shows us as much. Mathematical physics began with Christiaan Huygens, who is honoured at Radboud University by naming the main building of the Faculty of Science after him. By combining Euclidean geometry and preliminary versions of calculus, he brought major advances to these areas of mathematics as well as to mechanics and optics. The second and greatest mathematical physicist in history, Isaac Newton, invented both the calculus and what we now call Newtonian mechanics and, from his law of gravity, was the first to understand planetary motion on a mathematical basis.

Of course, in the Master’s specialisation in Mathematical Physics we look at modern mathematical physics. The specialisation combines expertise in areas like functional analysis, geometry, and representation theory with research in, for example, quantum physics and integrable systems. You’ll learn how the field is far more than creating mathematics in the service of physicists. It’s also about being inspired by physical phenomena and delving into pure mathematics.

At Radboud University, we have such faith in a multidisciplinary approach between these fields that we created a joint research institute: Institute for Mathematics, Astrophysics and Particle Physics (IMAPP). This unique collaboration has lead to exciting new insights into, for example, quantum gravity and noncommutative geometry. Students thinking of enrolling in this specialisation should be excellent mathematicians as well as have a true passion for physics.

See the website http://www.ru.nl/masters/mathematics/physics

Why study Mathematical Physics at Radboud University?

- This specialisation is one of the few Master’s in the world that lies in the heart of where mathematics and physics intersect and that examines their cross-fertilization.

- You’ll benefit from the closely related Mathematics Master’s specialisations at Radboud University in Algebra and Topology (and, if you like, also from the one in Applied Stochastics).

- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that at Radboud University you’ll get plenty of one-on-one time with your thesis supervisor.

- You partake in the Mastermath programme, meaning you can follow the best mathematics courses, regardless of the university in the Netherlands that offers them. It also allows you to interact with fellow mathematic students all over the country.

- As a Master’s student you’ll get the opportunity to work closely with the mathematicians and physicists of the entire IMAPP research institute.

- More than 85% of our graduates find a job or a gain a PhD position within a few months of graduating. About half of our PhD’s continue their academic careers.

Career prospects

Mathematicians are needed in all industries, including the industrial, banking, technology and service industry and also within management, consultancy and education. A Master’s in Mathematics will show prospective employers that you have perseverance, patience and an eye for detail as well as a high level of analytical and problem-solving skills.

Job positions

The skills learned during your Master’s will help you find jobs even in areas where your specialised mathematical knowledge may initially not seem very relevant. This makes your job opportunities very broad indeed and is why many graduates of a Master’s in Mathematics find work very quickly.

Possible careers for mathematicians include:

- Researcher (at research centres or within corporations)

- Teacher (at all levels from middle school to university)

- Risk model validator

- Consultant

- ICT developer / software developer

- Policy maker

- Analyst

PhD positions

Radboud University annually has a few PhD positions for graduates of a Master’s in Mathematics. A substantial part of our students attain PhD positions, not just at Radboud University, but at universities all over the world.

Our research in this field

The research of members of the Mathematical Physics Department, emphasise operator algebras and noncommutative geometry, Lie theory and representation theory, integrable systems, and quantum field theory. Below, a small sample of the research our members pursue.

Gert Heckman's research concerns algebraic geometry, group theory and symplectic geometry. His work in algebraic geometry and group theory concerns the study of particular ball quotients for complex hyperbolic reflection groups. Basic questions are an interpretation of these ball quotients as images of period maps on certain algebraic geometric moduli spaces. Partial steps have been taken towards a conjecture of Daniel Allcock, linking these ball quotients to certain finite almost simple groups, some even sporadic like the bimonster group.

Erik Koelink's research is focused on the theory of quantum groups, especially at the level of operator algebras, its representation theory and its connections with special functions and integrable systems. Many aspects of the representation theory of quantum groups are motivated by related questions and problems of a group representation theoretical nature.

Klaas Landsman's previous research programme in noncommutative geometry, groupoids, quantisation theory, and the foundations of quantum mechanics (supported from 2002-2008 by a Pioneer grant from NWO), led to two major new research lines:

1. The use of topos theory in clarifying the logical structure of quantum theory, with potential applications to quantum computation as well as to foundational questions.

2. Emergence with applications to the Higgs mechanism and to Schroedinger's Cat (aka as the measurement problem). A first paper in this direction with third year Honours student Robin Reuvers (2013) generated worldwide attention and led to a new collaboration with experimental physicists Andrew Briggs and Andrew Steane at Oxford and philosopher Hans Halvorson at Princeton.

See the website http://www.ru.nl/masters/mathematics/physics

Radboud University Master's Open Day 10 March 2018



Read less
The Department of Physics and Astronomy is a broad-based department with a wide range of research interests covering many key topics in contemporary physics, astronomy, and applied physics. Read more

Program Overview

The Department of Physics and Astronomy is a broad-based department with a wide range of research interests covering many key topics in contemporary physics, astronomy, and applied physics. See elsewhere in the Calendar for graduate program descriptions of Astronomy and Engineering Physics. In addition, an accredited Master of Science program is offered with a sub-specialization in Medical Physics. Departmental research activities are supported by several computing and experimental facilities, and excellent electronics and machine shops. Much of the Department's research is enhanced by local facilities such as the TRIUMF National Laboratory, the Advanced Materials and Process Engineering Laboratory (AMPEL), and the BC Cancer Agency, UBC, and associated teaching hospitals, in addition to many specialized research laboratories housed within the Department. There is a great deal of collaboration and overlap of interests among the various groups, and incoming graduate students are currently attracted to research opportunities in many subfields of physics:
- Applied Physics
- Medical Physics
- Biophysics
- Nuclear and Particle Physics
- Astronomy and Astrophysics
- Atomic, Molecular, and Optical Physics
- Condensed Matter Physics
- Theoretical Physics

Quick Facts

- Degree: Master of Science
- Specialization: Physics
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Science

Read less

Show 10 15 30 per page



Cookie Policy    X