• University of Surrey Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
King’s College London Featured Masters Courses
Cranfield University Featured Masters Courses
FindA University Ltd Featured Masters Courses
University College London Featured Masters Courses
Ulster University Featured Masters Courses
"evolutionary"×
0 miles

Masters Degrees (Evolutionary)

We have 199 Masters Degrees (Evolutionary)

  • "evolutionary" ×
  • clear all
Showing 1 to 15 of 199
Order by 
Goal of the pro­gramme. Ecology and evolutionary biology offer a perspective on biology from the level of genes to communities of species. Read more

Goal of the pro­gramme

Ecology and evolutionary biology offer a perspective on biology from the level of genes to communities of species.

In the master's degree program, you can become familiar with a wide variety of topics in three areas: ecology, evolutionary biology and conservation biology. You can choose studies from any of these areas, as well as from other master's degree programmes. The programme is diverse and multidisciplinary: teaching is done with lectures, laboratory and computer training courses, interactive seminars, study tours and field courses. The field courses range from the northern subarctic region to tropical rainforests.

Our wide expertise extends from molecular ecology to population and community biology. The Centres of Excellence of Metapopulation Biology and Biological Interactions are located in our department.

Our programme offers you a wide range of options: evolutionary biology or genetics for those interested in ecological genetics and genomics, as well as the ability to take advantage of the high-quality molecular ecology and systematics laboratory; conservation biology for those interested in regional or global environmental problems; and ecological modelling skills for those interested in computational biology. Our training also offers Behavioural Ecology. 

Ecology, evolutionary biology and conservation biology are not only fascinating topics for basic research, they also have a key role in addressing global environmental challenges.

Upon graduating from the Master's degree in ecology and evolutionary biology programme, you will:

  • Have mastered the main theories and methods in ecology and evolutionary biology and be able to apply them to practical problems
  • Be able to plan and carry out a scientific research project
  • Have read the relevant scientific literature and be able to utilise your expertise in different types of work
  • Be able to work as an expert in your field
  • Be able to to write good scientific English
  • Be able to work in research projects and groups
  • Be able to continue on to doctoral studies

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The Master's degree program includes studies of ecology, evolutionary biology and conservation biology. The studies are organised in modules. You can affect the content of the studies by planning your personal curriculum. You can study the following themes:

  • Ecology studies the abundance and distribution of species (animals, plants, microbes) and the interactions among them and with the environment. The perspective ranges from the molecular to the ecosystem level. In ecology, a central question is: Why are some species able to invade new habitats and displace native species? Which species are able to adapt to environmental change or migrate with the changing climate, and which species will become extinct?
  • Evolutionary biology examines the processes which support biodiversity on its various levels (genes – individuals – populations – species – ecosystems). You will learn about the theory of evolution and how to use population genetics and genomics methods in researching evolutionary issues.
  • Conservation Biology studies the depletion of biodiversity, its causes and consequences. You will learn to apply ecological theory to the problems of environmental conservation, to assess the effectiveness of methods of conservation, as well as to resolve the problems relating to conservation e.g. by modelling and computational methods. The training emphasizes the importance of interdisciplinary education in the area of conservation.


Read less
Delivered by leading international researchers in the Centre for Ecology and Conservation. Designed to prepare you for a future research career with excellent graduate employment opportunities, in the first year of operation, 78 per cent of our students had secured a PhD position before finishing the programme. Read more
  • Delivered by leading international researchers in the Centre for Ecology and Conservation
  • Designed to prepare you for a future research career with excellent graduate employment opportunities, in the first year of operation, 78 per cent of our students had secured a PhD position before finishing the programme
  • Provides extensive training in current research techniques
  • Develops knowledge and critical awareness of current problems and new insights in evolutionary and behavioural ecology
  • Offers access to excellent facilities including state-of-the-art molecular and genetics labs with a full range of microscopy equipment, greenhouses, and controlled environment rooms

This Masters degree is taught by the Centre for Ecology and Conservation (CEC), whose evolutionary and behaviour research groups are amongst the most dynamic in the UK. You will be integrated into these groups and conduct cutting-edge research projects that can make genuine contributions to the field of evolutionary and behavioural ecology and prepare you for a career in research.

The Centre is the fastest growing institute of its kind in the UK. Research is almost exclusively organismal, with particular emphasis on social mammals, birds, turtles and insects. We also specialise in modelling animal behaviour and species interactions and see this as essential and complementary to our whole approach. The other area of emphasis which underpins much of our work is quantitative and molecular genetics, which is fundamental to the evolutionary process and to conservation biology and policy issues.

Fieldwork

This programme includes a two week field course in Kenya, during which you will go on safari in areas of incredible biodiversity, allowing you to study the behaviour of a variety of wild animals. You will have an opportunity to follow in the footsteps of pioneering evolutionary biologists, visiting their field sites, observing their study species, and discussing their ground breaking research. These experiences will allow you to develop your own research questions and undertake a short project while in the field. Travel and subsistence costs for this part of the programme are included in the programme fee.

Find out more about our field course modules.

You can also keep up to date and share the experiences of our students in the field on our Field Course Fortnight website.

Learning and teaching

The taught component of this programme is delivered in the first five months, during which time you will be encouraged to develop your census research projects. The rest of the academic year is dedicated to these projects.

Teaching and learning methods

All material is designed for Masters level and will involve fieldwork, seminars and group discussion. Within modules there is considerable scope for you to direct your learning towards fields of particular interest, especially through your choice of research project. Students are located in the Centre for Ecology and Conservation laboratories, where close working relationships are fostered. Every student has the personal and academic support of the programme director, as well as their academic tutor, module leaders and project supervisors. Because of the layout of our research laboratory, postdoctoral researchers and PhD students interact closely with postgraduates to provide more personal support during the research phase of the programme.

Programme structure

The programme is made up of compulsory modules. Constituent modules may be updated, deleted or replaced as a consequence of the annual programme review of this programme.

Compulsory modules

The compulsory modules can include;

  • Research Project;
  • Evolutionary and Behavioural Ecology;
  • Approaches in Evolutionary and Behavioural Ecology;
  • African Behavioural Ecology Field Course;
  • Statistical Modelling
  • Key Skills


Read less
The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology. Read more

The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

This programme forms part of the quantitative genetics and genome analysis suite of programmes offering specialist routes, which also include Animal Breeding & Genetics and Human Complex Trait Genetics.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Courses are taught via lectures, tutorials, seminars and computer practicals. Assessment is by written examinations, in-course assignments and project work.

Compulsory courses:

  • Population and Quantitative Genetics
  • Genetic Interpretation
  • Linkage and Association in Genome Analysis
  • Statistics and Data Analysis
  • Research Proposal
  • Dissertation

Option courses:

  • Molecular Phylogenetics
  • Bioinformatics
  • Molecular Evolution
  • Genetics of Human Complex Traits
  • Quantitative Genetic Models
  • Functional Genomic Technologies
  • Animal Genetic Improvement
  • Evolutionary Quantitative Genetics

Learning outcomes

You will gain the knowledge and skills required to apply quantitative genetics theory to undertake research in evolutionary and quantitative genetics, population genetics and evolutionary genomics.

  • A thorough understanding of general concepts in population and quantitative genetics and genomics
  • In-depth knowledge of evolutionary genetics
  • A solid grounding in the statistical methods required for quantitative biology
  • Development of independent research skills through individual mini- and maxi-research projects
  • Development of generic skills (IT skills, experience in writing scientific papers, the ability to work independently)
  • Presentation skills through student seminars, scientific presentation of project work and independent research projects.

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.



Read less
Global ecological change is occurring at a rapid rate and we are seeing an unprecedented spread of diseases, collapses in biodiversity and disruption to ecosystems. Read more

Global ecological change is occurring at a rapid rate and we are seeing an unprecedented spread of diseases, collapses in biodiversity and disruption to ecosystems. We aim to understand not just patterns in the natural environment, but the ecological and evolutionary factors that drive them, from the behaviour of individual organisms to population and whole community dynamics.

You will study the concepts and theories that will help you understand factors underpinning global ecology and evolutionary change, including modern techniques for environmental process research, invasive species ecology and conservation genetics. Students also learn techniques important for environmental policy and management and as such, our graduates are well placed to progress onto PhD research or careers in industry, consultancy and conservation. 

You will conduct your own substantive six-month research project, which may be jointly supervised by contacts from related institutes or within industry. Students also take part in a field course in Borneo - see photos from a recent trip on Flickr - giving you the opportunity to develop first hand experience of theory in action.

You will have access to advanced analytical research facilities at the Freshwater Biological Association's River Laboratory in Dorset through our River Communities Research Group. You will have the opportunity to conduct both fieldwork and lab projects at this site.

Programme highlights

  • Two-week tropical ecology field trip (currently in Borneo), as well as fieldwork in Dorset, UK
  • Modules that develop pure research and applied practical skills
  • Guest lectures by stakeholders and potential employers
  • Opportunities for research projects in UK and overseas, and in conjunction with collaborators such as the Institute of Zoology, Royal Botanic Gardens, Kew, and the Natural History Museum

Research and teaching

By choosing to study at a Russell Group university, you will have access to excellent teaching and top-class research. You can find out more about our research interests and view recent publications on the School of Biological and Chemical Science's Evolution and Genetics group page.

Structure

Your taught modules take place in blocks of two weeks of full-time teaching (normally 9am-5pm), followed by week-long study breaks for independent learning and coursework. This structure allows for an intensive learning experience, giving students the opportunity to immerse themselves in their subject.

This programme combines taught modules with individual and collaborative research projects. You will apply the knowledge and techniques from your taught modules in a practical setting and may be able to publish your project findings.

Taught modules

  • Ecological Theory and Applications: Look at the theory behind our understanding of ecological systems and how that theory can be applied to ecological problems in the real world. Starting with populations of a single species we will progress to understanding two-species interactions including predation, competition and parasitism and then to whole communities of interacting organisms. We will then study how ecological theory, used in concert with population genetics and evolutionary theory, can be applied to understanding ecological issues such as the conservation of small populations, harvesting natural populations and predicting responses to environmental change.
  • Ecosystem Structure and Function: Ecosystems are under continued and growing threat from human activity (e.g. habitat loss, invasive species and diffuse pollution) and if we seek to preserve them we need to understand how ecosystems function and how they respond to either enforced or natural change. Here we focus on the structural and functional elements of many ecosystems, from shallow lakes to tropical forests, with a particular focus on contrasting aquatic environments.
  • Statistics and Bioinformatics: Covers core statistics methods, within the R statistical computing environment. R has become the de facto environment for downstream data analysis and visualisation in biology, thanks to the hundreds of freely available R packages that allow biological data analysis solutions to be created quickly and reliably.
  • Research Frontiers in Evolutionary Biology: Explore the frontiers of research in evolutionary biology. Topics covered will include: incongruence in phylogenetic trees, neutral versus selective forces in evolution, the origin of angiosperms, the origin of new genes, the evolution of sociality, the significance of whole genome duplication and hybridisation. Current methods being used to tackle these areas will be taught, with an emphasis on DNA sequence analysis and bioinformatics.
  • Tropical field course - usually in Borneo; see photos from a recent trip on Flickr. Topics will encompass aspects of taxonomy, ecology, biogeography, conservation and evolution. Specific areas of content will include ecological processes in tropical rainforests (decomposition, pollination and seed dispersal); rainforest structure and defining characteristics (including the importance of rainforests as centres of biodiversity) and anthropogenic factors affecting rainforests (including disturbance, forest fragmentation and agriculture). There will be strong emphasis on practical training. In particular, students will be trained in a range of survey methods covering diverse terrestrial and aquatic taxonomic groups. The module will also provide training in data collection, analysis and presentation.
  • Science, Policy and Management: Here a broad spectrum of human environmental impacts and their mitigation will be explored. The first half of the module will bring the student ‘face to face’ with potential regulators, practitioners and potential employers (typically Defra, EA, Natural England) through a series of guest lectures. These topics are then explored and summarised through an unpacking and feedback workshop. The second half is field based with current practitioners working directly in the field of bioassessment and biomonitoring. National and international legislation and directives are introduced through a series of ‘Case Studies’ to look at the link between successful science and policy.

Research module

  • Research project (90 credits)

Part-time study

You can take the MSc over two years via studying part-time; you should aim to register for 50% of taught modules per year. You can discuss the exact combination of modules with the programme director, Dr Christophe Eizaguirre

Projects can also be undertaken over a two-year period, subject to finding an approved schedule of work which equates to the same time requirements as a full-time MSc. You may also enrol on a Postgraduate Certificate in Ecology and Evolutionary Biology (60 credits), which is comprised of four taught modules.



Read less
The Top Programme Evolutionary Biology is embedded in the Master's programme in Ecology and Evolution. The Top Programme Evolutionary Biology explores the interface between ecology and evolution. Read more
The Top Programme Evolutionary Biology is embedded in the Master's programme in Ecology and Evolution. The Top Programme Evolutionary Biology explores the interface between ecology and evolution.

The hallmark is to explore the interface between ecology and evolution. You will benefit from a wide spectrum of national and international expertise in these fields. You will acquire top quality research competences. The programme is specifically designed to acquire the right research competences and prepare you for conducting top quality research.

The Top Programme is administered by the Centre for Ecological and Evolutionary Studies (CEES), a centre of excellence in ecological and evolutionary research and the lead partner in the national Research School Functional Ecology and Biodiversity. This central position ensures that students can benefit from a wide spectrum of national and international expertise across the fields of ecology and evolution. Via advanced theoretical and practical training you will become highly attractive for research positions in the area of Evolutionary Biology.

We also offer an Erasmus Mundus programme in Evolutionary Biology: A joint project between four European universities. Students will start the programme at one of these universities and will spend at least one semester at a partner university.

Why in Groningen?

- Acquire Top Quality Research Competences
- Coaching by Personal Mentor
- CHE Excellence Ranking in Biology since 2007

Job perspectives

These programmes are specifically designed to prepare you for conducting top quality research. Often you continue your career by starting PhD research.

Job examples

- PhD research position

Read less
Sussex has long been a centre of excellence for evolutionary biology, counting John Maynard Smith among its founding members. By studying with us you’ll develop into a researcher capable of contributing to the grand challenges of antibiotic resistance, cancer and environmental change. Read more
Sussex has long been a centre of excellence for evolutionary biology, counting John Maynard Smith among its founding members. By studying with us you’ll develop into a researcher capable of contributing to the grand challenges of antibiotic resistance, cancer and environmental change.

This research-focused degree is based on our strengths in evolutionary biology, from the evolution of sociality, symbioses and sexual conflict to the process and effect of mutations. You’ll study how and why organisms are the way they are, and how this affects fundamental parts of our lives.

How will I study?
In the autumn and spring terms, you’ll have access to a variety of taught modules, including our unique field modules in tropical rainforest and Mediterranean regions.

From the spring term onwards, you’ll be researching real-world problems in close contact with your supervisor. This forms part of the in-depth research project that forms a core part of this course, and ultimately aims to produce a scientific publication.

Taught modules are assessed via:
-Essays
-Reports
-Presentations

The project is assessed with a dissertation.

Scholarships
Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

Geoff Lockwood Scholarship (2017)
-1 scholarship for Postgraduate (taught) of £3,000 fee waive
-Application deadline: 24 July 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Faculty
The degree is delivered primarily by faculty in the Evolution, Behaviour and Environment subject group in the School of Life Sciences.

We are an enthusiastic and dynamic group of researchers, working with a diverse range of organisms, from plants, social insects and fruit flies, to Trinidadian guppies and humans.

Some of our research topics include:
-Understanding the evolutionary biology of sociality
-Rates of adaptive evolution and mutation in genomes
-Links between genotype, phenotype and selection
-Evolution of symbiosis and host-parasite relationships
-Evolutionary neuroscience
-Evolutionary genetics of sexual conflicts and sexually antagonistic selection

Careers
This degree will provide you with the high-quality learning experience necessary to place you in a strong position to move on to a PhD in evolutionary biology, or a research career in associated areas.

Read less
Ecologists and evolutionary biologists now routinely use next-generation DNA sequencing in their research, and graduates who are skilled in both genome analysis as well as ecology and evolution are rare. Read more

Ecologists and evolutionary biologists now routinely use next-generation DNA sequencing in their research, and graduates who are skilled in both genome analysis as well as ecology and evolution are rare. Genome-enabled approaches are helping rapidly to advance our understanding of the dynamic relationship between genotype, phenotype and the environment.

Our programme will give you cross-disciplinary skills in a rare combination of areas of expertise, from bioinformatics and evolutionary inference to computational biology and fieldwork.

You will be taught by researchers who apply genomic methods to a wide range of issues in ecology and evolution, from bat food-webs and genome evolution to microbial biodiversity in natural and engineered ecosystems. For example, Professor Steve Rossiter carries out world-leading research on bat genome evolution; Dr Yannick Wurm has discovered a social chromosome in fire-ants; and Dr China Hanson is using genetic methods to study microbial biogeography. This means that teaching on our programme is informed by the latest developments in this field, and your individual research project can be at the forefront of current scientific discovery. 

You will conduct your own substantive six-month research project, which may be jointly supervised by contacts from related institutes or within industry. You will also take part in a field course in Borneo - see photos from a recent trip on Flickr - giving you the opportunity to develop first hand experience of theory in action.

Programme highlights

  • Work with leading researchers in environmental genomics - learn more on the Evolution and Genetics research group page 
  • Two-week tropical ecology field trip (currently to Borneo)
  • Strong foundation for careers in consultancy, environmental policy and management or research
  • Strong foundation for PhD training in any area of genomics, ecology or evolution

Research and teaching

By choosing to study at a Russell Group university you will have access to excellent teaching and top class research. You can find out more about our research interests and view recent publications on the School of Biological and Chemical Science's Evolution and Genetics group page.

Structure

This MSc programme combines taught modules with individual and collaborative research projects. You will apply the knowledge and techniques from your taught modules in a practical setting and may be able to publish your project findings.

If you have any questions about the content or structure, contact the programme director Dr Christophe Eizaguirre.

Taught modules

  • Genome Bioinformatics: Covers the essential aspects of next generation sequence (NGS) analysis, including genome assembly, variant calling and transcriptomics. Also covers essential computer skills needed for bioinformatics, such as Linux and using our high performance computing cluster.
  • Coding for scientists: Assuming no prior programming knowledge, teaches you how to program in Python, using biological examples throughout. Python is one of the most popular languages in the bioinformatics community, and understanding Python provides the perfect foundation for learning other languages such as Perl, Ruby and Java.
  • Statistics and bioinformatics: Covers core statistics methods, within the R statistical computing environment. R has become the de facto environment for downstream data analysis and visualisation in biology, thanks to the hundreds of freely available R packages that allow biological data analysis solutions to be created quickly and reliably.
  • Post-genomics bioinformatics: Introduces techniques that have developed as a consequence of developments in genomics (i.e. transcriptomics, proteomics, metabolomics, structural biology and systems biology) with particular emphasis on the data analysis aspects. Practicals cover the popular Galaxy framework, advanced R, and machine learning.
  • Research frontiers in evolutionary biology: Exploring the frontiers of research in evolutionary biology. Topics covered will include: incongruence in phylogenetic trees, neutral versus selective forces in evolution, the origin of angiosperms, the origin of new genes, the evolution of sociality, the significance of whole genome duplication and hybridisation. Current methods being used to tackle these areas will be taught, with an emphasis on DNA sequence analysis and bioinformatics.

Research modules

  • Evolutionary/Ecological Analysis/Software Group Project module: Students are organised into small teams (3-4 members per team). Each team is given the same genomic or transcriptomic data set that must be analysed by the end of the module. Each team must design an appropriate analysis pipeline, with specific tasks assigned to individual team members. This module serves as a simulation of a real data analysis environment, providing invaluable experience for future employability.
  • Individual Research Project (50 per cent of the programme)


Read less
Taught by expert researchers, this innovative MSc combines evolutionary anthropology, focusing on the behaviour of human and non-human primates, with evolutionary, developmental and cognitive psychology. Read more
Taught by expert researchers, this innovative MSc combines evolutionary anthropology, focusing on the behaviour of human and non-human primates, with evolutionary, developmental and cognitive psychology.

You gain an interdisciplinary understanding of the origins and functions of human behaviour and can select from a range of advanced topics such as evolutionary anthropology, primatology, human behaviour, cognitive psychology, developmental psychology and intergroup relationships.

The programme places a strong emphasis on critical thinking and understanding of both the broad fields and the specialisms within. Core to the programme is the development of research methods, culminating in a piece of original research, written up in the form of a publication-ready journal article. The MSc in Evolution and Human Behaviour is a perfect foundation for PhD research: it provides theoretical background, discipline specific knowledge and advanced, quantitative research methods.

Visit the website https://www.kent.ac.uk/courses/postgraduate/190/evolution-and-human-behaviour

Why study with us?

- A unique, interdisciplinary, combination of Evolutionary Anthropology and Psychology.

- Taught by expert, active researchers in evolutionary approaches to understanding behaviour.

- Select from a range of advanced topics such as Evolutionary Anthropology, Primatology, Human Behaviour, Developmental Psychology & Cognitive Neuroscience.

- Perfect foundation for future PhD research: theoretical background, discipline-specific knowledge and advanced research methods.

- For students with an undergraduate degree in anthropology, psychology, biology or a related discipline.

- A research component that results in a publication-ready journal article.

Course structure

The programme places a strong emphasis on critical thinking and understanding of both the broad field and the specialisms within. Core to the programme is the development of research methods, culminating in a piece of original research, written up in the form of a publication ready journal article.

Modules

Please note that modules are subject to change. Please contact the School for more detailed information on availability.

SE992 - Advanced Topics in Evolutionary Anthropology (15 credits)
SP801 - Statistics and Methodology (40 credits)
SE993 - Advanced Topics in Primate Behaviour (15 credits)
SE994 - Advanced Topics in HUman Behaviour (15 credits)
SP844 - Advanced Topics in Group Processes (20 credits)
SP851 - Advanced Topics in Cognitive Development (20 credits)
SP856 - Groups and Teams in Organisations (15 credits)
SP827 - Current Issues in Cognitive Psychology and Neuropsychology (40 credits)
SP842 - Advanced Developmental Social Psychology (20 credits)
SE855 - Research Project (Evolution & Human Behaviour) (60 credits)

Assessment

Assessment is by computing tests, unseen examinations, coursework and a project report.

Programme aims

This programme aims to:

- provide the opportunity for advanced study of human behaviour from an evolutionary perspective, combining approaches from both evolutionary anthropology and evolutionary psychology

- provide teaching that is informed by current research and scholarship and that requires you to engage with aspects of work at the frontiers of knowledge

- help you to develop research skills and transferable skills in preparation for entering academic or other careers as an evolutionary scientist

- enable you to manage your own learning and to carry out independent research

- help you develop general critical, analytic and problem-solving skills that can be applied in a wide range of settings.

Careers

As a School recognised for its excellence in research we are one of the partners in the South East Doctoral Training Centre, which is recognised by the Economic and Social Research Council (ESRC). This relationship ensures that successful completion of our courses is sufficient preparation for research in the various fields of social anthropology. Many of our students go on to do PhD research. Others use their Master’s qualification in employment ranging from research in government departments to teaching to consultancy work overseas.

Higher degrees in anthropology create opportunities in many employment sectors including academia, the civil service and non-governmental organisations through work in areas such as human rights, journalism, documentary film making, environmental conservation and international finance. An anthropology degree also develops interpersonal and intercultural skills, which make our graduates highly desirable in any profession that involves working with people from diverse backgrounds and cultures.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The MPhil in Human Evolutionary Studies is a full-time interdisciplinary course, taken over a period of ten months, and involving teaching in evolutionary anthropology, human and hominin morphology, primate behaviour and evolution, archaeology and genetics. Read more
The MPhil in Human Evolutionary Studies is a full-time interdisciplinary course, taken over a period of ten months, and involving teaching in evolutionary anthropology, human and hominin morphology, primate behaviour and evolution, archaeology and genetics. The lecturers are primarily involved in research and teaching within the Division of Biological Anthropology, in the Department of Archaeology and Anthropology.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/hsbamphes

Course detail

This taught MPhil recruits students who are prepared for graduate work and wish to receive interdisciplinary training, but who do not have sufficient education in human evolutionary studies in their background to be considered for the research MPhil or doctoral work. This is a demanding course which enables students to obtain interdisciplinary training and specialist knowledge in an area of human evolutionary studies over a relatively short time frame. The course prepares students to undertake an advanced degree, subject to performance in the examination.

Assessment

All students will write a thesis of not more than 20,000 words in length, excluding tables, appendices, and references, on a subject approved by the Degree Committee for the Faculty of Human, Social, and Political Science. This is worth 50% of the final mark.

All students will undertake a quantitative exercise on statistical analysis and interpretation, worth 10% of the final mark.

All students will write two essays of each not more than 2,500 words in length, excluding tables and references, based upon material from the core courses, as well as a 'News and Views' type of essay no longer than 1500 words. These are each worth 10% each of the final mark.

Finally, students will undertake a lab report based on one of the two lab practicals that will be carried out. The lab practicals will be based on hormones and genetics. These will contribute to 10% of the final mark.

Formative feedback is provided in written comments on essays for lecture papers and,when appropriate, for practical work. Verbal feedback is also given at the end of each term.

Continuing

MPhil students often apply to do a PhD following their masters degree and the department provides all students with the facilities and opportunities to do so.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are opportunities to apply for funding through the application process, as well as from external sources that applicants may wish to investigate.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
The MSc in Evolutionary and Comparative Psychology is a full-time taught postgraduate programme run by the School of Psychology and Neuroscience. Read more

The MSc in Evolutionary and Comparative Psychology is a full-time taught postgraduate programme run by the School of Psychology and Neuroscience. This distinctive programme tackles fundamental issues associated with the origins of human cognition via a wide range of

Highlights

  • Students gain a detailed knowledge of the evolutionary and comparative literature and principal theoretical and methodological issues in this field.
  • The course equips students with the necessary skills to pursue a research degree at MPhil or PhD level in the area of psychology.
  • Students have the opportunity, subject to availability, to undertake independent research at a given research centre in the UK or abroad, typically over the summer period.
  • The course is taught by members of the internationally recognised Origins of Mind research group, with additional classes by members of the wider Centre for Social Learning and Cognitive Evolution and related academic staff with interests in evolutionary and comparative psychology.

Teaching format

Over two semesters, students take four compulsory modules and 30 credits of optional module(s). The modules are taught through lectures, seminars, workshops and tutorials. Assessment comprises entirely of coursework; there are no exams. On average, class sizes range up to 80 students for lectures and 20 students for seminars.

The final three months of your course will be dedicated to a 15,000-word research project dissertation.

Further particulars regarding curriculum development.

Modules

The modules in this programme have varying methods of delivery and assessment. For more details of each module, including weekly contact hours, teaching methods and assessment, please see the latest module catalogue which is for the 2017–2018 academic year; some elements may be subject to change for 2018 entry



Read less
You will benefit from the expertise of our leading researchers in evolutionary psychology, who have particular interests in cultural evolution and language, social learning, and mate choice. Read more

Introduction

You will benefit from the expertise of our leading researchers in evolutionary psychology, who have particular interests in cultural evolution and language, social learning, and mate choice. Our staff are also at the forefront of new developments in applying evolutionary principles to address real world issue. Students interested in comparative approaches and animal behaviour will benefit from other members of our Behaviour and Evolution Research Group whose world-leading research on behaviour and cognition in primates, dogs and elephants are also being applied to real world problems, including conservation, human-animal interaction, and animal welfare. Under the group's expert guidance you will undertake specialists modules, a research placement and a research project. You will also be able to take advantage of our on-site and overseas labs, field sites and links with industrial partners. For example, the University works closely with the Living Links to Human Evolution Research Centre at Edinburgh Zoo.

Key information

- Degree type: MSc, Postgraduate Certificate, Postgraduate Diploma
- Study methods: Full-time, Part-time
- Start date: September
- Course Director: Professor Craig Roberts

Bursaries are available: http://www.stir.ac.uk/scholarships/.

Course objectives

The course provides advanced training as a preparation for a research career in Psychology, primarily for those intending to proceed to a PhD in the area of evolutionary psychology, comparative cognition or animal behaviour. It may also be suitable for meeting continuing professional development needs for those working in related applied contexts.

English language requirements

If English is not your first language you must have one of the following qualifications as evidence of your English language skills:
- IELTS: 6.0 with 5.5 minimum in each skill
- Cambridge Certificate of Proficiency in English (CPE): Grade C
- Cambridge Certificate of Advanced English (CAE): Grade C
- Pearson Test of English (Academic): 54 with 51 in each component
- IBT TOEFL: 80 with no subtest less than 17

For more information go to English language requirements https://www.stir.ac.uk/study-in-the-uk/entry-requirements/english/

If you don’t meet the required score you may be able to register for one of our pre-sessional English courses. To register you must hold a conditional offer for your course and have an IELTS score 0.5 or 1.0 below the required standard. View the range of pre-sessional courses http://www.intohigher.com/uk/en-gb/our-centres/into-university-of-stirling/studying/our-courses/course-list/pre-sessional-english.aspx .

Delivery and assessment

Teaching is delivered using a variety of methods including tutorials, demonstrations and practical classes, but the majority is seminar-based. Students are typically taught within small groups in specialist classes, with first-year PhD students or other postgraduate students (for example, in modules from other MSc courses).
Both taught and research postgraduates are integral to our research group and expected to participate in our regular meetings. All students allocated a peer mentor are provided with appropriate office space and equipment. In addition, each student is associated with an academic from Psychology.
The individual modules contribute towards 60 percent of the MSc grade, with the research dissertation contributing the remaining 40 percent.

Why Stirling?

REF2014
In REF2014 Stirling was placed 6th in Scotland and 45th in the UK with almost three quarters of research activity rated either world-leading or internationally excellent.

- Strengths
Psychology at Stirling is one of the leading psychology departments in the UK. It ranked in the top 20 in the recent research assessment (REF 2014) and is one of only seven non-Russell group universities to do so (Birkbeck, Royal Holloway, Sussex, Essex, St Andrews and Bangor; source Times Higher Education magazine). Its quality of research publications ranked third in Scotland after Aberdeen and Glasgow. Furthermore, the relevance of its research activity to society received the highest possible rating which only four other psychology departments in the UK achieved (REF 2014 results).

Psychology at Stirling University is small enough to fully involve MSc students in our lively and collegial community of research excellence.

Your three month full-time dissertation is supervised by leading UK academics.

Career opportunities

This course provides advanced training to prepare you for a research career in evolutionary approaches to behaviour, especially for those intending to proceed to a PhD. You will become an integral member of our lively and active research group and we will support you in making the complex transition towards being an independent research scientist. The placement also allows considerable scope for those interested in more applied areas to develop relevant skills for these careers. The course also seeks to meet the continuing professional development needs of those already working in related applied contexts.

Read less
The MRes in Evolutionary Biology involves the study of adaptation of organisms to their environment, at the whole organism and molecular scales. Read more
The MRes in Evolutionary Biology involves the study of adaptation of organisms to their environment, at the whole organism and molecular scales. Studies available include the evolutionary and behavioural ecology of insects and mammals and other species, genetic variation in wild populations of fungi, ecological genetics, and the interface between evolution and development. In addition, a number of researchers are interested in estimation of the deep phylogeny of major groups of organisms, such as pulmonate molluscs and protists. One of our staff members, Angus Davidson, uses an evolutionary approach to attempt to understand the origin of the use of 'sex' darts during courtship in slugs and worms.

APPLICATION PROCEDURES

After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
Discover the origins of organisms, their genes and how they interact with the environment. Train in the specialist area of evolution and biodiversity. Read more

Discover the origins of organisms, their genes and how they interact with the environment. Train in the specialist area of evolution and biodiversity.

This course is ideal for you if you want to go into a research career or study for a PhD in the field of Evolutionary Biology. You’ll learn about the beginnings and development of species, their genes and genomes. You’ll study practical evolutionary problems with model organisms, such as the fruit fly, as well as theoretical explorations of evolution using modelling and bioinformatics.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation. You’ll gain an insight into a range of research activities and techniques, gaining the transferable skills training needed for all early stage researchers. You’ll also address the scientific, ethical and commercial context within which the research takes place.

All of the MRes courses can be studied as the first year of our Integrated PhD course.

Visit the website http://www.bath.ac.uk/courses/postgraduate-2018/taught-postgraduate-master-s-courses/mres-evolutionary-biology/

Why study Biology and Biochemistry with us?

- 90% of our research judged to be internationally recognised, excellent or world-leading

- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

Career opportunities

Our graduates have gone on to further research in Lausanne, Berlin, Brussels, Frankfurt, and academic posts in Malaysia, Sweden, Germany, Canada, the US and in the UK. Recent employers of Bath graduates include:

British Aerospace

Network Rail

Powergen

Barclays Capital

BNP Paribas

Pfizer

AstraZenaca

MBDA UK Ltd

ATASS

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less
Discover the origins of organisms, their genes and how they interact with the environment. Train in the specialist area of evolution and biodiversity. Read more

Discover the origins of organisms, their genes and how they interact with the environment. Train in the specialist area of evolution and biodiversity.

You’ll learn about the beginnings and appearance of organisms and their genes, as well as their relationship within the environment. You’ll carry out theoretical and experimental studies of evolutionary biology within the laboratory, studying genes, genomes and phylogeny. The course also includes field work and applications to real problems, biodiversity and conservation science.

Led by some of the world’s top academics, teaching methods are varied, and include hands-on laboratory work, lectures, seminars, tutorials and field work. You will be able to select from a diverse range of topics and projects to build your course.

Your studies will help you develop the skills you need to move into a wide range of careers in the sciences or to take on further research. Our graduates have an excellent employment record with companies and academic institutions across the globe. Graduates have moved into roles with employers including Sanger Institute at Cambridge, The Pirbright Institute and Atlas Genetics.

Visit the website http://www.bath.ac.uk/courses/postgraduate-2018/taught-postgraduate-master-s-courses/msc-evolutionary-and-population-biology/

Why study Biology and Biochemistry with us?

- 90% of our research judged to be internationally recognised, excellent or world-leading

- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

The aim of each of our MSc programmes in Biology and Biochemistry is to provide professional-level training that will develop highly skilled bioscientists with strong theoretical, research and transferable skills, all of which are necessary to work at the forefront of modern biosciences.

For further information please visit our department pages (http://www.bath.ac.uk/bio-sci/postgraduate/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd

Janssen-Cilag

Royal United Hospital, Bath

Ministry of Defence

State Intellectual Property Office, Beijing

Wellcome Trust Centre for Human Genetics, Oxford University

AbCam

Salisbury Foundation Trust Hospital

BBSRC

Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines. genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few. Read more
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines: genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few.

In 2014 the school relocated to a new £54 million, state-of-the-art Life Sciences building. Our new laboratory facilities are among the best in the world, with critical '-omics' technologies and associated computing capacity (bioinformatics) a core component. The new building is designed to foster our already strong collaborative and convivial environment, and includes a world-leading centre for evolutionary biology research in collaboration with key researchers from earth sciences, biochemistry, social medicine, chemistry and computer sciences. The school has strong links with local industry, including BBC Bristol, Bristol Zoo and the Botanic Gardens. We have a lively, international postgraduate community of about 150 research students. Our stimulating environment and excellent graduate school training and support provide excellent opportunities to develop future careers.

Research groups

The underlying theme of our research is the search for an understanding of the function, evolution, development and regulation of complex systems, pursued using the latest technologies, from '-omics' to nanoscience, and mathematical modelling tools. Our research is organised around four main themes that reflect our strengths and interests: evolutionary biology; animal behaviour and sensory biology; plant and agricultural sciences; and ecology and environmental change.

Evolutionary Biology
The theme of evolutionary biology runs through all our research in the School of Biological Sciences. Research in this theme seeks to understand organismal evolution and biodiversity using a range of approaches and study systems. We have particular strengths in evolutionary genomics, phylogenetics and phylogenomics, population genetics, and evolutionary theory and computer modelling.

Animal Behaviour and Sensory Biology
Research is aimed at understanding the adaptive significance of behaviour, from underlying neural mechanisms ('how', or proximate, questions) to evolutionary explanations of function ('why', or ultimate, questions). The approach is strongly interdisciplinary, using diverse physiological and biomechanical techniques, behavioural experiments, computer modelling and molecular biology to link from the genetic foundations through to the evolution of behaviour and sensory systems.

Plant and Agricultural Sciences
The global issue of food security unifies research in this theme, which ranges from molecular-based analysis of plant development, signal transduction and disease, to ecological studies of agricultural and livestock production systems. We have particular strengths in functional genomics, bioinformatics, plant developmental biology, plant pathology and parasite biology, livestock parasitology and agricultural systems biology. Our research is helped by the LESARS endowment, which funds research of agricultural relevance.

Ecology and Environmental Change
Research seeks to understand ecological relations between organisms (plant, animal or microbe) at individual, population and community levels, as well as between organisms and their environments. Assessing the effect of climate change on these ecological processes is also fundamental to our research. Key research areas within this theme include community ecology, restoration ecology, conservation, evolutionary responses to climate change and freshwater ecology. Our research has many applied angles, such as ecosystem management, wildlife conservation, environmental and biological control, agricultural practice and informing policy.

Careers

Many postgraduate students choose a higher degree because they enjoy their subject and subsequently go on to work in a related area. An Office of Science and Technology survey found that around three-quarters of BBSRC- and NERC-funded postgraduates went on to a job related to their study subject.

Postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and for work in some public bodies or private companies. Around 60 per cent of biological sciences doctoral graduates continue in research. Academic research tends to be contract-based with few permanent posts, but the school has a strong track record in supporting the careers of young researchers by helping them to find postdoctoral positions or develop fellowship applications.

Read less

Show 10 15 30 per page



Cookie Policy    X