• New College of the Humanities Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Coventry University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
University of Southampton Featured Masters Courses
Ulster University Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Imperial College London Featured Masters Courses
FindA University Ltd Featured Masters Courses
"esa"×
0 miles

Masters Degrees (Esa)

  • "esa" ×
  • clear all
Showing 1 to 15 of 19
Order by 
Space Physiology & Health MSc is a unique programme providing training for biomedical scientists & physicians delivered by international experts from academia, contractors and space agencies (eg NASA). Read more
Space Physiology & Health MSc is a unique programme providing training for biomedical scientists & physicians delivered by international experts from academia, contractors and space agencies (eg NASA). Graduates will be equipped through lectures, seminars and extensive laboratory practicals and visits to RAF & Space Agency (ESA & DLR) facilities to serve future manned space expeditions.

Key benefits

- The programme is unique within Europe.

- Has input from professionals within the Space industry.

- Provides experiences with external partners including the Crew Medical Support Office at the European Astronaut Centre in Cologne.

- Located in the heart of London.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/space-physiology-and-health-msc.aspx

Course detail

- Description -

The programme provides opportunities for students to develop and demonstrate knowledge, understanding and skills in the following areas:

- Detailed and in depth knowledge of the physiological effects of the space environment upon humans and of the methods employed to mitigate such effects.

- Provide practical experience in experimentation methods appropriate to investigate the physiological effects of the space environment and those employed to mitigate such effects.

- A knowledge of instrumentation, calibration, data acquisition and the analysis of results whilst applying the appropriate statistical methods.an understanding of the effect of the space environment upon human behaviour and performance.

- An understanding of the effect of the space environment upon human behaviour and performance.

- A detailed knowledge of the practical implications of disease and physical deconditioning in space-faring humans and the practices required to counter and manage such events.

- Knowledge of the characteristics and practices associated with medical and life science research environments in space.

- Course purpose -

The aim of this programme is to provide graduates with advanced theoretical and practical training in the physiology, psychology and operational medicine of humans exposed to or working in the Space environment.

- Course format and assessment -

Full-time study: Approximately 20 hours of taught classes per week with some entire weeks spent at research establishments in the UK and abroad. Part-time study: Not offered. The programme will comprise lectures, tutorials and seminars with a large practical component. The latter will provide personal experience and experimental studies of a wide variety of Space relevant environments including flight, acceleration, heat and cold, noise, and spatial disorientation. Modules are assessed by coursework and/or examinations. The 10,000 word dissertation (with 10+5 min oral presentation) aims to facilitate student research in the labs of world renowned supervisors in space agencies, academia and industry across the globe.

Career prospects

The programme provides a range of multidisciplinary skills and will help those wishing to pursue a career in human physiology in its broadest sense, either in academic research i.e. PhD, in industry, in Ministry of Defence research laboratories or National/International Space agencies including ESA.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
The basis of natural sciences is the modelling of phenomena and solving these models. The Master’s programme in theoretical and computational methods will give you a strong basis in the theoretical methods, modelling, and mathematical and numerical analysis within physics, mathematics, chemistry and/or computer science. Read more
The basis of natural sciences is the modelling of phenomena and solving these models. The Master’s programme in theoretical and computational methods will give you a strong basis in the theoretical methods, modelling, and mathematical and numerical analysis within physics, mathematics, chemistry and/or computer science. The special feature of this programme is that you can combine the above disciplines into a comprehensive programme. It is well suited for the needs of basic research and for many fields of application. This programme requires a strong commitment from you to develop your own skills and plan your degree. You can tailor your programme according to your existing knowledge and interests, in cooperation with the programme professors.

The programme’s strong scientific emphasis makes it a natural gateway to further studies in physics, mathematics, chemistry, and computer science. This will usually take place within one of the research groups working on the Kumpula campus.

Upon completing the Master’s programme, you will:
-Have a solid basis of skills in your chosen scientific field.
-Have good skills in analytical and computational thinking and deduction.
-Be able to apply theoretical and computational methods to the analysis and understanding of problems in various fields.
-Be able to generalise information on scientific phenomena, and identify the inner relationships.
-Be able to create mathematical models of natural phenomena.
-Be able to solve the models, both analytically and numerically.

As a graduate of this Master’s programme you can work as an expert in many kinds of scientific jobs in the private and the public sectors. The employment rate in this field is good.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The special feature of this programme is its great scope: it consists of several modules in physics, mathematics, chemistry, and/or computer science. Out of these, you may select a suitable group of subjects according to your interests and the courses you took for your Bachelor's degree. The programme incorporates modules from e.g. the following areas:
-Theoretical physics
-Mathematics
-Cosmology and particle physics
-Computational physics
-Physical chemistry
-Laser spectroscopy
-Mathematical physics and stochastics
-Applied analysis
-Software engineering
-Theoretical computer science

The courses include group and lecture instruction, exercises, literature, and workshops. Most courses also include exams or project assignments. In addition, you can complete some courses independently, by taking exams.

Selection of the Major

This Master’s programme does not have any sub-programmes; instead, can can tailor a suitable combination according to your plans and existing knowledge from the modules in physics, mathematics, chemistry, and computer science. Your personal study plan will ensure that your courses will form a functional combination.

Programme Structure

The Master’s programme comprises 120 credits (ECTS) and it is possible to complete the degree in two academic years. The degree includes:
-90 credits of courses in the Master’s programme, including the Master’s thesis (Pro gradu) of 30 credits.
-30 credits of other courses from your Master’s programme or other programmes.

Your studies will include a personal study plan, working-life orientation, and career planning. The other studies could also include a traineeship, complementary courses in your major or minor subject, or a completely new minor subject.

Career Prospects

The Master’s degree in sciences applying theoretical and computational methods gives you an excellent basis for postgraduate studies or for work in many careers in Finland or internationally. Masters of Science employed within research and R&D in industry are very well paid. On the other hand, a career at the university or a research institute lets you carry out academic research on a topic of your own choosing.

As a graduate with an MSc degree you could embark on a career in:
-Industry, especially advanced technology corporations (applied research and R&D, leadership).
-Universities and research institutes abroad and in Finland (basic scientific research).
-Teaching in universities and universities of applied sciences.
-Software engineering, e.g. gaming industry.
-Various design and consultation jobs in the public and private sectors.

Graduates of similar programmes in the earlier degree system have found employment as researchers and teachers in universities and research institutes in Finland and abroad (e.g. CERN, ESA, NASA), for example, in administration (e.g. the Finnish Academy), and in private corporations. The strong analytical skills provided by the education are sought after in areas such as data analysis (industries, media companies, gaming industry, finance), and corporate research, product development, and consultation (e.g. Nokia, Ericsson, Apple, Sanoma, Spinverse, Supercell, Nielsen, Valo Research and Trading, Planmeca, Reaktor, Comptel, Vaisala, KaVo Kerr Group, IndoorAtlas and Goldman Sachs).

Internationalization

The Master’s programme works in a very international atmosphere, with many top researchers from Finland and abroad teaching in it. If you write your MSc thesis in one of the research groups, you will get first-hand experience of work in an international research project. In addition, the University of Helsinki and the Faculty of Science offer you many opportunities for international activities:
-Student exchange in one of the exchange locations of the faculty or university.
-Traineeships abroad.
-Courses given in English within the faculty.
-Cooperation with students in the international programme.
-International tasks within the students’ organisations or union.
-Language courses at the Language Centre of the University of Helsinki.

The Faculty of Science aims to be at the cutting edge of European research within its disciplines.

The collaboration partners include several top international research centres, such as CERN, ESA, ESRF, and ITER.R.

As a graduate student at the Faculty of Science, you will be able to apply for research training at places such as CERN in Geneva, Switzerland, or the ESRF centre in Grenoble, France. A traineeship in one of the internationally active research groups on campus will enable you to acquaint yourself and form contacts with the international research community during your studies. In addition, the international exchange programmes offer many opportunities for you to complete part of your degree at a foreign university.

Read less
What are the laws of nature governing the universe from elementary particles to the formation and evolution of the solar system, stars, and galaxies? In the Master’s Programme in Particle Physics and Astrophysical Sciences, you will focus on gaining a quantitative understanding of these phenomena. Read more
What are the laws of nature governing the universe from elementary particles to the formation and evolution of the solar system, stars, and galaxies? In the Master’s Programme in Particle Physics and Astrophysical Sciences, you will focus on gaining a quantitative understanding of these phenomena.

With the expertise in basic research that you will gain in the programme, you can pursue a career in research. You will also acquire proficiency in the use of mathematical methods, IT tools and/or experimental equipment, as well as strong problem-solving and logical deduction skills. These will qualify you for a wide range of positions in the private sector.

After completing the programme, you will:
-Have wide-ranging knowledge of particle physics and/or astrophysical phenomena.
-Have good analytical, deductive and computational skills.
-Be able to apply theoretical, computational and/or experimental methods to the analysis and understanding of various phenomena.
-Be able to generalize your knowledge of particle physics and astrophysical phenomena as well as identify their interconnections.
-Be able to formulate hypotheses and test them based your knowledge.

The teaching in particle physics and astrophysical sciences is largely based on the basic research. Basic research conducted at the University of Helsinki has received top ratings in international university rankings. The in-depth learning offered by international research groups will form a solid foundation for your lifelong learning.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The understanding of the microscopic structure of matter, astronomical phenomena and the dynamics of the universe is at the forefront of basic research today. The advancement of such research in the future will require increasingly sophisticated theoretical, computational and experimental methods.

The study track in elementary particle physics and cosmology focuses on experimental or theoretical particle physics or cosmology. The theories that form our current understanding of these issues must be continuously re-evaluated in the light of new experimental results. In addition to analytical computation skills, this requires thorough mastery of numerical analysis methods. In experimental particle physics, the main challenges pertain to the management and processing of continuously increasing amount of data.

The study track in astrophysical sciences focuses on observational or theoretical astronomy or space physics. Our understanding of space, ranging from near Earth space all the way to structure of the universe, is being continuously redefined because of improved experimental equipment located both in space and on the Earth’s surface. Several probes are also carrying out direct measurements of planets, moons and interplanetary plasma in our solar system. Another key discipline is theoretical astrophysics which, with the help of increasingly efficient supercomputers, enables us to create in-depth models of various phenomena in the universe in general and the field of space physics in particular. Finally, plasma physics is an important tool in both space physics and astronomy research.

Selection of the Major

The Master’s programme includes two study tracks:
-Particle physics and cosmology
-Astrophysical sciences

Courses in the programme have been compiled into modules. Both study tracks contain a mandatory core module that includes a research seminar. The study tracks are divided into specialisations that focus on astronomy, space physics, particle physics or cosmology. Courses typically include lectures, exercises, group work and research literature and end in examinations and/or final assignments. In addition, some studies can be completed as book examinations.

Programme Structure

The scope of the Master’s programme is 120 credits (ECTS), which can be completed in two years. The degree consists of:
-90 credits of Master’s studies, including a Master’s thesis (30 credits).
-30 credits of other studies from the Master’s programme or other degree programmes.

In addition, your studies include a personal study plan as well as career orientation and planning. You might also take part in a traineeship, elective studies offered by the Master’s Programme in Particle Physics and Astrophysical Sciences, or studies offered by other degree programmes.

Career Prospects

A Master’s degree in elementary particle physics or astrophysical sciences provides you with excellent qualifications for postgraduate education in research or for a career in diverse positions both in Finland and abroad. As a Master’s graduate you could begin a career in research and development in industry as well as in universities and other research institutes that enable you to conduct independent research on a topic that interests you.

Potential employers and career opportunities include:
-Research institutes in Finland and abroad (basic scientific research).
-Universities and universities of applied sciences (teaching).
-Industry, particularly high technology companies (applied research and development, managerial duties).
-Software production, e.g., the game sector.
-Diverse planning and consulting positions.

Master’s graduates from equivalent study tracks under the previous degree system have embarked on careers in:
-Research and teaching positions in Finnish universities and research institutes.
-Research and teaching positions abroad, for example at CERN (the European Organization for Nuclear Research), ESA (the European Space Agency), ESO (the European Southern Observatory), and NASA (the National Aeronautics and Space Administration).
-Administrative positions, for example at the Academy of Finland or the Finnish Funding Agency for Innovation (Tekes).
-The business sector.

The strong theoretical and analytical skills you will acquire in the programme are in great demand in fields such as:
-Data analysis (industry, media companies, game companies, financing).
-Industrial research, development and consulting (at, e.g., Nokia, Ericsson, Apple, Sanoma, Spinverse, Supercell, Nielsen, Valo -Research and Trading, Planmeca, Reaktor, Comptel, and Goldman Sachs).

Internationalization

Our multilingual Master’s programme is highly international. The Department hosts a large number of international students and staff members. In addition, the University of Helsinki and the Faculty of Science provide many opportunities for international engagement:
-Student exchange at one of the destinations available through the Faculty or the University.
-International traineeships.
-English-language teaching offered by the Faculty.
-Master’s thesis project as a member of one of the international research groups operating under the programme.
-Cooperation with international students enrolled in the programme.
-International duties in subject-specific student organisations or the Student Union of the University of Helsinki.
-Language courses organised by the Language Centre of the University of Helsinki.

The Faculty of Science is a top research institute in its fields among European universities. Its partners include many leading international research institutes, such as the European Organization for Nuclear Research (CERN), the European Space Agency (ESA) and the European Southern Observatory (ESO).

As a student at the Faculty of Science, you will have the opportunity to complete a research traineeship period at, for example, CERN in Geneva. By completing a traineeship at one of the internationally active research groups on campus you will be able to acquaint yourself and network with the international scientific community during your Master’s studies. The international student exchange programmes available at the University provide numerous opportunities to complete part of your degree at a university abroad.

Read less
Surrey’s satellite and space technology programmes are renowned internationally, and our graduates are held in equally high regard. Read more
Surrey’s satellite and space technology programmes are renowned internationally, and our graduates are held in equally high regard.

The Masters in Satellite Communications Engineering is a leader in Europe in equipping students with the necessary background to enter the satellite industry or to continue on to a research degree.

PROGRAMME OVERVIEW

Our Masters programme in Satellite Communications Engineering is designed to give you the specialist multidisciplinary skills required for careers in the satellite and space industries.

We have an exceptional concentration of academic staff experienced in the satellite area, in addition to well-established contacts with all the major satellite manufacturers, operators and service providers.

Industry participates in the MSc programme in both lecturing and projects, and facilitates excellent engagement for our students. Graduation from this programme will therefore make you very attractive to the relevant space-related industries that employ over 6,500 people in the UK alone.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Communications
-Space Dynamics & Missions
-Space Systems Design
-Antennas and Propagation
-Principles of Telecommunications & Packet Networks
-Satellite Communications Fundamentals
-RF Systems & Circuit Design
-Data & Internet Networking
-Advanced Guidance, Navigation & Control
-Launch Vehicles & Propulsion
-Network & Service Management & Control
-Advanced Satellite Communication Techniques
-Spacecraft Structures and Mechanisms
-Standard Project

FACILITIES, EQUIPMENT AND SUPPORT

Through consistent investment, we have built up an impressive infrastructure to support our students and researchers. The University of Surrey hosts Surrey Space Centre – a unique facility comprising academics and engineers from our own spin-out company, Surrey Satellite Technology Ltd.

Our mission control centre was designed and developed by students to support international CubeSat operations as part of the GENSO network, and it also supports the development of the University’s own educational satellites.

Our teaching laboratories provide ‘hands-on’ experience of satellite design and construction through the use of EyasSAT nano-satellite kits. They also house meteorological satellite receiving stations for the live reception of satellite weather images.

Elsewhere, our fully equipped RF lab has network analyser, signal and satellite link simulators. The Rohde and Schwartz Satellite Networking Laboratory includes DVBS2-RCS generation and measurement equipment, and roof-mounted antennas to communicating live with satellites.

A security test-bed also exists for satellite security evaluation. We have a full range of software support for assignments and project work, including Matlab, and you will be able to access system simulators already built in-house.

Satellite Communications Engineering students can also make use of SatNEX, a European Network of Excellence in satellite communications supported by ESA; a satellite platform exists to link the 22 partners around Europe. This is used for virtual meetings and to participate in lectures and seminars delivered by partners.

Our own spin-out company, Surrey Satellite Technology Ltd, is situated close by on the Surrey Research Park and provides ready access to satellite production and industrial facilities. In addition, we have a strategic relationship with EADS Airbus Europe-wide and several other major communications companies.

EDUCATIONAL AIMS OF THE PROGRAMME

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). The programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin satellite communications engineering.
-Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within satellite communications engineering.
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research & development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:
-General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering.

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in the field… Read more
Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in the field, this MSc programme aims to provide a broad understanding of the basic principles of space technology and satellite communications together with specialised training in research methods and transferable skills, directly applicable to a career in the public and private space sectors.

Degree information

The Space Technology pathway is focussed on the application of space technology in industrial settings, and therefore has as its main objective to provide a sound knowledge of the underlying principles which form a thorough basis for careers in space technology, satellite communications and related fields. Students develop a thorough understanding of the fundamentals of:
-Spacecraft, satellite communications, the space environment, space operations and space project management.
-The electromagnetics of optical and microwave transmission, and of communication systems modelling.
-A range of subjects relating to spacecraft technology and satellite communications.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), four optional modules (60 credits), a Group Project (15 credits) and an Individual research Project (60 credits).

Core modules
-Space Science, Environment and Satellite Missions
-Space Systems Engineering
-Communications Systems Modelling Type
-Group Project

Optional modules - at least one module from the following:
-Spacecraft Design – Electronic Sub-systems
-Mechanical Design of Spacecraft
-Antennas and Propagation
-Radar Systems
-Space-based Communication Systems

At least one module from:
-Space Instrumentation and Applications
-Space Plasma and Magnetospheric Physics
-Principles and Practice of Remote Sensing
-Global Monitoring and Security
-Space Data Systems and Processing

Dissertation/report
All MSc students undertake an Individual research Project, which normally involves attachment to a research group, and culminates in a report of 10,000–12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, coursework problem tasks, team-based coursework exercises, presentations and tutorials. Student performance is assessed through unseen written examinations, coursework, and the individual and group projects.

Careers

The programme aims to prepare students for careers in space research or the space industry, or further research degrees.

First destinations of recent graduates include:
-ONERA: Research Engineer
-Hispassat: Telecommunications Engineer
-Detica: Engineer
-Equinox Consulting: Financial Consultant
-Murex: Financial Consultant
-Risk Management Solutions: Risk Analyst
-Defence Science and Technology Laboratory: Analyst
-School of Electronics & Computer Science IT-Innovation: Research Engineer
-EADS Astrium Ltd: Engineer
-Thales Space: Engineer

Why study this degree at UCL?

UCL Space & Climate Physics, located at the Mullard Space Science Laboratory, is a world-leading research organisation and is the largest university space science group in the UK.

It offers a unique environment at the forefront of space science research, where scientists and research students work alongside top engineers building and testing instruments for space as well as studying the data from these and other spaceborne and ground-based instruments.

The close contact that the laboratory enjoys with space agencies such as ESA and NASA and with industrial research teams encourages the development of transferable skills which enhance job prospects in industrial and research centres in the public and private space sectors.

Read less
This MSc effectively transfers to students the knowledge and expertise gained by UCL space scientists over more than four decades and is taught by world-recognised researchers in the field. Read more
This MSc effectively transfers to students the knowledge and expertise gained by UCL space scientists over more than four decades and is taught by world-recognised researchers in the field. The programme aims to provide a broad understanding of all aspects of space science together with specialised training in research methods, directly applicable to a career in academia, the public and private sectors.

Degree information

The Space Science pathway is focussed on scientific research applications of space technology; it aims to equip participants with a sound knowledge of the physical principles essential to sustain careers in space research and related fields. Students develop a thorough understanding of the fundamentals of:

a range of space science fields
spacecraft, space science instrumentation, the space environment, space operations and space project management
Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), three optional modules (45 credits), a group project (15 credits), and a research project (60 credits).

Core modules
-Space Data Systems and Processing
-Space Instrumentation and Applications
-Space Science, Environment and Satellite Missions
-Space Systems Engineering
-Group Project

Optional modules
-Planetary Atmospheres
-Solar Physics
-High Energy Astrophysics
-Space Plasma and Magnetospheric Physics
-Principles and Practice of Remote Sensing
-Global Monitoring and Security

Dissertation/report
All MSc students undertake an independent research project, which normally involves attachment to a research group, and culminates in a report of 10,000–12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, team-based coursework exercises, presentations and tutorials. Student performance is assessed through unseen written examination, coursework, and the individual and group projects.

Careers

The programme aims to prepare students for further research degrees and/or careers in space research or the space industry. First destinations of recent graduates include:
-University of Lancaster: PhD Solar Physics
-Irongate Archaeological Project: IT Specialist
-UCL: PhD Space Climate Physics

Why study this degree at UCL?

UCL’s Space & Climate Physics Department, located at the Mullard Space Science Laboratory, is a world-leading research organisation and is the largest university space science group in the UK.

It offers a unique environment at the forefront of space science research, where scientists and research students work alongside top engineers building and testing instruments for space, as well as studying the data from these and other spaceborne and ground-based instruments.

The close contact that the laboratory enjoys with space agencies such as ESA and NASA and with industrial research teams encourages the development of transferable skills which enhance job prospects in academic circles and beyond.

Read less
The Masters in Astrophysics gives you an understanding of the principles and methods of modern astrophysics at a level appropriate for a professional physicist. Read more
The Masters in Astrophysics gives you an understanding of the principles and methods of modern astrophysics at a level appropriate for a professional physicist.

Why this programme

◾The School has a major role in the award winning NASA RHESSI X-ray mission studying solar flares and in several other forthcoming international space missions such as ESA’s Solar Orbiter.
◾The School plays a world-leading role in the design and operation of the worldwide network of laser interferometers leading the search for gravitational waves.
◾Physics and Astronomy at the University of Glasgow is ranked 3rd in Scotland (Complete University Guide 2017).
◾You will gain the theoretical, observational and computational skills necessary to analyse and solve advanced astrophysics problems, providing you with an excellent foundation for a career of scientific leadership in academia or industry.
◾You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
◾You will benefit from direct contact with our group of international experts who will teach you cutting-edge physics and supervise your projects.
◾With a 93% overall student satisfaction in the National Student Survey 2016, Physics and Astronomy at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.

[Modes of delivery of the MSc in Astrophysics include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The programme draws upon a wide range of advanced Masters-level courses. You will have the flexibility to tailor your choice of optional courses and project work to a variety of specific research topics and their applications in the area of astrophysics.

Core courses include
◾Advanced data analysis
◾General relativity and gravitation (alternate years, starting 2018–19)
◾Gravitational wave detection
◾Plasma theory and diagnostics (alternate years, starting 2017–18)
◾Pulsars and supernovae (alternate years, starting 2018–19)
◾Research skills
◾Statistical astronomy (alternate years, starting 2017–18)
◾The Sun's Atmosphere
◾Extended project

Optional courses include

◾Advanced electromagnetic theory
◾Applied optics
◾Circumstellar matter (alternate years, starting 2017-18)
◾Cosmology (alternate years, starting 2018–19)
◾Dynamics, electrodynamics and relativity
◾Exploring planetary systems (alternate years, starting 2018-19)
◾Galaxies (alternate years, starting 2017-18)
◾Instruments for optical and radio astronomy (alternate years, starting 2018-19)
◾Statistical mechanics
◾Stellar astrophysics (alternate years, starting 2017–18)

For further information on the content of individual courses please see Honours and Masters level courses.

Industry links and employability

-◾The School of Physics and Astronomy is highly active in research and knowledge transfer projects with industry. Our Masters students have regular opportunities to engage with our industrial collaborators through informal visits, guest lectures and workshops.
◾You will also benefit from our membership of the Scottish Universities Physics Alliance. The alliance brings together internationally leading physics research across Scotland to form the largest physics grouping in the UK.
◾Our staff and students come from all around the world providing a truly global experience. The School of Physics and Astronomy is committed to providing an equitable environment for study and work, in line with the principles of Project Juno of the Institute of Physics. This was recognised in 2011 by the award of Juno Champion status. We also have a strong programme of talks and seminars given by experts from the UK and abroad, which will give you the chance of broadening your knowledge in many other areas of physics and astronomy.

For further information please visit:

Scottish Universities Physics Alliance
Project Juno of the Institute of Physics
The award of Juno Champion status

Career prospects

Career opportunities include academic research, based in universities, research institutes, observatories and laboratory facilities; industrial research in a wide range of fields including energy and the environmental sector, IT and semiconductors, optics and lasers, materials science, telecommunications, engineering; banking and commerce; higher education.

Read less
Taught in both English and French over two years, this course develops in-depth knowledge of European local and regional food production, its economic and environmental impact and how these foods can be marketed to a global consumer. Read more
Taught in both English and French over two years, this course develops in-depth knowledge of European local and regional food production, its economic and environmental impact and how these foods can be marketed to a global consumer. Students learn how to develop and market food products whose typical features are the result of various factors such as geographical origin, history and the culture of a country or region. Students will acquire scientific and technical knowledge to develop these food products as well as skills to promote and market them.

The course

Harper Adams has been involved in the education and training of food industry undergraduates and graduates for many years. Selected by a European consortium of universities to be their UK partner institution Harper Adams offers a PgC in Agricultural Management for the Food Supply Industries to students enrolled on the European Masters in regional Food Production and Global Marketing and spending a proportion of their studies at Harper Adams. This PgC award forms part of the European MSc programme which is awarded and managed by ESA University in Angers, France. Harper Adams is very proud to be part of the European Masters in Regional Food Production Global Marketing course to its portfolio. Based on extensive food industry experience across Europe and current industry contact, this course addresses many of the contemporary issues facing the European food industry. It is designed to meet the requirements of those wishing to join the food industry at management level with accelerated career progression.

Taught in both English and French over two years, this course develops in-depth knowledge of European local and regional food production, its economic and environmental impact and how these foods can be marketed to a global consumer. Students learn how to develop and market food products whose typical features are the result of various factors such as geographical origin, history and the culture of a country or region. Students will acquire scientific and technical knowledge to develop these food products as well as skills to promote and market them. The learning method builds upon close links between the teaching staff of partner universities and the food industry to design a course addressing the challenges of marketing local and regional products on a global scale.

How will it benefit me?

The course aims to develop student knowledge of food production through sustainable agriculture, sourcing, manufacturing and marketing across many different food product categories in relation to country specific considerations and the global market. In so doing it produces students with specialist knowledge who learn to apply this through industry case studies and a professional project. Students are placed in production companies, trading companies, consultancy firms, technical or research institutions, laboratories or certification bodies in the final semester. The combination of in-depth knowledge and practical application makes for highly employable individuals.

To find out more visit http://www.masterfoodidentity.com

Read less
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows. Read more
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows.

We make every attempt to allocate you to a supervisor directly in your field of interest, consistent with available funding and staff loading. When you apply, please give specific indications of your research interest – including, where appropriate, the member(s) of staff you wish to work with – and whether you are applying for a studentship or propose to be self-funded.

Visit the website https://www.kent.ac.uk/courses/postgraduate/212/physics

About The School of Physical Sciences

The School offers postgraduate students the opportunity to participate in groundbreaking science in the realms of physics, chemistry, forensics and astronomy. With strong international reputations, our staff provide plausible ideas, well-designed projects, research training and enthusiasm within a stimulating environment. Recent investment in modern laboratory equipment and computational facilities accelerates the research.

The School maintains a focus on progress to ensure each student is able to compete with their peers in their chosen field. We carefully nurture the skills, abilities and motivation of our students which are vital elements in our research activity. We offer higher degree programmes in chemistry and physics (including specialisations in forensics, astronomy and space science) by research. We also offer taught programmes in Forensic Science, studied over one year full-time, and a two-year European-style Master’s in Physics.

Our principal research covers a wide variety of topics within physics, astronomy and chemistry, ranging from specifically theoretical work on surfaces and interfaces, through mainstream experimental condensed matter physics, astrobiology, space science and astrophysics, to applied areas such as biomedical imaging, forensic imaging and space vehicle protection. We scored highly in the most recent Research Assessment Exercise, with 25% of our research ranked as “world-leading” and our Functional Materials Research Group ranked 2nd nationally in the Metallurgy and Materials discipline.

Study support

- Postgraduate resources

The University has good facilities for modern research in physical sciences. Among the major instrumentation and techniques available on the campus are NMR spectrometers (including solutions at 600 MHz), several infrared and uvvisible spectrometers, a Raman spectrometer, two powder X-ray diffractometers, X-ray fluorescence, atomic absorption in flame and graphite furnace mode, gel-permeation chromatography, gaschromatography, analytical and preparative highperformance liquid chromatography (including GC-MS and HPLC-MS), mass spectrometry (electrospray and MALDI), scanning electron microscopy and EDX, various microscopes (including hot-stage), differential scanning calorimetry and thermal gravimetric analysis, dionex analysis of anions and automated CHN analysis. For planetary science impact studies, there is a two-stage light gas gun.

- Interdisciplinary approach

Much of the School’s work is interdisciplinary and we have successful collaborative projects with members of the Schools of Biosciences, Computing and Engineering and Digital Arts at Kent, as well as an extensive network of international collaborations.

- National and international links

The School is a leading partner in the South East Physics Network (SEPnet), a consortium of seven universities in the south-east, acting together to promote physics in the region through national and international channels. The School benefits through the £12.5 million of funding from the Higher Education Funding Council for England (HEFCE), creating new facilities and resources to enable us to expand our research portfolio.

The School’s research is well supported by contracts and grants and we have numerous collaborations with groups in universities around the world. We have particularly strong links with universities in Germany, France, Italy and the USA. UK links include King’s College, London and St Bartholomew’s Hospital, London. Our industrial partners include British Aerospace, New York Eye and Ear Infirmary, and Ophthalmic Technology Inc, Canada. The universe is explored through collaborations with NASA, ESO and ESA scientists.

- Dynamic publishing culture

Staff publish regularly and widely in journals, conference proceedings and books. Among others, they have recently contributed to: Nature; Science; Astrophysical Journal; Journal of Polymer Science; Journal of Materials Chemistry; and Applied Optics.

- Researcher Development Programme

Kent's Graduate School co-ordinates the Researcher Development Programme (http://www.kent.ac.uk/graduateschool/skills/programmes/tstindex.html) for research students, which includes workshops focused on research, specialist and transferable skills. The programme is mapped to the national Researcher Development Framework and covers a diverse range of topics, including subjectspecific research skills, research management, personal effectiveness, communication skills, networking and teamworking, and career management skills.

Careers

All programmes in the School of Physical Sciences equip you with the tools you need to conduct research, solve problems, communicate effectively and transfer skills to the workplace, which means our graduates are always in high demand. Our links with industry not only provide you with the opportunity to gain work experience during your degree, but also equip you with the general and specialist skills and knowledge needed to succeed in the workplace.

Typical employment destinations for graduates from the physics programmes include power companies, aerospace, defence, optoelectronics and medical industries. Typical employment destinations for graduates from our forensic science and chemistry programmes include government agencies, consultancies, emergency services, laboratories, research or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
A physics programme that covers the inner workings of the universe from the smallest to the largest scale. Although Particle Physics and Astrophysics act on a completely different scale, they both use the laws of physics to study the universe. Read more

Master's specialisation in Particle and Astrophysics

A physics programme that covers the inner workings of the universe from the smallest to the largest scale
Although Particle Physics and Astrophysics act on a completely different scale, they both use the laws of physics to study the universe. In this Master’s specialisation you’ll dive into these extreme worlds and unravel questions like: What did our universe look like in the earliest stages of its existence? What are the most elementary particles that the universe consists of? And how will it evolve?
If you are fascinated by the extreme densities, gravities, and magnetic fields that can be found only in space, or by the formation, evolution, and composition of astrophysical objects, you can focus on the Astrophysics branch within this specialisation. Would you rather study particle interactions and take part in the search for new particles – for example during an internship at CERN - then you can choose a programme full of High Energy Physics. And for students with a major interest in the theories and predictions underlying all experimental work, we offer an extensive programme in mathematical or theoretical physics.
Whatever direction you choose, you’ll learn to solve complex problems and think in an abstract way. This means that you’ll be highly appealing to employers in academia and business. Previous students have, for example, found jobs at Shell, ASML, Philips and space research institute SRON.

See the website http://www.ru.nl/masters/physicsandastronomy/particle

Why study Particle and Astrophysics at Radboud University?

- This Master’s specialisation provides you with a thorough background in High Energy Physics, Astrophysics, and Mathematical Physics and the interface between them.
- Apart from the mandatory programme, there’s plenty of room to adapt the programme to your specific interests.
- The programme offers the opportunity to perform theoretical or experimental research.
- During this specialisation it is possible to participate in large-scale research projects, like the Large Hadron Collider at CERN or the LOFAR telescope.

Career prospects

This Master’s specialisation is an excellent preparation for a career in research, either at a university, at an institute (think of ESA and CERN) or at a company. However, many of our students end up in other business or government positions as well. Whatever job you aspire, you can certainly make use of the fact that you have learned:
- Thinking in an abstract way
- Solving complex problems
- Using statistics
- Computer programming
- Giving presentations

Some of our alumni now work as:
- National project manager at EU Universe Awareness
- Actuarial trainee at Talent & Pro
- Associate Private Equity at HAL Investments
- Consultant at Accenture
- ECO Operations Manager at Ofgem
- Scientist at SRON Netherlands Institute for Space Research
- Technology strategy Manager at Accenture

Working at a company

Other previous students have found jobs at for example:
- Shell
- KNMI
- Liander
- NXP
- ASML
- Philips
- McKinsey
- DSM
- Solvay
- Unilever
- AkzoNobel

Researchers in the field of Particle and Astrophysics develop advanced detector techniques that are often also useful for other applications. This resulted in numerous spin-off companies in for example medical equipment and detectors for industrial processes:
- Medipix
- Amsterdam Scientific Instruments
- Omics2Image
- InnoSeis

PhD positions

At Radboud University, there are typically a few PhD positions per year available in the field of Particle and Astrophysics. Many of our students attained a PhD position, not just at Radboud University, but at universities all over the world.

Our approach to this field

In the Particle and Astrophysics specialisation, you’ll discover both the largest and the smallest scales in the universe. Apart from Astrophysics and High Energy Physics, this specialisation is also aimed at the interface between them: experiments and theory related to the Big Bang, general relativity, dark matter, etc. As all relevant research departments are present at Radboud University – and closely work together – you’re free to choose any focus within this specialisation. For example:

- High energy physics
You’ll dive into particle physics and answer questions about the most fundamental building blocks of matter: leptons and quarks. The goal is to understand particle interactions and look for signs of physics beyond the standard model by confronting theoretical predictions with experimental observations.

- Astrophysics
The Astrophysics department concentrates on the physics of compact objects, such as neutron stars and black holes, and the environments in which they occur. This includes understanding the formation and evolution of galaxies. While galaxies may contain of up to a hundred billion stars, most of their mass actually appears to be in the form of unseen ‘dark matter’, whose nature remains one of the greatest mysteries of modern physics.

- Mathematical physics
Research often starts with predictions, based on mathematical models. That’s why we’ll provide you with a theoretical background, including topics such as the properties of our space-time, quantum gravity and noncommutative geometry.

- Observations and theory
The Universe is an excellent laboratory: it tells us how the physical laws work under conditions of ultra-high temperature, pressure, magnetic fields, and gravity. In this specialisation you’ll learn how to decode that information, making use of advanced telescopes and observatories. Moreover, we’ll provide you with a thorough theoretical background in particle and astrophysics. After you’ve got acquainted with both methods, you can choose to focus more on theoretical physics or experimental physics.

- Personal approach
If you’re not yet sure what focus within this specialisation would best fit your interests, you can always ask one of the teachers to help you during your Master’s. Based on the courses that you like and your research ambitions, they can provide you with advice about electives and the internship(s).

See the website http://www.ru.nl/masters/physicsandastronomy/particle

Read less
Under the patronage of SIT – the. Italian Society of Telemedicine. Read more

Under the patronage of SIT – the Italian Society of Telemedicine - the Rome Business School’s Master’s Degree Course in e-Health Management has been designed to supply training on organizational processes and technologies aimed at the proper introduction and management of ICT solutions and Telemedicine in Health Systems.

E-Health is the combined use of information technology and electronic communication, especially the internet, in the health sector, for clinical, educational and administrative purposes; both on-site and at distance (in which case it is called Telemedicine). E-Health is not only a technical development, but also represents a way of thinking, a commitment, an organizational approach to improve health care locally or regionally by using the new opportunities presented by Information and Communication Technology.

By means of e-Health and Telemedicine, a Healthcare Institution or Ministry can achieve:

• More efficiency in health care: reducing costs by networking data and knowledge, avoiding duplication in diagnostic or therapeutic interventions, treating patients directly at home.

• A higher quality of care: by networking the Health professionals’ knowledge, enabling comparisons, and involving the patients and care givers.

• The empowerment of patients.

• The education of both physicians and patients about the management of pathologies

• More equity, for example by networking smaller hospitals with larger institutions and making virtual visits to remote areas.

In this scenario, it is crucial for a Manager to understand the potentiality, seize the opportunities, push and, above all, lead the e-Health and Telemedicine revolution in health care.

The Rome Business School’s Master’s Degree Course in e-Health Management has been designed to supply training on organizational processes and technologies aimed at the proper introduction and management of ICT solutions and Telemedicine in Health Systems.


TARGET RECIPIENTS

The Master’s Degree Course is designed for

• Directors and Managers of Healthcare Institutions,

• Directors and Managers of Social and Healthcare Ministries,

• Healthcare Decision-Makers,

• Clinicians,

• Clinical Engineers.


TRAINING OBJECTIVES

On completion of the training course, attendees will:

• Understand e-Health and Telemedicine terminologies and their areas of application.

• Be aware of the most widespread and innovative technology platforms and solutions available.

• Possess the skills to evaluate and choose the best e-Health projects and solutions.

• Be able to manage the organizational aspects stemming from the introduction of e-Health in an Institution, a Region, or a Country.

• Be able to apply the knowledge of the best-in-class European e-Health projects to the domestic contexts.

• Be e-Health evangelists.


PROFESSIONAL OUTLETS

On completion of this Master’s Degree Course, attendees will be able to work or improve their careers as:

• E-Health Managers

• Chief Information Officers for healthcare institutions

• E-Health executive consultants

• Managers of ICT Departments of Health Ministries

• E-Health and Telemedicine evangelists


Course Contents

• Introduction, Terms and General Concepts

• Health Technology Assessment

• Electronic Medical Records

• National Electronic Health Records

• Chronic Disease Management

• EMR for Primary Care

• Clinical Decision Support Systems

• UK WSD “The Largest Randomised Control Trial of Telehealth and Telecare in the World”

• Better Health Through IT

• Standards and Interoperability

• Telemedicine: areas of use and technologies

• Introducing e-Health in Hospital environments

• Economics of e-Health

• Healthcare reform: changing the healthcare models in Europe

• ESA activities in Telemedicine: space technology for downstream eHealth applications

• E-Health experiences in the Italian regions

• E-Health in Hospitals

• Telemedicine for local organizations

• Telemedicine for developing Countries

• Public-Private Partnerships

• Designing of e-health projects

• European Structural Funding for e-Health management


STRUCTURE

The course is structured in:

• 20 two hour seminars (6 months) +

• A final project work (6 months).




Read less
Air and Space Law is an intensive one-year Advanced Master’s at the internationally acclaimed Leiden Law School of Leiden University. Read more
Air and Space Law is an intensive one-year Advanced Master’s at the internationally acclaimed Leiden Law School of Leiden University. This unique programme offers a combination of public air law, private air law and space law, both from an international and a European perspective.

Visit the website: http://en.mastersinleiden.nl/programmes/air-and-space-law/en/introduction

Course detail

The Leiden Air and Space Law programme is unique. Our teaching and research has a clearly defined European dimension and is in line with the highest academic standards. At the same time, the programme focuses on professional applications, particularly through its internship requirements.

The International Institute of Air and Space Law (IIASL), which houses this advanced master’s specialisation, is one of the leading international academic research and teaching institutes in this field. The Institute maintains close relations with national and international organisations and institutions worldwide and enjoys the guidance of a prestigious International Advisory Board.

Purpose

This programme is specifically designed for:

• law graduates wishing to pursue a challenging advanced master’s study at postgraduate level, possibly followed by a PhD position;
• legal practitioners in internationally operating law firms, private companies (e.g. airlines, aircraft parts manufacturers), civil aviation authorities, telecommunications authorities, international and regional organisations and representatives from governments wishing to specialise in the area of air and space law.

Programme

The courses in Leiden’s Air and Space Law programme are taught by the International Institute of Air and Space Law’s expert faculty, visiting international professors and distinguished legal practitioners specialised in specific aspects of air and space law. We encourage an intensive interaction between students and teachers, typically resulting in greater involvement on the side of the students and, consequently, better results for you as a student.

Special features

As a student of Air and Space Law, you will benefit from:
• the Institute’s proximity to relevant European and international organisations and institutions such as the EU, the International Court of Justice, the European Space Agency (ESA, ESTEC), Eurocontrol, the Joint Aviation Authorities (JAA) and the UN COPUOS;
• frequent visits to these and other organisations and institutions with the aim to closely follow their activities and to expand your personal network;
• the International Advisory Board, some of whose members teach in the programme, and who can be of great help to build your network;
• the extensive library of the International Institute of Air and Space;
• the proximity of the Peace Palace in The Hague, which has a library with one of the world’s largest legal collections.

Internship

After completion of the scheduled lectures (in May),you will undertake a 6-8 week internship in an institution dealing with either air or space law, often located beyond the Dutch border. Blended learning students are not required to complete an internship.

Careers

This Leiden advanced master’s programme, offered by the Law School’s renowned International Institute of Air and Space Law, is optimally designed to suit requirements for professional positions.

Career options include:

• positions in law firms or in consulting firms with an aviation and space law practice;
• positions at legal departments of airports and airlines, aerospace companies;
• positions at civil aviation authorities;
• positions at ministries of transportation;
• positions in academia.

We are proud that most of our graduates find a high-level job soon after, and often before, graduation.

How to apply: http://en.mastersinleiden.nl/arrange/admission

Funding

For information regarding funding, please visit the website: http://prospectivestudents.leiden.edu/scholarships

Read less

Show 10 15 30 per page



Cookie Policy    X