• University of Cambridge Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Durham University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
King’s College London Featured Masters Courses
University of Reading Featured Masters Courses
Leeds Beckett University Featured Masters Courses
University of Leeds Featured Masters Courses
Bath Spa University Featured Masters Courses
"epigenetics"×
0 miles

Masters Degrees (Epigenetics)

We have 19 Masters Degrees (Epigenetics)

  • "epigenetics" ×
  • clear all
Showing 1 to 15 of 19
Order by 
The science of human genetics has been transformed in the past decade. Following the sequencing of the entire human genome, a wealth of resources is now available to researchers aiming to identify the genetic variants that influence human health. Read more
The science of human genetics has been transformed in the past decade. Following the sequencing of the entire human genome, a wealth of resources is now available to researchers aiming to identify the genetic variants that influence human health. These findings will shed light on the underlying molecular pathology of many diseases that are poorly understood at present, eventually paving the way for novel treatment and prevention strategies. The speed at which these discoveries are being made is accelerating, and it is likely that molecular genetics will soon underpin much of modern medicine.

Career Pathways:
The MSc in Human Molecular Genetics programme is designed to prepare you for a genetics research career, either in human gene function and genetic disease, or molecular approaches to diagnosis and health care biotechnology. It provides a broad grounding in Human Genetics, with emphasis on molecular aspects, to give a solid basis for subsequent academic or industrial research, or for entry to NHS Genetics training. Approximately 40% of our students go on to do a PhD, 40% become research assistants/associates, while others go on to jobs in industry or further studies (bioinformatics/computing medicine). One or two students every year enter the NHS in clinical genetics training posts.

Programme Structure:
You will study the fundamentals of human and molecular genetics, models of inheritance for rare and common/ complex polygenic diseases, cytogenetics, analytical methods in human genetics and genomics, animal models and transgenesis, gene therapy, epigenetics, cancer genetics and an introduction to clinical genetics and genetic counselling services.

There are four weeks of intensive laboratory practical sessions, as well as computer science practicals applied to problems in genetics, genomics and bioinformatics, regular research seminars on site, student seminar and journal presentations, study group activities and a six-month full-time research project in the summer.

The programme is based on an average 20 hours contact time per week. This will vary between 15 hours in most weeks and approximately 40 hours during intensive practicals and projects. Private study time is included within the schedule: you are expected to contribute an additional 10-15 hours private study per week to the course. We do not recommend you try to support yourself by taking a part-time employment whilst studying as your work may suffer.

Assessment:
There are 3 x 3-hour written papers in late February, coursework assessments (poster presentation, analytical methods in genetics, oral presentation), a project report and a viva examination in September.

Programme Location:
The programme is primarily based at Hammersmith Campus in West London although some teaching modules are held at St Mary's Campus and the Northwick Park Campus.

Read less
This M.Sc. program in Translational Oncology will provide high-quality training for basic scientists and clinicians in the theoretical and practical aspects of the causes and treatment of cancer. Read more
This M.Sc. program in Translational Oncology will provide high-quality training for basic scientists and clinicians in the theoretical and practical aspects of the causes and treatment of cancer. A major focus of the programme is the cellular genetic and epigenetic basis of cancer. The course also covers the scientific and clinical challenges pertinent to the management of site specific cancers, and all aspects of cancer treatment from standard therapies to 'individualised' molecular targeted therapies. The focus of the course is research led teaching in the practical aspects of translational cancer research. This innovative M.Sc. program in Translational Oncology is aimed at scientists and doctors in training who wish to:

Develop their research skills
Broaden their expertise in oncology
Develop advanced knowledge in specific areas of scientific, translational and clinical oncology.

The proposed course will offer an opportunity for graduates from a variety of backgrounds to specifically train in translational oncology in advance of undertaking an MD or PhD. Modules are taught using a variety of methods including lectures, tutorials, workshops and laboratory practicals. Lectures are provided by leaders in the field of translational oncology from both scientific and medical backgrounds. The core modules are Cellular and Molecular Oncology, Cancer Epigenetics, Disease Specific Cancers, Radiation / Chemotherapy and Molecular Targeted Therapies, Tumour Immunology, Molecular Pathology and Imaging, Clinical Statsitics and Research Skills. Students can tailor the course to their interests with optional modules in Obesity, metabolism and Cancer, Gemomic Instability, Cancer Drug Development, Tumour Microenvironment, Clinical Pharmacology, and Surgical Oncology and Economics. Students will be required to submit a dissertation based on an emperical research project conducted in one of the many oncology groups located within or affiliated with Trinity College Dublin and the Institute of Molecular Medicine. Opportunities for national and international placements to conduct research projects will also be available in collaborating universities, hospitals and industry.

All applicants should provide two academic or clinical references confirming their eligibility and suitability for the course, before their application can be considered. Applicants should also include a 500 word personal statement addressing why they are interested in the course, their suitability for the programme and how it will impact on their future career development. Applications for admission to the course should be made through the online system no later than July 31st. Late applications will be considered provided places are available.

Read less
Translating fundamental biomedical discoveries into applied clinical practice and public health issues. Human Biology is the only specialisation in the Netherlands that combines fundamental human biology with clinical studies. Read more

Translating fundamental biomedical discoveries into applied clinical practice and public health issues

Human Biology is the only specialisation in the Netherlands that combines fundamental human biology with clinical studies. It provides you with an extensive biological knowledge, and experience in working with animal and patient samples. In this way you’ll be trained to bridge the gap between early biomedical research results and clinical practice.

This wouldn’t be possible within the walls of the Faculty of Science. That’s why there’s an extensive collaboration between the Faculty of Science and the Radboud university medical center in the field of Human Biology. You’ll get the best of both worlds: a thorough background in for example molecular oncology, human genetics, physiology and metabolism as well as a clinical view on diseases. This is an excellent background for a medical researcher or a job at the interface of science and society, such as a consultant, policy officer or communications advisor in the area of food or health.

See the website http://www.ru.nl/masters/humanbiology

Why study Human Biology at Radboud University?

- It is the only programme in the Netherlands that bridges the gap between fundamental biomedical research and clinical treatments.

- You’ll get the opportunity to work together with researchers from the Radboud university medical center.

- Radboud biologists and clinicians stand out in the fields of animal and human physiology, human genetics and disease, and molecular and cellular clinical studies.

- Clinical Biology offers internships at multiple related research institutes, such as the Radboud Institute for Molecular Life Sciences (RIMLS), the Radboud Institute for Health Sciences (RIHS) and the Donders Institute for Brain, Cognition and Behaviour (DI).

- There are various opportunities to do an internship abroad thanks to our wide network of cooperating research groups.

Career prospects

After graduation, our students quickly take up positions as researchers in government departments, research organisations and medical or pharmaceutical companies. However, many of our graduates also apply their academic background to societal issues, for example as a communications or policy officer. In general, clinical biologists end up as a:

- Researcher in a hospital or a university

- Researcher in a company, either a large or a start-up company

- Supervisor of clinical trials

- Consultant in the area of health or food

- Policy officer in the area of health or food

- Communications officer at a hospital or a governmental organisation, like RIVM

- Teacher in biology or medical biology

PhD positions at Radboud University

Each year, Radboudumc offers PhD positions in this field of research. Of course, many graduates also apply for a PhD position at related departments in the Netherlands, or abroad.

Our approach to this field

- From human biology to clinical treatment

Human Biology at Radboud University connects fundamental biological research to clinical treatments. The courses will provide you with a solid background in human physiology and molecular biology, which you’ll apply in developing clinically-oriented research questions. As there’s an extensive collaboration between the Faculty of Science and the Radboud university medical center, you’ll become familiar with both perspectives.

- Biomaterials

In your internships you’ll work with biomaterials, such as patient and animal samples. This means you’ll apply your biological knowledge to real-life situations. Clinical biologists do not work with patients or clinical treatments directly.

- Three focus areas

This Master’s specialisation focuses on three main topics:

- Molecular Mechanisms of Novel Therapeutics

Which molecular mechanisms lead to cancer? And how can these be translated into clinical practice? These are key questions in the specialisation in Human Biology. For example, we’ll dive into the functioning of epigenetics (heritable modifications of chromosomes without altering the nucleotide sequence), transcription factors, tumour suppressors and immunotherapy.

- Human Genetics and Physiology

This part is about how new developments and discoveries in genetic and molecular fields can help individual patients to improve functionality, independence and quality of life. You’ll study genetic pathways and the functionality of individual organs, organ systems, regulatory mechanisms, and individuals as a whole, in an integrative way.

- Metabolism, Transport and Mobility

The energy balance in our body is one of the most important factors in health and disease. We’ll teach you how energy and metabolites are integrated into the larger cellular networks for metabolism, transport and motility.

See the website http://www.ru.nl/masters/humanbiology



Read less
RESEARCH STRENGTHS AND FACILITIES. The Department of Medical Genetics Graduate Program is a leading program that attracts students from all over Canada and the world. Read more

Graduate Program

RESEARCH STRENGTHS AND FACILITIES
The Department of Medical Genetics Graduate Program is a leading program that attracts students from all over Canada and the world. The Program offers Master’s and Doctoral programs that take place in Vancouver, one of the world’s most livable cities, at locations affiliated with the University of British Columbia, an institution which is consistently ranked among the world’s best universities.

The Department is composed of dozens of faculty members at the forefront of their fields who use cutting edge genetic, epigenetic, genomic, and bioinformatic methodologies to gain insight into diseases such as cancer, diabetes, obesity, neurodegenerative and neurological disorders, and other genetic diseases. Research is highly interactive and often involves local, national, and international collaborations which further enrich the research experience.

Individual labs conduct clinical and/or translational research and basic experimental research engaging a wide variety of approaches including the use of model organisms such as mice, flies (D. melanogaster), worms (C. elegans), and yeast (S. cerevisiae). Prospective students with interests in the investigative areas below have an opportunity to pursue world class research in labs affiliated with the Medical Genetics Graduate Program.

Areas of Research

- Developmental genetics and birth defects
- Epigenetics and chromosome transmission
- Genomics and bioinformatics
- Genetic epidemiology and human gene mapping
- Neurogenetics and immunogenetics
- Stem cells and gene therapy
- Pharmacogenomics
- Clinical genetics, genetic counselling, ethics and policy

Quick Facts

- Degree: Master of Science
- Specialization: Medical Genetics
- Subject: Life Sciences
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Medicine

Read less
The Masters program is a research based program with 12 credits of course work. On average students finish the program within 2-3 years or switch to the PhD program after 1-2 years of successful course and research progress. Read more

MASTERS PROGRAM

The Masters program is a research based program with 12 credits of course work. On average students finish the program within 2-3 years or switch to the PhD program after 1-2 years of successful course and research progress. On average Master Student enrollment within the Department is 30 students with an additional 60 PhD students.

Program Overview

The Department of Microbiology and Immunology offers opportunities for original research in the areas of molecular and applied microbiology, biotechnology, cell and developmental biology, epigenetics, geomicrobiology, molecular biology, molecular genetics, molecular immunology, microbial ecology, microbial pathogenesis, and virology. The Department has excellent research funding and a commitment to high quality research. A list of faculty and associate members and their research interests is available from the Department.

Students must satisfy the admission requirements of the Faculty of Graduate and Postdoctoral Studies International students are required to take the Graduate Record Examination (GRE) and an English proficiency exam such as the TOEFL or IELTS. The GRE is optional for North American students.

Quick Facts

- Degree: Master of Science
- Specialization: Microbiology and Immunology
- Subject: Life Sciences
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Science

Read less
The number of industries requiring highly skilled graduates in the biological and biomolecular sciences is rapidly expanding and remains based on the principle that employable graduates should possess a range of key skills. Read more
The number of industries requiring highly skilled graduates in the biological and biomolecular sciences is rapidly expanding and remains based on the principle that employable graduates should possess a range of key skills. The MSc in Biological and Biomolecular Science by Negotiated Learning will afford students the flexibility to broaden their understanding of biological and biomolecular science against a backdrop of learning core technical, methodological and innovation skills relevant to the industry and academia.
Several innovative specialisations are available from a carefully chosen range of modules from the relevant disciplines within the UCD School of Biomolecular & Biomedical Science and the UCD School of Biology and Environmental Science. These provide students with an exciting prospect of studying and researching in the interdisciplinary fields of genetics, cell biology, biochemistry, molecular biology, microbiology and biodata analysis. This diverse offering aims to enhance and develop a student’s current knowledge and skill base using a wide range of taught components and applied research skills. Guidance from expert faculty is provided to tailor a programme that will meet the anticipated requirements of the student’s objectives and career goals.

Key Fact

This MSc in Biological and Biomolecular Science is the first of its kind offered in Ireland by Negotiated Learning. This offers students a unique opportunity to combine skills and learning from several related disciplines with guidance from expert faculty staff, and to deepen their knowledge in one of our specialisations.

Course Content and Structure

The course is divided into the following:
•Core Laboratory Research Skills (30 credits) – including techniques such as RT-PCR, western blotting and imaging studies.
•Core Professional Taught Skills Modules (20 credits) – including career development, quantitative tools, science writing and communication skills.
•Optional Taught modules (40 credits) – involves selecting one of the following specialisations and selecting specific modules within
these that meet the student’s learning objectives.

The Specialisations Available:
• Genetics and Cell Biology: investigates cellular signalling, architecture, imaging, trafficking and transport, genetic basis of disease, model organisms, epigenetics, etc.
• Microbiology and Infection Biology: investigates mechanisms of pathogenic micro-organisms, host response to infection, immunopathologies, host-pathogen interactions, development of diagnostics, applied microbiology, etc.
• Biochemistry and Synthetic Biology: investigates metabolism and disease, protein-protein interactions, cell signalling, protein structure and analysis.

Career Opportunities

This programme will enable you to choose from a wide range of careers and areas of postgraduate study. This multi-disciplinary course provides a solid grounding for careers in industry, health and research, such as Quality Assurance, Quality Control, Microbiology, Process control, Technical Transfer, Research and Development, and Regulatory Affairs, Scientific Editor or Writer, Lab Technician or Analyst roles.

An academic staff member will advise you on a specialisation and module choices based on the opportunities you hope to unlock.

Facilities and Resources

Students on this programme will benefit from the use of a research skills laboratory in the prestigious UCD Conway Institute, as well as state-of-the-art teaching and laboratory facilities in the new O'Brien Centre for Science.

Read less
MPhil students must submit a dissertation for examination within the maximum period of their study. All graduate students attend induction and safety training courses in the department. Read more
MPhil students must submit a dissertation for examination within the maximum period of their study. All graduate students attend induction and safety training courses in the department. As well as undertaking your research, you will attend courses and lectures on some of the following: instrumentation, sequencing and database use, statistics, experimental design, analysing data, writing reports and a dissertation, introduction to MIMAS (a national data centre run by the University of Manchester), and how to give effective scientific presentations. Termly reports are provided on your work.

The course enables students to initiate careers in a wide range of disciplines including plant genetic engineering, plant development, plant molecular biology, plant biophysics, plant biochemistry, plant-microbe interactions, algal microbiology, plant ecology, crop biology, plant virology, plant epigenetics, epidemiology, plant taxonomy, plant physiology, eco physiology and bioinformatics.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/blpsmpbsc

Course detail

For students wishing to continue on to the PhD the MPhil provides suitable foundations. For students not wishing to continue the MPhil provides specialist training in scientific methodology relevant to the project subject area and based on the expertise of the supervisor and research group. This training also enables students from other scientific areas to proceed in a career in Plant Sciences and other allied areas. General training is also available and includes courses and lectures in instrumentation, sequencing and database use, statistics, experimental design, analysing data, writing reports and a dissertation, introduction to MIMAS (a national data centre run by the University of Manchester), and how to give effective scientific presentations.

Format

The Department has the overriding aim to provide all its Graduate Students with every opportunity for a broad education and a compatible environment in which they may complete a PhD or MPhil successfully. The Department will aim to provide guidance and, where appropriate, the facilities to allow Graduate Students to develop a number of different skills including:

- Research methodologies and the process of research including quantitative and qualitative methods and data analysis; project planning and management
- The effective use of learning resources including library and information technology
- Personal skills including oral and written communication, time management and team work skills, professional development and the preparation of curriculum vitae and employment applications
- A broad knowledge of the discipline in which the Student is working
- Technical training to enable the Student to undertake their research work effectively and efficiently
- Professional presentations

After the end of each term, the Graduate Education Committee will ask for a brief report on your progress from your Supervisor. This information will be made available to you and you will be invited to respond to comments made in a termly self-assessment. This will allow you to review your own progress and to highlight any difficulties you feel you are facing.

Assessment

A submission of a Masters dissertation, with a word limit of 20,000 words, is required within 12 months from a student's registration date.

A viva voce examination of the dissertation will normally then take place.

Continuing

On successfully passing their MPhil, students are welcome to apply to continue to a PhD. Continuation is dependent on the approval of the receiving Department and Degree Committee.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

Individual supervisors may hold grant linked or CASE studentships. It is best to contact supervisors directly to inquiry into availability.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
The overall aims of the programme are to. - provide professionally relevant teaching and learning informed by research in an integrated clinical and research environment;. Read more
The overall aims of the programme are to:

- provide professionally relevant teaching and learning informed by research in an integrated clinical and research environment;
- develop and create a cohort of doctors and other professionals allied to medicine able to pursue and develop their roles in a rapidly-changing and challenging environment of genomic medicine;
- prepare healthcare professionals for the adoption of genomic technologies and the increasing use of genomic information as part of the diagnostic and treatment pathway;
- develop a cohort of doctors and other professionals allied to medicine with the confidence to lead service improvement for safe and high quality patient care, and with the required knowledge, skills and capability to have a positive personal impact on the work of others;
- develop a cohort of doctors and other professionals allied to medicine with an understanding of research methodologies and clinical opportunities relevant to genomic medicine;
- encourage a commitment to intellectual challenge and evidence-based clinical practice informed by the latest conceptual and theoretical knowledge of genomic medicine;
- develop students' intellectual, practical and transferable skills related to genomic medicine;
encourage critical thinking related to genomic medicine;
- conduct systematic research relevant to their professional practice.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/cvmgmpgnm

Learning Outcomes

The over-arching learning outcomes are:

- Knowledge and understanding -

- To enhance the students’ knowledge and critical understanding of recent developments in genomic medicine relevant to their present and future roles.
- To develop students’ knowledge and understanding of genomic medicine informed by research in a rapidly-changing integrated clinical and research environment.
- To enable deployment of new knowledge in their clinical practice, and to have a positive personal impact on the work of others in their clinical team and wider service.
- To develop an understanding of genomic technologies and to be able to use genomic information as part of the diagnostic and treatment pathway.
- To develop students’ knowledge so that they have the confidence to lead service improvement for safe and high quality patient care.
- To update and extend students’ understanding of research methodologies and clinical opportunities.
- To demonstrate knowledge, abilities and skills to engage in focused, professionally-relevant, independent learning, and through the production of a dissertation.

- Skills and other attributes -

- The skills necessary to locate, read, interpret and analyse primary and secondary sources of material enabling the development of a conceptual and theoretical understanding of recent developments in genomic medicine.
- Skills to evaluate current scholarship and research critically and to place this knowledge within the context of their own situation and practice as clinical leaders.
- The ability to formulate a research topic relevant to their clinical context, to collect and analyse primary and/or secondary sources of data, and to undertake professionally relevant research.
- The facility to communicate the results of their ideas, research and its conclusions in a written form acceptable as a work of scholarship potentially publishable in a professional or academic journal.

Format

The MPhil comprises either:

- eight modules, plus a research project and associated dissertation of 10-12,000 words, or
- ten modules, plus a literature-based research project and associated dissertation of 5-6,000 words.

Students must complete seven Core Modules and one/three further modules chosen from a range of Option Modules, with additional between-module reflection, study and assignment work.

The modules are structured as follows:

- Core Module 1: An introduction to human genetics and genomics
- Core Module 2: Omics techniques and the application to genomic medicine
- Core Module 3: Genomics of common and rare disease
- Core Module 4: Molecular pathology of cancer and application in cancer diagnosis, screening, and treatment
- Core Module 5: Application of genomics to infectious disease
- Core Module 6: Pharmacogenetics and stratified healthcare
- Core Module 7: Bioinformatics, interpretation, and data quality assurance in genome analysis

Option modules will be selected from the following list. Not all options may be offered every year.

- Option Module 1: Ethical, Legal and Social Implications in applied genomics (ELSI) **
- Option Module 2: Counselling skills for genomics
- Option Module 3: Professional and research skills
- Option Module 4: Advanced Bioinformatics – from genomes to systems
- Option Module 5: Epigenetics and epigenomics
- Option Module 6: Expanding the content of the MPhil in genomic medicine with a workplace-based module

Each core module will involve around 30 hours of contact time, including lectures, group work and online teaching.

Placements

The research project element of the course may be undertaken in a number of scientific institutions, within and without the University. This may include the University's School of Clinical Medicine, the School of Biological Sciences, the European Bioinformatics Institute, Welcome Trust Sanger Institute and, subject to approval, other suitable research institutions.

Assessment

Students must submit a dissertation of 5-6,000 words or 10-12,000 words, depending on the options selected. This will be worth 1/6th or 1/3rd of the overall mark for the course, respectively.

For each of the taught modules, students must complete summative assignments of 2500-3500 words or equivalent (except where other methods of module assessment are indicated in individual module descriptions)

Each student is allocated a named supervisor, who will meet regularly with the student to discuss progress and provide feedback and support as required. Written supervision reports are accessed via the online supervision system. Students are given feedback on the assessments conducted at the end of each module.

All students will meet with the programme director on a termly basis to discuss progress and to provide their feedback on the course.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

Funding is available from Health Education England to pay course fees for NHS employees wishing to apply for this course. Prospective students wishing to apply for HEE funding should refer to the application process published by HEE at http://www.genomicseducation.hee.nhs.uk/msc-funding-info/and ensure that access to this funding is approved before applying for the course.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Medical practise and practise in the clinical professions will be transformed by genomic technologies and information within the next decade. Read more
Medical practise and practise in the clinical professions will be transformed by genomic technologies and information within the next decade.

This MSc is a new programme developed by Health Education England and aligned with their vision to prepare for the legacy of the 100,000 Genomes Project.

This will be achieved through transformational education and training that is focused on developing the capability and capacity of the NHS to apply genomic medicine for patient benefit.

The programme is offered by a network of centres across England and includes study of the genomics and informatics of rare and common diseases, cancer and infectious diseases, which can be applied to clinical practice and medical research, it enhances knowledge and skills, in this rapidly evolving field.

Please see the Health Education England website for further details (https://www.genomicseducation.hee.nhs.uk/genomicsmsc).

Full funding is available to NHS employees from Health Education England, for full details and to apply for funding please see the Health Education England website (https://www.genomicseducation.hee.nhs.uk/genomicsmsc/programmes-and-events).

The ethos of the programme is anchored within its educational aims, delivery format and learning outcomes and supported by the expertise, values and behaviours of the faculty.

You will learn from, with and about your peers, developing a mutual understanding and respect for the positive contributions that each will bring to Genomic Medicine. Students are likely to be clinical practitioners, diagnostic service providers, scientists and researchers and those aspiring to specialise within an academic career pathway. Specific modules will be of appeal to those who wish to enhance their CPD portfolio but do not need a formal academic award.

Programme structure

The full MSc course comprises eight core modules: seven taught modules of 15 credits each and one research module of either 60 or 30 credits. A range of optional modules is available for you to design your own learning experience to complement your career needs, and to complete the full programme of 180 credits.

Awards

The programme structure allows you to start the MSc programme and complete either a Postgraduate Certificate, a Postgraduate Diploma, or the full MSc.

Tailored content

This programme can be tailored to meet your career aspirations and enables you to choose your module options and plan your programme route.

Modules

MSc Genomic Medicine comprises eight core modules delivered through intensive face-to-face study and independent learning.

Our core modules include an introduction to human genetics and genomics, techniques and their application, the genetics and genomics of common and rare inherited diseases, molecular pathology of cancer and application in diagnosis, screening and treatment, bioinformatics interpretation and a laboratory research project or dissertation.

Optional modules within the programme include the ethics, counselling skills and advanced bioinformatics of genomics, epigenetics and professional and research skills.

These modules are based on Health Education England’s curriculum for genomic medicine but could be subject to change in future years. For the current list please see the website at http://www.exeter.ac.uk/postgraduate/taught/medicine/genomicmsc/#Programme-structure

Read less
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. Read more
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. We offer many opportunities for you to explore medically relevant research in the School of Biological Sciences including hospital-based sessions through our collaboration with local cancer specialists and clinicians.

An important and exciting part of your programme is an extensive independent research project, based in one of our academic research groups using advanced laboratories facilities and bioinformatics tools. There are also opportunities for research projects to take place within an industrial or clinical setting.

Throughout the course, you develop your knowledge in the essential areas of molecular and cellular biology which complement your specialist modules in cancer biology. You gain expertise in areas including:
-Specific cancer types (including breast, prostate, pancreatic and colon cancer)
-Clinical aspects of cancer
-Emerging trends in cancer research

You are also trained in modern research methods and approaches which will develop your skills in complex biological data analysis and specific techniques in cancer research.

Within our School of Biological Sciences, two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you will learn from and work alongside our expert staff as you undertake your own research.

Our expert staff

We have a very strong research team in the area of cancer biology, who are well placed to deliver the specialist teaching on this course.

The team includes the course leader Professor Elena Klenova (molecular oncology and cancer biomarkers), Dr Ralf Zwacka (apoptotic and survival signalling in cancer), Dr Greg Brooke (steroid hormone receptor signalling in cancer), Dr Metodi Metodiev (clinical proteomics and bioinformatics), Dr Pradeepa Madapura (cancer epigenetics), Dr Vladimir Teif (computational and systems biology), Professor Nelson Fernandez (tumour immunology) and Dr Filippo Prischi (structural biology and biophysics of novel drug targets).

External experts also input to your teaching, including guest speakers from hospitals and research institutions, who deliver classes both on-campus and within the hospital environment.

As one of the largest schools at Essex, we offer a lively, friendly and supportive environment with research-led study and high-quality teaching, and you benefit from our academics’ wide range of expertise and research.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Study in an open and friendly department, with shared staff-student social spaces
-Carry out your research project in shared lab space, alongside PhD students and researchers engaged in cutting-edge cancer research
-Learn to use state-of-the-art research facilities, including an advanced microscopy suite, proteomics laboratory, cell culture, bioinformatics and genomics facilities, modern molecular biology laboratories, and protein structure analysis

Your future

Graduates who are skilled in the research methods embedded into your course are in demand from the biotechnology and biomedical research industries in this area of the UK and beyond.

Many of our Masters students progress to study for a PhD, and there are many opportunities within our school leading to a career in science.

We work with our University’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Advanced Cancer Biology
-Practical Skills in Cancer Research
-Gene Technology and Synthetic Biology
-Protein Technologies
-Professional Skills and the Business of Molecular Medicine
-Cancer Biology (optional)
-Research Project: MSc Cancer Biology
-Genomics (optional)
-Cell Signalling (optional)
-Molecular Medicine and Biotechnology (optional)
-Human Molecular Genetics (optional)
-Molecular and Developmental Immunology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)

Read less
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Read more
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Whilst these treatment have served well and new drugs will continue to be designed, clinical trials over the last five years have shown that boosting the body’s immune system, whose main task is to deal with invading pathogens, can help our immune system to destroy tumour cells. Many of the new immunotherapies may be tested in combination with more conventional treatments or tested alone, but investigators and oncologists now believe immunotherapy, initially combined with pharmacological treatments, will soon provide curative therapies and certainly give many patients a new lease of life.

More about this course

Worldwide the incidence of cancer is increasing, and is expected to reach 22 million new cases per year by 2030. In addition to treatments such as radiotherapy and surgery, chemotherapy has a vital role to play in prolonging the lives of patients.

The aims of the Cancer Immunotherapy MSc are to:
-Provide an in-depth understanding of the molecular targets at which the different classes of anticancer drugs are aimed, and of how drug therapies are evolving
-Review the biology of cancer with respect to genetics, pathological considerations, and the molecular changes within cells which are associated with the progression of the disease
-Enhance intellectual and practical skills necessary for the collection, analysis, interpretation and understanding of scientific data
-Deliver a programme of advanced study to equip students for a future career in anti-cancer drug and immunotherapy development
-Cover new areas in immunotherapy (some of which may enhance existing pharmacological therapies including: History of immunotherapy and review of immune system; Monoclonal antibodies in cancer therapy and prevention; DNA vaccines against cancer; Adoptive T cell therapy; Dendritic cell vaccines; Antibodies that stimulate immunity; Adjuvant development for vaccines; Epigenetics and cancer: improving immunotherapy; Immuno-chemotherapy: integration of therapies; Exosomes and Microvesicles (EMVs) in cancer therapy and diagnosis; Dendritic cell vaccine development and Pox virus cancer vaccine vectors; Microbial causes of cancer and vaccination

Students will have access to highly qualified researchers and teachers in pharmacology and immunology, including those at the Cellular and Molecular Immunology Research Centre. Skills gained from research projects are therefore likely to be highly marketable in industry, academia and in the NHS. Students will be encouraged to join the British Society of Immunology and the International Society of Extracellular Vesicles.

Assessment is a combination of coursework, which includes tests and essays, the research project and its oral defence and examination.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Advanced Immunology (core, 20 credits)
-Cancer Immunotherapy (core, 20 credits)
-Cancer Pharmacology (core, 20 credits)
-Cancer: Diagnosis and Therapy (core, 20 credits)
-Molecular Oncology (core, 20 credits)
-Research Project (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)

After the course

Students will have many opportunities to work in industry. There are established industries working hard to develop cancer immunotherapies including Bristol-Myers Squibbs, MERCK, AstraZeneca and Roche. There are also an innumerate number of start-up companies appearing including Omnis Pharma, UNUM Therapeutics and Alpine Immune Sciences.

Students will also have ample opportunity for future postgraduate study either within the School of Human Sciences and the Cellular and Molecular Immunology Centre at the MPhil/PhD level or beyond, even with some of our research partners within the UK, Europe and beyond.

Read less
Meet Elizabeth Walden, MSc candidate in Biochemistry. “The best parts of my graduate program are the opportunities to present my own research/proposal, as well as to learn about the work of others. Read more
Meet Elizabeth Walden, MSc candidate in Biochemistry

“The best parts of my graduate program are the opportunities to present my own research/proposal, as well as to learn about the work of others. I have had opportunities to attend research events within my own department, as well as more broadly through Schulich and across London. These opportunities provide an amazing atmosphere for research and learning.”

Visit the website: http://grad.uwo.ca/prospective_students/programs/program_NEW.cfm?p=15

Fields of Research

• Bioinformatics
• Genome Dynamics, Epigenetics, and Gene Expression
• Human Genetics and Clinical Biochemistry
• Macromolecular Structure and Dynamics
• Proteomics
• Signal Transduction and Intercellular Communication

How to apply

For information on how to apply, please see: http://grad.uwo.ca/prospective_students/applying/index.html

Financing your studies

As one of Canada's leading research institutions, we place great importance on helping you finance your education. It is crucial that you devote your full energy to the successful completion of your studies, so we want to ensure that stable funding is available to you.
For information please see: http://grad.uwo.ca/current_students/student_finances/index.html

Read less
Gain insight into the latest biotechnology discoveries and trends, and develop a solid foundation in research and innovation. Through the master’s degree in the field of biotechnology you. Read more
Gain insight into the latest biotechnology discoveries and trends, and develop a solid foundation in research and innovation.

KEY LEARNING OUTCOMES

Through the master’s degree in the field of biotechnology you:
-Develop an understanding of biotechnology theory and research, including human physiology and genetics, cancer, proteomics, genomics, and epigenetics.
-Build knowledge of current industry practices, including biotechnology innovation and molecular biology techniques.
-Gain experience in experimental or case study design, scientific data analysis, writing and communication, ethical practices, and effective collaboration.

PROGRAM OVERVIEW

The degree includes nine courses—at least four taken on campus—and a thesis.

-Get started. You begin by completing three admission courses from the program curriculum. This is your opportunity to demonstrate your commitment and ability to perform well as a Harvard student.
-Apply to the program. While you are completing your third admission course, you submit your application. We have application periods in the fall, spring, and summer.
-Continue your studies, online and on campus. As you progress through the program, you choose from courses offered on campus or online, in the fall, spring, or summer. To fully experience Harvard, you take at least four courses on campus as part of your degree.
-Complete your thesis. Working with a thesis director, you conduct in-depth research on a topic relevant to your work experience or academic interests, producing publishable quality results. You’ll emerge with a solid understanding of how scientific research is executed and communicated.
-Graduate with your Harvard degree. You participate in the annual Harvard Commencement, receiving your Harvard University degree: Master of Liberal Arts (ALM) in extension studies, field: Biotechnology.

COST

Affordability is core to our mission. Our 2016–17 graduate tuition is $2,550 per course; the total tuition cost of earning the graduate degree is approximately $25,500.

FINANCIAL SERVICES

The Student Financial Services staff can assist you in identifying funds that will help you meet the costs of your education. You can find more information here: http://www.extension.harvard.edu/tuition-enrollment/financial-aid

Read less

Show 10 15 30 per page



Cookie Policy    X