• Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Northumbria University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Hertfordshire Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Cardiff University Featured Masters Courses
University College London Featured Masters Courses
Newcastle University Featured Masters Courses
"environmental" AND "tech…×
0 miles

Masters Degrees (Environmental Technology)

We have 882 Masters Degrees (Environmental Technology)

  • "environmental" AND "technology" ×
  • clear all
Showing 1 to 15 of 882
Order by 
Environmental Technology and Engineering at Ghent. -Learn to design and apply state-of-the-art environmental technology and engineering solutions. Read more
Environmental Technology and Engineering at Ghent:
-Learn to design and apply state-of-the-art environmental technology and engineering solutions.
-Study in three leading European universities and gain a multi-cultural experience.
-Be part of an international network of students, researchers and professionals of different nationalities.
-Possibility of Erasmus Mundus and other scholarships.

In the IMETE Erasmus Mundus programme you will become part of a new generation of environmental scientists. As a graduate, you will be able to design and apply state-of-the-art environmental technology and engineering solutions to tackle today’s global environmental problems. IMETE intensively promotes international networking and exchange of knowledge and experience between students, researchers and professionals of different nationalities.

You will study two years at three leading European universities: Ghent University in Belgium, the UNESCO-IHE Institute for Water Education in the Netherlands and the University of Chemistry and Technology (Prague) in the Czech Republic.

Structure

Semester 1 (Sept-Jan)
-UNESCO-IHE, Netherlands.
-General scientific courses and development of transferable skills.
Semester 2 (Febr-June)
-UCT Prague, Czech Republic.
-Advanced and specialization courses in environmental technology and engineering (e.g. solid waste and water treatment, atmosphere protection, soil remediation).
Semester 3 (Sept-Jan)
-Ghent University, Belgium.
-Specialized courses in environmental technology and engineering (e.g. clean technology, reuse technology, process and control engineering) and elective courses.
Semester 4 (Febr-June)
-Master dissertation at one of the European universities or at numerous research partners in Europe, America, Africa or Asia.

Learning outcomes

Our programme will prepare you to become:
-A creative researcher who develops innovative technologies to protect our environment and safeguard our natural resources.
-A professional in an international company or (non-)governmental organisation, who reduces the environmental impact of human activities by designing environmental technology solutions throughout the entire world.
-A leading policy maker, who is involved in innovative decision-making to guide a sustainable society in safeguarding the environment.

Other admission requirements

The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests:
-TOEFL IBT 86
-TOEFL PBT 570
- ACADEMIC IELTS 6,5 overall score
Language of instruction is not accepted anymore, except applicants who are nationals from or have obtained a bachelor and/or master degree in a higher education institute with English as mode of instruction in USA, Australia, New Zealand, United Kingdom, Republic of Ireland or Canada, and in the latter case a certificate that the mode of instruction was English has to be submitted.

Read less
Who is it for?. This course is for students who want to engage with different types of settings to research and establish the energy, environmental and technological implications that exist within them. Read more

Who is it for?

This course is for students who want to engage with different types of settings to research and establish the energy, environmental and technological implications that exist within them. Energy and Environmental Technology and Economics students will care for the environment as a sustainable system and ultimately have a desire to improve conditions for the wider population.

Students come from a range of backgrounds, including engineering, finance and economics – and from within the energy industry itself.

Objectives

This MSc degree has been designed to give you a wide perspective when it comes to analysing and forecasting the future for energy, environmental technology and economics.

The Energy and Environmental Technology and Economics MSc will help you:

  • Understand the technologies for energy production: fossil fuels, nuclear and renewable
  • Assess the economic factors affecting energy production and supply
  • Know the economics governing consumer use and purchase of energy
  • Analyse and forecast the future of energy, environmental technology and economics
  • Evaluate the environmental effects of energy and other industrial production
  • Gain a real-world understanding of the issues – from regulation and government funding, to behavioural psychology and emerging technologies
  • Understand the technologies for reducing environmental impact and their economics
  • Consider ethical responsibilities in relation to energy use
  • Rapidly assess the most important features of a new technology
  • Integrate information across a broad range of subject areas, from engineering
  • through economics to risk assessment
  • Identify a range of perspectives, and look at the influence of a myriad of other forces at play by engaging with practising businesses and trade associations
  • The discipline of auditing energy consumption
  • Monitoring performance and engaging with international energy management standards
  • Relate to professionals from a wide variety of backgrounds, academic, commercial and industrial, from professors in engineering and mathematics through to consulting engineers to senior managers and directors of large, publicly quoted companies.

Accreditation

The course is accredited by the Energy Institute and fulfils the learning requirement for Chartered Engineer status.

Placements

There is no formal requirement to do an industry-based placement as part of the programme. However, some students arrange to undertake their dissertation research within a company or within their part of the world. A recent student investigated the future of coal-fired generation in Turkey, and another student is combining a work placement at The World Energy Council with their dissertation.

Teaching and learning

Teaching is organised into modules comprising four consecutive day courses taken at a rate of one a month or so. This format makes the programme accessible for students who want to study part-time while working. Full-time students are also welcome.

Whether you choose to take the course as a part-time or full-time student, we will offer a great deal of support when it comes to helping you prepare for the modules and project work. You will be expected to devote a significant part of your non-taught hours to project work as well as private study.

Our course is led by an exceptional group of experts in energy, supply, demand management and policies. As an example, one of our module leaders leads the UK contribution to writing international energy management standards and informing policy through the European Sector Forum for Energy Management. This forum looks at methodologies across the continent.

There is also input to global standards development through the International Standards Organisation (ISO). At City we bring on board people with well-established academic careers, as well as leaders from the energy industry. The programme has strong links with industry and commerce and involves many visiting lecturers who hold senior positions in their fields.

You will be assessed by examination on the four core modules and you will need to complete a post modular assessment (a 2,000 to 3,000-word essay) on all of the eight modules.

Modules

You will take four core modules and have six elective modules from which you can choose four topics from diverse subjects relating to energy supply and demand.

Each course module is taught over four consecutive days of teaching with one module each month. Alongside the teaching, you will have coursework to complete for each module. The modules run from October to April, and in the remaining time, you will concentrate on your dissertation, which forms a significant part of the programme.

You are normally required to complete all the taught modules successfully before progressing to the dissertation.

The dissertation gives you the opportunity to create your own questions and to decide on your own area of interest. It should be a detailed investigation into a subject on energy supply and/or demand, with your own analysis and conclusions outlining the way forward. You may see the focus of your dissertation as a future career path, but whatever your area of study, these final few months of the degree should embody your vision of the future.

If you are interested in sustainability, you have the option of taking up to two elective modules from the MSc in Environmental Strategy offered by the University of Surrey.

Core modules

  • Introduction to energy and environmental issues (15 credits)
  • Energy policies and economic dimensions (15 credits)
  • The energy market from the purchaser's perspective (15 credits)
  • Corporate energy management (15 credits)

Elective modules

  • Energy, economics and finance (15 credits)
  • Transport energy and emissions (15 credits)
  • Energy in industry and the built environment (15 credits)
  • Renewable energy and sustainability (15 credits)
  • Risk management (15 credits)
  • Water supply and management (15 credits).


Read less
Technical specialists with environmental skills and competencies are increasingly valued by the global oil and gas industry in the 21st century. Read more
Technical specialists with environmental skills and competencies are increasingly valued by the global oil and gas industry in the 21st century. Developed in consultation with the industry and delivered by the largest group of oil and gas specialists at Coventry University, Petroleum and Environmental Technology MSc offers a unique, comprehensive and advanced level introduction to the technical operation of the petroleum industry linked to an assessment of the most important emerging environmental issues of concern to the sector. This course is professionally accredited by the Energy Institute: the leading chartered professional body for the global energy industry.

WHY CHOOSE THIS COURSE?

Uniquely at Coventry University, this course will give you the opportunity to study all major components of the upstream petroleum operation including reservoir technology and simulation, enhanced oil recovery, drilling and well completion, and petroleum processing and gas technology. It also combines this with the development of complementary expertise in key environmental issues such as oil spills trajectory simulation and remediation, environmental impacts of oil and gas, climate change, renewable energies and water/wastewater treatment. Particular highlights include training in industry standard PETREL and ECLIPSE reservoir simulation software (used by multinational oil companies like Shell, BP and ExxonMobil and kindly donated by Schlumberger to support your learning), and the opportunity to obtain a NEBOSH accredited Managing Safely Certificate. MSc PET students can also participate in a vibrant Student Chapter of the Society of Petroleum Engineers (SPE).

Upon successful completion of the course you should be recognised as a rounded and highly competent upstream technical oil and gas professional, with a distinctive and marketable environmental bias.

The course is professionally accredited by the Energy Institute. Obtaining Energy Institute accreditation involves a rigorous assessment, by a specialist visiting panel, of the quality of the course, the School, its facilities and its staff and students. On successful completion of this course, students will have met the entry requirement for working towards MEI chartered professional status for the Energy Institute. In summary, MSc Petroleum and Environmental Technology:
-Can prepare you for a rewarding career in the fast growing energy and hydrocarbon industry
-Will build your skills in all major technical components of the upstream petroleum industry linked to a distinctive and marketable understanding of the nature and management of relevant environmental issues;
-Is professionally accredited by the Energy Institute and offers the opportunity to obtain a NEBOSH accredited health and safety certificate on successful completion of the course

WHAT WILL I LEARN?

A wide range of subjects are available giving you a multidisciplinary approach to understanding the petroleum industries.

Mandatory subjects
-Drilling and Well Completion
-Reservoir Technology
-Oil and Gas Processing Technology
-HSE Management in the Oil and Gas Industry
-Oil Spill Science, Response and Remediation
-Petroleum Contracts and Economics
-Research Project

Optional subjects (choose two)
-Environmental Monitoring
-Water and Wastewater Treatment
-Impacts of Petroleum Exploration Production and Transportation
-Project and Quality Management in the Energy Industry
-Reservoir Simulation
-Clean Energy, Climate and Carbon

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

PET Equipment - TexasThe Petroleum and Environmental Technology MSc aims to equip graduates with the expertise required to confront the technological and environmental challenges confronting the oil and gas industry in the 21st century. The course is accredited by the Energy Institute and all students benefit from free membership of the Institute for the duration of their studies. The Energy Institute is the leading chartered professional membership body for the energy industry, supporting over 20,000 individuals working or studying within the energy sector worldwide. Membership of the EI provides access to extensive learning and networking opportunities to support professional, management, technical and scientific career development within the industry. On successful completion of the course, students will also have the opportunity to obtain a highly marketable NEBOSH accredited health and safety certificate.

Successful graduates could find employment in areas within the upstream technical oil and gas industry, and related fields in the chemical, environmental and energy sector.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
Water is vital. Drought, floods and water footprint are crucial topics across the globe. Read more

Water is vital. Drought, floods and water footprint are crucial topics across the globe.

The Water Management Option was one of the original options of our MSc Environmental Technology course first offered in 1977, and remains at the cutting edge today, with research into the balance between water treatment, energy use, climate change and legislation being the focus of intense interest.

Aims

The aim of the option is to produce graduates who understand the challenges posed by water supply and water resources management, and who meet the demands of organisations concerned with the water environment and water technology. These include water companies, regulators, consultancies and research organisations. Changing priorities in these organisations mean there is an increasing emphasis on management in addition to the traditional broad foundation in the basic concepts of water technology and the water environment. As a result, the Water Management Option spotlights and develops management techniques, with two extended consultancy-style projects, one run in conjunction with Hounslow London Borough Council and the other with Anglian Water plc. In addition to lectures and tutorials the students develop their research and presentation skills in a dynamic, cooperative and competitive environment.

At the end of the course, the student will understand the basic concepts of water technology and the water environment both locally and globally, and be able to:

  • apply this understanding to water management issues
  • select and use a range of appropriate management techniques
  •  communicate effectively with others concerned with water management issues, (for example environmental engineers)
  •  apply this knowledge and skill to water management issues in both the developed and developing world
  • work professionally within an organisation, cooperating with others and communicating ideas in oral and written form.

Content

The Option comprises a number of modules designed to introduce the student to the broad range of scientific, environmental and management issues relevant to man’s effects on the Earth’s most precious resource. In addition to lectures, delivered by a of leading practitioners from regulators, water companies, consultancies, research and other environmental organisations, there are seminars and practical coursework assessments that provide experience of contaminated land remediation and strategic investment planning for water supply and wastewater treatment.

Module Aims and Learning Outcomes

Environment and Health

  • To give the student a foundation in science and policy basics to understand aspects of environmental management and technology and its impact on health.
  • Be able to explain the main chemical and biological processes important in the physical environment, the parameters that define environmental quality and its effect on health.

Water Technology and Management

  • To introduce the student to the various unit processes used in water treatment, including underlying theory and technology.
  • Be able to describe the basic concepts of water treatment technology and the selection of unit treatment processes.

Environmental Policy and Resource Management

  • To provide students with an introduction to the legal, technical and practical issues involved in contaminated land and resources management.
  • Be able to appreciate the challenges for the management of contaminated land and be able to describe the basic concepts in relation to resources and waste management.

Environmental Decision Making and Tools

  • To introduce students to some of the most important policy tools and techniques to assist them in decision-making.
  • Be able to select and use various management techniques and policy tools to support decision- making in environmental and water management and policy.

Integrated Land and Water Management

  • To provide students with an overview of problems, potential remedies and possible outcomes involved in holistic management of the environment.
  • Be able to assess environmental problems and environmental relationships in order to propose holistic solutions that maximise overall benefits and minimise adverse impacts.

Environmental Pollution and Assessment

  • To enhance students' understanding of the pollution pathways in the environment from source to receptor.
  • Be able to describe water recycling technologies and assess the physical and chemical processes involved in the progress of pollutants from source to receptor.

Finally, a four-day study tour incorporating a programme of visits gives operational insight into many aspects taught on the option. Visits to sites concerned with water and environmental resource management and related environmental conservation projects are complemented by visits designed to give an understanding of the technology used for water and wastewater treatment.

Careers

Graduates from our course have a very high success rate in achieving well paid employment. This is commonly in environmental consultancies and to a lesser extent in water utility companies, the Environment Agency, Defra and other regulators, and water charities in the UK, in the European Union and overseas.

Graduates from recent years have taken up positions and careers in the following companies:

  • Anglian Water
  • Arcadis Geraghty Miller
  • CH2M Hill
  • Dames and Moore
  • Department of the Environment, Transport and the Regions
  • Environment Agency
  • ERM
  • Mott MacDonald
  •  Parsons Engineering Science
  •  Posford Duvivier
  • Thames Water

Fieldwork

Students undertake two assessed pieces of coursework over the option term. One piece of coursework is in collaboration with a water company, Anglian Water and in addition to team research with other option members it involves a visit to the Anglian Water premises in East Anglia. The other piece of coursework is conducted in collaboration with the Hounslow London Borough Council. It builds on the theme of integrated land and water management and incorporates a day of water and soil sampling on Hounslow Heath in London (working alongside another of the MSc Options – Environmental Analysis & Assessment).

Anglian Water Placement

The opportunity exists for one student to carry out the MSc Environmental Technology Course Water Management Option over two years, which includes a 16 month industrial placement with Anglian Water. The programme provides the chosen candidate with an Anglian Water-financed bursary and payment of tuition fees (at UK/EU rate).  Please visit the website to find out more.



Read less
The MSc in Environmental Technology has been running for over 40 years and provides the highest standard of knowledge and skills development for environmental and sustainability specialists. Read more

The MSc in Environmental Technology has been running for over 40 years and provides the highest standard of knowledge and skills development for environmental and sustainability specialists. Through the course students acquire a diverse range of discipline-specific problem-solving skills for tackling contemporary sustainability issues. A major emphasis of the course is on the way that environments function and on the compatible tools, alternative technologies and policies for sustainable environmental management.

Our course combines the natural and social sciences, engineering and business in a truly interdisciplinary manner, providing a foundation for graduates to demonstrate their ability to identify and resolve environmental and sustainability issues in a holistic way. This broad training is followed by an in-depth education in many specialised areas, maintaining the course's interdisciplinary nature. The specialist options in the second term are designed to cater for a variety of individual interests and career requirements. 

The course provides students with different options to build on their undergraduate degree, by allowing them to specialise in an area of particular interest, convert undergraduate knowledge to a different setting, differentiate for the job market and learn specific techniques and tools for research and management.

MSc candidates learn to appreciate that successful projects depend, at least in part, on belonging to a network of experts aiming to advance personal and collective environmental goals. We emphasise a friendly and supportive learning environment.

Building on Imperial’s environmental world-class research portfolio, dedicated teaching staff coordinate the interdisciplinary nature of our course and very strong links with industry, business and regulators. We pride ourselves on the quality of the service we provide to students, science and the society, and our excellence in delivering the valuable interaction between scientific/technological training and industrial experience.

Course Structure

First term – Core Course

The Core Course emphasises contemporary policy debates through a number of cross-cutting themes: climate change and energy, international development, sustainability and health, and biodiversity. This is delivered through the following modules:

Second term – specialist Options

Student elect to specialise in one of nine Options in the second term. A strong case study approach is employed with emphasis on working in teams, decision-making, strong analytical skills and report writing and delivery. The nine specialist options currently offered on the course include:

Third Term – Individual Research Project

The research project term, running from April to September, aims to provide graduates with valuable research and practical experience and give them the ability to address individual sustainability and environmental problems with confidence. It provides the opportunity to undertake rigorous independent research; to apply knowledge and understanding of sustainability and environmental disciplines to practical problems; and to develop and demonstrate interdisciplinary, transferable skills with specific emphasis on project management and oral and written presentation skills. 

The research project normally follows from the specialist Option and may involve any combination of desk-, laboratory- or fieldwork. It may be set up and carried out in conjunction with an outside organisation thereby providing practical experience which greatly enhances employment prospects, and may be carried out in the UK or abroad.

Learning Approach

The programme aims to: 

• Provide the highest standard of training for environmental scientists and managers, who will become leaders in their fields, whether in academia, consultancy, research, government bodies, non-governmental organisations or industry and commerce, both nationally and internationally

• Deliver an holistic understanding of the interdisciplinary complexities underlying environmental issues integrating science, technology, law, economics, policy and management, with in-depth education in the more specific areas addressed by the eight specialist options

• Attract highly motivated students, both from within the UK and from overseas

 The expected learning outcomes are:

  • to understand the fundamental mechanisms operating in the environment and the principles underlying the tools for sustainable environmental management
  • to specialise in particular chosen areas
  • to develop the ability to conduct independent rigorous research into environmental problems with confidence
  • to be able to employ a knowledge from range of subjects necessary to understand and resolve practical sustainability and environmental problems
  • to develop interpersonal and transferable skills, quantitative and qualitative skills

Links with Industry

The MSc in Environmental Technology has developed very strong links with employers and research organisations, and maintains strong links with our large alumni body. All Options benefit from industry and alumni teaching into the course, actively complementing the academic teaching delivered by staff members. Collaborative frameworks are in place aim to deliver outputs beneficial to both organisations and the students in our course.



Read less
The MSc in Environmental Technology provides the highest . standard of knowledge and skills development.  for environmental specialists. Read more

The MSc in Environmental Technology provides the highest standard of knowledge and skills development for environmental specialists. Through the course students acquire a diverse range of discipline-specific problem-solving frameworks for tackling contemporary environmental issues. A major emphasis of the course is on the way that environments function and on the compatible tools, alternative technologies and policies for sustainable environmental management. MSc Candidates also learn to appreciate that successful projects depend, at least in part, on belonging to a network of experts aiming to advance personal and collective environmental goals. We emphasise a friendly and supportive learning environment.  

Our course combines the natural and social sciences in a truly interdisciplinary manner, providing a foundation for graduates to demonstrate their ability to identify and resolve environmental and sustainability issues in a holistic way. This broad training is followed by an in-depth education in many specialised areas, maintaining the course's interdisciplinary nature. The specialist options in the second term are designed to cater for a variety of individual interests and career requirements. 

The course provides students with different options to build on their undergraduate degree, by allowing them to specialise in an area of particular interest, convert undergraduate knowledge to a different setting, differentiate for the job market and learn specific techniques and tools for research and management. 

Building on Imperial’s environmental world-class research portfolio, dedicated teaching staff to coordinate the interdisciplinary nature of our course and very strong links with industry, business and regulators. We pride ourselves on the quality of the service we provide to students, science and the society, and our excellence in delivering the valuable interaction between scientific/technological training and industrial experience.

Director of the course is Dr Mike Tennant 

Business and the Environment

Contemporary “business-as-usual” solutions are not sufficient for achieving meaningful change in a resource-constrained and inequitable world. Students taking the Business and the Environment Option (B&E) will develop a critical understanding of how businesses currently tackle the challenges of sustainability in the broadest of senses. They will use creative thinking to develop proactive businesses models that go beyond contemporary levels of sustainability performance.

The B&E Option provides students with an understanding of opportunities and risks that businesses face in the light of growing environmental and sustainability constraints and social inequality. It gives them the critical thinking skills required to develop entrepreneurial solutions that maximise those opportunities. Students will be equipped with the knowledge and skills to deal with the complex choices that business must face in order to function as responsible members of society.

The Option benefits from the input of leading companies and strategists in the fields of sustainability, environment, finance, retail and emerging markets, and students are exposed to a wide variety of industry and academic perspectives. There is a strong emphasis on problem-solving , taking a learning-by-doing approach and going beyond the norm to develop solutions to difficult problems using systemic, innovative thinking coupled with sound business and organisational management strategies.

Teaching is supported with case study sessions, which give students the skills and confidence to rigorously analysis sustainable business problems. Extensive practical work serves to both reinforce learning and to give students exposure to real-world problems. A group-based consultancy project is carried out in conjunction with leading UK-based companies, whilst a business modelling exercise gives students the opportunity to develop their own ideas of what a responsible company should look like by creating robust business ideas that have positive environmental and social impacts.

Key elements of the Option include:

  • understanding sustainability challenges across a company’s complete supply chain
  • innovation and sustainability
  • problem-solving using life cycle and systems thinking
  • effective stakeholder engagement, corporate reporting and marketing
  • business ethics and responsibility
  • basic accounting for business
  • creativity and business modelling

Expected learning outcomes for the B&E Option are:

  • to understand, interpret and creatively apply good practice in sustainable business strategy and operations to contemporary business problems
  • to interpret and evaluate complex, inter-disciplinary and future-oriented sustainability concepts and apply them to create entrepreneurial business ideas
  • to effectively engage peers and professionals in generative conversations
  •  to effectively use a range of technical and transferrable skills

Careers

Graduates of the B&E Option normally go on to careers in a wider variety of organizations, including sustainability and general consultancy, in-house sustainability units and start-up companies.



Read less
This postgraduate MSc Program is the result of the cooperation between the Diplomatic Academy of Vienna and the TU Wien. Over the last few years the importance of environmental issues and discussions has been increased on a local, regional and global level. Read more
This postgraduate MSc Program is the result of the cooperation between the Diplomatic Academy of Vienna and the TU Wien. Over the last few years the importance of environmental issues and discussions has been increased on a local, regional and global level. This puts new and increased demands on people being confronted with the political, juridical, technical as well as economic side of environmental questions.

The Master Program offers a solid base and enables graduates to deal with challenges in this field. Environmental issues have also become increasingly important and prominent in the field of project management. Also representatives of ministries and international organizations and NGO'S have to deal more and more with environmental questions. This MSc Program is designed to prepare the graduates to deal with international issues.

The combination of studying technical as well as international environmental issues and topics will prepare graduates either for a career as managers, engineers, politicians and diplomats or for employees in top positions who need to assess rationally and who take active part in realising, implementing and managing new standards.

Contents
The most important local, regional and global environmental topics will be analyzed from a juridical, economical, political and technical point of view. The Master program is intended to
familiarize post graduates with a wide range of various topics and subjects in order to be able to
deal with all aspects of environmental issues.

The focus of technical issues is the quality management of air and water, the management of resources and energy as well as all issues regarding climate and its development.
Additional subjects deal with and summon environmental policies, economical topics, and questions as well as legal issues.

Political Science and International Relation
International and European Law
International Economics
Contemporary History
Optional Courses
General Topics and Seminars in Environmental Technology
Surveillance and Sustainable Development
Air, Water and Waste
Environment and Technology
Master Thesis
Target Group

This MSc Program is intended on one hand for engineers wanting additional knowledge and education and on the other hand for people with an academic background venturing into this field.

Read less
The Pollution Management option focuses on the interface and interaction between science, technology, and policy in the environment. There is an emphasis on local issues, but these are inescapably set within the context of regional and global developments. Read more

The Pollution Management option focuses on the interface and interaction between science, technology, and policy in the environment. There is an emphasis on local issues, but these are inescapably set within the context of regional and global developments. We draw on best practice in the UK and Western Europe, applied not only here but also in Africa, the Middle East, Asia and the Americas.

Aims

In Western Europe and North America, many short-range pollution problems of past decades have been solved, but business and industry find themselves operating in an environment where the public and government demand ever more stringent environmental standards. Other parts of the world might be seen as following some way behind this trend and learning from it, including where examples of acute local and regional pollution remain in a context of a pressing need for rapid socio-economic development. Globalisation is an additional, external source of pressure on every nation to meet the highest environmental standards that are increasingly prevalent elsewhere. In many cases, however, developing countries have an opportunity to learn from our mistakes as well as our successes. In particular, the trend of the past was for environmental protection to be an expensive luxury. Today, it is possible to find a different and more efficient path to a better quality of life for everyone, now and in the future, by protecting the environment in a way that leads simultaneously to an increase in economic prosperity. There is therefore continued growth in demand for graduates with expertise in pollution management:

  • Within the UK and European Union
  • Working from the UK but exporting expertise to other parts of the world
  • World-wide, especially in the rapidly developing economies of Latin America, Africa, and Asia, and in Eastern European and Mediterranean regions having increasing levels of trade and political interaction with the European Union.

Responses to pollution at least must reassure the public it is safe, or allow adaptation to or protection from its effects. A better approach is to control concentrations of a pollutant in the environment, but the best solution is to prevent its formation in the first place.

Integrated Pollution, Prevention and Control is a major development in this area, pioneered in the UK and now led by the European Union, bringing together management, planning, and communication as well as end-of-pipe technological solutions. But this needs to mesh with other kinds of regulatory and voluntary initiatives, especially where non-industrial sources of pollution including transport and agriculture make an important contribution, in more and less developed countries alike.

Content

The Option is divided into six modules, covering all the major areas of environmental concern, and there is a significant interdisciplinary element throughout, reflecting the philosophy of the MSc as a whole. They should not be considered as stand-alone, but should be seen as a closely integrated whole:

Module Aims and Learning Outcomes

Environment and Health

  • To give the student a foundation in chemistry, microbiology and policy basics to understand aspects of environmental management and technology and their impact on health.
  • Describe the main chemical and biological processes important in the physical environment and environmental technology and parameters that define environmental quality.

Air Pollution and Climate Control

  • To familiarise students with how our incomplete but expanding scientific understanding of pollution is translated into policy and practice for Air Pollution & Climate Control management.
  • Be able to integrate understanding of atmospheric chemistry and physics together with biological implications and pollution control technology, with the application of Air Pollution modelling and monitoring for review and assessment of air quality & Climate.

Waste and Resource Management

  • To provide students with an introduction to policies that aim to manage human activities with a focus on waste management to prevent, reduce, or mitigate harmful effects on nature and natural resources.
  • Be able to understand the principal features of UK and EC environmental policies and appreciate from a management point of view the principal waste and resouce related problems today.

Environmental Decision Making and Tools

  • To introduce students to some of the most important policy tools and techniques to assist them in decision-making.
  • Be able to select and use certain management techniques and policy tools to support decision- making in environmental management and policy.

Environmental Pollution and Assessment

  • To enhance students' understanding of the pathways in the environment followed by pollutants from source to receptor
  • Be able to assess the physical and chemical processes involved in the progress of pollutants from source to receptor, and manage the impacts the pollutants may have on a range of receptors.

Water Technology and Pollution

  • To introduce the student to the various unit processes used in water and wastewater treatment, including underlying pollution theory and treatment technology.
  • Be able to describe the basic concepts of polluted water treatment technology and the selection of unit treatment processes.

Careers

The majority of the graduates enter environmental consultancy both in the UK and abroad usually within the risk assessment and contaminated land areas. A second path of graduates is to regulatory agencies/government bodies such as the Environment Agency of England & Wales and the Department of Environment, Food & Rural Affairs. Other paths have included further study, the retail sector and banking. To date, the Option has had an excellent track record of employment with over 90% of graduates employed within 12 months of completing the MSc.

 • PhD, Technical University of Athens

• Projects Manager, British Council, Brazil

• Environmental Health Officer, London Borough of Newham

• Assistant Director, Science & Technology Division, Ministry of Science, Technology and the Environment Malaysia

• Field Engineer, Schlumberger (Angola)

• Senior Consultant, Arthur D. Little

• General Director, Environmental Management, Environment Ministry, Mexico

• Partner and Director of UK Environmental Services, Price Waterhouse Coopers

• Technical Director, Stanger Science & Technology

• Senior Lecturer, Roehampton University

• Quality Control Engineer, Chiyoda Corporation, Doha, Qatar

• Head of Environmental Audit, Body Shop International

• Head of Solid Waste Control, Hong Kong Environmental Protection Department



Read less
From air pollution to the spread of vector-borne diseases, changes in our environment can have profound repercussions for human health. Read more

From air pollution to the spread of vector-borne diseases, changes in our environment can have profound repercussions for human health.

The Health and the Global Environment Option of the MSc Environmental Technology is offered in collaboration with a highly qualified network of practitioners encompassing Imperial’s Centre for Environmental Policy, School of Public Health, the MRC-PHE Centre for Environment and Health, and the Grantham Institute - Climate Change and the Environment. The option focusses on building students’ knowledge and understanding of the key issues that link human and environmental health.  

This is a highly dynamic and stimulating environment in which to study, where you will interact with a range of academics, staff scientists and policy analysts working on the most pressing environmental and health issues both locally and globally. 

Context

Human health is fundamentally linked to our environment. Environmental factors contribute significantly to the global disease burden, with an estimated 25% of death and disease globally linked to environmental hazards. In developing contexts, this figure can be much higher, reaching 35% in regions such as sub-Saharan Africa.

Crucially, many of these hazards are created or exacerbated by human activities, so managing health for the environment and the environment for health is a growing priority on the environment, public and global health agendas.

Content

The Health and the Global Environment Option is designed to develop students’ knowledge and understanding of the key issues in environment and health. The emphasis throughout the course is on the understanding of the principles of exposure assessment, epidemiology, toxicology, health risk assessment and health protection, and their application in the field of environment and health, including:

  • field sampling and laboratory analysis for direct determination of contaminants within environmental systems;
  • practical experience of the use of key methods to assess environmental impacts on health;
  • exposure to major global public health challenges, and the stakeholders involved in tackling these issues.

The Option content covers four main themes:

Theme 1: Managing the Environment for Health

Considers the causes of environmental perturbation, its impacts on health, and approaches to resource management that may benefit health in a global context.

Theme 2: Environmental Decision-Making and Tools

Introduces important policy tools and techniques to assist in robust and transparent decision-making.

Theme 3: Quantifying Exposure and Health Impacts

Develops understanding of the principles and tools for qualitatively and/or quantitatively characterising health risks and impacts related to environmental sources.

Theme 4: Health and the Global Environment

Introduces key concepts in global health and global environmental change, their interactions and impacts, and identifies opportunities for co-management.


Fieldwork

Students complete two assessed pieces of coursework. The first is undertaken in collaboration with the Environmental Analysis & Assessment and Water Management options of the MSc, and provides a "real-world" case study looking at contaminated land and water on Hounslow Heath, near Heathrow Airport, in close collaboration with the London Borough of Hounslow Council.

The other is a client-based case study specific to the Health and Global Environment option, and provides the opportunity for students to apply their developing knowledge to an emerging problem within the field of health and the global environment. These projects vary from year to year, with past topics and clients including:

  • Waste Electrical and Electronic Equipment and Health (International Solid Waste Association)
  • Public health and environmental issues associated with shale gas extraction (Public Health England)
  • Evaluating the effectiveness of current heat wave interventions (Committee on Climate Change)

Careers

The ultimate aim of the Health and Global Environment option is to prepare students for employment in consultancies, regulatory agencies, industry, research or non-governmental organisations where a systems-based understanding of environment and health issues is vital. Our alumni have found employment in government departments, consultancies, universities and NGOs.

“The experience I gained while studying the Health and Global Environment option really advantaged me in my career as a Health Impact Assessment consultant. Understanding the key concepts relating to topics covered such as epidemiology and exposure assessment is vital when linking health with planning. Although my focus is in the UK, one of the major benefits of the option is that it covers public health issues and management techniques in both the developed and developing world, giving students the opportunity to work anywhere.” Tara Barratt, Assistant Consultant, RPS Planning & Development

"The main strength of the health option is the opportunity to meet people from a wide variety of professions who lecture on different topics within the course. This brings the real world into the class room, giving the theory a more practical element. I am now a research associate in Occupational Health at the University of Birmingham and my knowledge of the industry from talking to visiting lecturers gives me extra confidence when talking to others at company meetings." Joanna Pope, University of Birmingham

"The whole health option course provided me with a sound knowledge of the broad area of health and the environment. Specifically, the training I received in the principles of exposure assessment, toxicology and epidemiology served me excellently in my summer project, which I undertook in Romania. The generic project skills which I learnt throughout the duration of the course have given me the resources to draw upon as a freelance environmental consultant." James Grellier, Environmental Resources Management (ERM) Ltd



Read less
The Global Environmental Change and Policy course focuses on 4 key questions. What are the nature and causes of global environmental change (GEC)?. Read more

The Global Environmental Change and Policy course focuses on 4 key questions:

  • What are the nature and causes of global environmental change (GEC)?
  • What do we know and not know about GEC - and why?
  • What are the biological, physico-chemical and human implications of GEC?
  • What can and should be done about mitigating and adapting to GEC?

Structure and Objectives

By addressing those four questions the overall aim of the course is to provide students with a comprehensive and broad understanding of the scientific, legal and policy concerns informing the GEC field, and to guide students towards applying, independently, the necessary tools to address GEC questions, analytically and critically. This is done through small group seminars, lectures and case studies arranged into four main strands:

Strand I - Climate Change Science, Environmental and Health Impacts and Adaptation 

This strand explores the analysis and prediction of change in the earth's physical and chemical systems and their impact based on scientific evidence. Sessions include analysis, prediction and impact of changes such as climate change and acidification in the atmosphere, oceans, the water cycle and global land cover and use. In light of the projections of scientific bodies such as the UN Intergovernmental Panel on Climate Change (IPCC), students become acquainted with different global warming scenarios and their likely impact on water management, vegetation, soil, health and other relevant sectors, and the correlated adaptation policies required in different parts of the globe in order to manage environmental change. It also addresses specific adaptation policies necessary in areas that are most likely to be affected by climate change, such as in Africa.

Strand II – Climate Change Mitigation, Business Strategies and Innovation

This strand focuses on climate change mitigation (non-LULUCF) and related business strategies and the development of technologies in the transition towards a low-carbon economy. A number of greenhouse gas mitigation and alternative energy policies – including renewable energy deployment and Carbon Capture and Storage (CCS) - are selected for analysis. It examines the social and economic causes of the environmental changes with respect to population, urbanisation, energy policy, and pollution and addresses the policy options to mitigate climate change. It includes a study of international and regional schemes, carbon markets and alternative policies such as carbon or fuel taxes. In addition, this strand assesses the broader question of quantifying the costs and benefits of mitigation and adaptation in light of the developmental priorities of different regions of the globe, as well as possible business solutions towards low carbon economic growth.

Strand III – Biodiversity, Land Use Change and Forestry, and Conservation Strategies

This strand explores biodiversity loss, conservation strategies, the monitoring and prediction of change in the earth's ecosystems and their response to a range of environmental changes including climate change, and the impact of these changes on humans, ecosystems and the management of natural resources. The different mechanisms proposed or already applied to protect biodiversity broadly and in relation to climate change are covered in this part of the course. Among other things, we may critique mitigation policies applicable to the agricultural sector and look at the sustainability of biofuels as cleaner sources of energy.

Strand IV – Law and Governance 

The strand draws together some of the issues outlined above. The role of international law and policy in developing innovative solutions for global environmental problems, such as climate change and biodiversity loss, is emphasised. It addresses the law and politics behind the negotiation of, inter alia, global climate change agreements, the international framework for climate change, environmental governance, examines the role of compliance and monitoring, asks bigger philosophical questions related to rights, equity and justice in an environmental context and looks at the fundamental principles and norms of the international environmental law regime and their utility in going forwards. 

Learning and Teaching

The course structure, individual seminars and activities are designed to enable each student to attain the following:

Understanding of:

  • the current state of knowledge about GEC and the uncertainties surrounding it;
  • the similarities and differences between the problems raised by GEC and other environmental problems;
  • the key processes, drivers and interrelationships involved;
  • the principal impacts of GEC on natural and human systems; and the principal ethical, legal and socio-economic issues raised;
  • particular problems faced by developing countries;
  • interregional and regional institutional mechanisms and scientific organisations;
  • the social, economic and environmental objectives for the global environment.

Skills in:

  • the analysis of the global dimension of environmental problems, and the extent to which GEC raises distinctive challenges;
  • the location, handling, critical evaluation, interpretation and analysis of GECP information;
  • the application and appraisal of selected analytical techniques;
  • the design and execution of a GEC-related project; communicating clear, unambiguous information, evidence or advice.

Capabilities in:

  • applying global perspectives to complex environmental problems; 
  • analysing the key drivers of GEC and their interrelationships;
  • developing independent judgement in relation to GEC-related issues and evidence;
  • participating in the formulation, implementation or evaluation of GEC-related policies;
  • participating effectively in competent consultancy or advisory work.

Coursework

Understanding, skills and capabilities are developed and assessed through active participation in coursework which comprises research and presentation, negotiation and conflict management and a panel group exercise. Panel Meetings run throughout the option term. The aims of these sessions are to establish and coordinate research, discussion, presentation and negotiation in respect of selected global environmental change issues, leading ultimately to the formal conclusion or agreed policy and scientific statement on one or more aspects of GECP.

Examples of GECP Student Destinations

  • UK Department for Business, Energy and Innovation
  • Greenstone
  • Royal Borough of Greenwich
  •  Natural Capital Partners
  • ERM
  • ShareAction
  • Ricardo Energy & Environment
  • UK Department for Transport
  • PwC


Read less
The human race is entirely dependent on the ecosystems that feed us, regulate our environment and recycle our wastes. They provide all we need to survive and thrive. Read more

The human race is entirely dependent on the ecosystems that feed us, regulate our environment and recycle our wastes. They provide all we need to survive and thrive. Over the past 100 years, humans have changed ecosystems more rapidly and extensively than in any comparable period in history. There have been net gains in human well-being and economic development, but these gains have been achieved at growing cost in the form of environmental degradation, loss of biodiversity and depletion of natural capital.

Many options exist to reverse ecosystem degradation, but an understanding of the ecological systems and science is just a starting point. Understanding how the science interacts with policies, institutions, and practices is vital to achieve real change.

The Environmental Resource Management* option is designed to provide students with a thorough understanding of how ecological principles can be applied to the management and conservation of natural resources and ecosystems, as well as practical skills and techniques.

Throughout the option emphasis is placed on how best to inform management and conservation decisions using tools that range from geographical mapping software and biodiversity appraisal to life cycle analysis. The important influence of institutional arrangements and economic forces on resource use and management decisions is also a key theme.

Practical applications of ecological, institutional and economic concepts are illustrated by case studies, practical sessions, seminars and workshops. These are augmented by field trips and frequent contact with outside organisations responsible for environmental management. The option draws on a wide range of speakers with first-hand experience of environmental and ecological management in both the developed and developing world.

 Students graduating from this option will be well placed to make informed decisions relating to real-world problems and able to identify and evaluate practical management options.

Aim

To equip students with the interdisciplinary knowledge and skills to embark on a career in natural resource management and to engage and interact with professionals in these disciplines.

Objectives

  • To provide students from natural science, engineering, social science and other backgrounds with a broad understanding of issues, methods and underpinning philosophies in contemporary natural resource and ecosystem management.
  • To produce graduates capable of combining the scientific, economic and policy aspects of resource management and conservation, so that they can draw conclusions of strategic significance for governments, companies and NGOs.

Structure

Four main themes run through the option:

Theme 1: Understanding natural resource systems and human interactions

Explores renewable resource systems that are critical to human survival, ecosystem functioning and conservation. Focussing on specific examples we examine how these systems function and investigate the scientific, policy and practical issues involved in their management. Dedicated lectures and case studies include fisheries management, sustainable agriculture, conservation and management of wildlife populations.

Theme 2: Management tools and applications

Introduces and provides practical experience of some of the key tools and techniques used by environmental management professionals, including life cycle assessment, GIS, participatory appraisal and citizen science. Applications of these tools include gathering data, structuring and analysing problems, and communicate insights.

Theme 3: Policy, Assessment and Law

Informing the design of better policy is the objective of a great deal of research in understanding ecosystem processes and responses. Many conservation and resource management initiatives are also underpinned or impeded by legislation. This theme examines the interaction between policy processes, the legal system and conservation objectives. Key aspects of the national, European and international legal system and the role played by international law in the protection of the environment are identified. Regulatory instruments including Environmental Impact Assessment and Strategic Environmental Assessment are also examined.

Theme 4: Management in Practice

Based around the fieldtrips and case-studies provided by external speakers and ecological management professional, this theme provides an opportunity to engage with professional working in the field and better understand what happens when theory and ideology meets practical barriers and resource constraints. Visits include forest management; farming and wildlife management, heathland management, ancient woodland and grazed pasture, ecosystem rehabilitation and wetland creation. Though these visits we explore the role of wildlife trusts in local conservation, the role of volunteers in managing sites of scientific interest, and the role of estate management in sustainable agriculture.

Careers

The Environmental Resource Management option (formerly called Ecological Management) has been running since 1978 and has more than 480 Alumni that can be found throughout all levels of Government, Industry, International agencies, Consultancy and NGOs.

Graduates are excellently placed to gain employment in a wide range of organizations dealing with natural resources, conservation and international development. Over 80% of graduates gain employment in the environmental field within months of graduating.

Common destinations include consultancy, NGOs, international organisations and government. Recent destinations include:

  • Operations Leader - Conservation Volunteers (a UK NGO)
  • Research Officer at Centre for International Forestry Research (CIFOR)
  • Senior Program Officer, Environment and Climate Change at International Council on Mining and Metals – ICMM
  • R&D Consultant – Energy Management Systems – Total
  • Analyst, Deloitte Sustainability, Australia
  • Researcher at British Antarctic Survey
  • PhD Student - ETH Zurich
  • Programme Officer, Business and Biodiversity at UNEP-WCMC
  • Carbon monitoring officer – a London borough council


Read less
The EEP option is designed for students from all backgrounds with an interest in environmental economics and public policy. Read more

The EEP option is designed for students from all backgrounds with an interest in environmental economics and public policy.

It provides students with an ability to employ economic reasoning and an understanding of the importance of institutions and policy processes to the analysis of a broad range of national and international policy issues such as biodiversity protection, climate change, poverty/environment linkages and the management of renewable resources; an awareness of the institutional and policy context in which environmental economic solutions might be applied; working knowledge of a wide range of economic tools and project and policy evaluation methods; and a sound but critical understanding of environmental economics as a discipline including knowledge of the different paradigms of analysis in the field.

Aims

Environmental economics is now an indispensable part of the education of anyone dealing with environmental issues. As one of the fastest growing areas of research and study, its influence over environmental policymaking and practice is already widely recognised. For example, it has become commonplace to speak about green taxes, carbon trading mechanisms, environmental valuation and incentive design for sustainable development.

What are the underlying causes of tropical deforestation? How rapidly should we take action to deal with global warming? What is the most efficient way to tackle air pollution? Are consumers willing to pay more for cleaner fuels and technologies? These are some of the questions which environmental economics attempts to address, pointing to the need to link individual choices and patterns of behaviour to the underlying structure of the economy and its institutions. A central insight is that environmental degradation, far from being an incidental consequence of economic activity, is in many ways a central feature of the way production and consumption is currently organised. Economists are uniquely well placed to comment on, and offer analysis of, these linkages. At the same time, economists argue that solutions require systematic changes to the economic incentives which drive human behaviour in these domains, bringing about the shifts in production and consumption that are necessary for sustainable development.

The demand for individuals with a good grounding in environmental economics continues to grow. There are promising career opportunities in government, industry, consultancy and research for people able to apply economic ideas, concepts and methodologies to environmental problem-solving and policymaking. In drawing up this new Option, we have been concerned to offer a course which will educate and inspire individuals interested in a career in these fields. It aims to provide a broad but integrated survey of environmental economics as a field of study and assist students in developing an ability to think about and analyse environmental problems in economically-literate terms. By the conclusion of the course, students will have a sound understanding of the economic and institutional context for environmental policymaking and will be able to apply economic concepts to understanding, and prescribing solutions for, a wide range of environmental problems

Content

The Option has been designed for students from all backgrounds with an interest in environmental economics and its applications. In terms of structure, it is divided into eleven thematic modules covering basic theory, tools and a range of applications:

Concepts: Initial lectures and small group sessions focus on the microeconomic foundations of environmental economics, looking at market processes and market failure, the theory of externalities and the concepts of public goods and open property resources.

Tools: The Option then goes on to examine the use of a range of economic tools and introduces students to some key techniques for data analysis. Topics covered in these modules include the design and implementation of market-based instruments, project appraisal and environmental valuation and the use of sustainable development indicators and green accounting. Students also receive training in quantitative and qualitative data analysis and in international environmental law.

Applications: The final set of teaching modules applies these economic concepts and tools to a series of environmental case studies in the fields of:

  • global environmental change (including climate change, biodiversity conservation, biosecurity and transboundary air pollution)
  • renewable resource management (such as managing fisheries and other living populations, renewable energy technologies and markets, and the role of innovation)
  • agriculture (focusing on the environmental impact of agriculture, agri-environmental policy and the effect of trade liberalisation)
  • development (covering issues of poverty and environment, tropical deforestation, human health and environment, GM and biotechnology, and the role of technical progress)

An essential feature of the Option, complementing, integrating and applying this lecture material, is small group project work. This is designed to develop a wide range of technical and analytical skills (project evaluation, data analysis, environmental valuation) and also organisational and communication skills (technical writing, oral presentations, team work). Finally, there is a series of specialist talks and seminars running through the term, in which invited speakers working in policymaking, industry and research give presentations on environmental economic and policy issues in the news.

Careers

There are excellent career opportunities for graduates who can combine training in environmental economics, good policy knowledge, proficiency in quantitative and qualitative methods and an ability to develop applications. Graduates from this Option are likely to find employment across a wide field, including environmental consultancy, advisory positions in commercial business and industry and careers as expert advisors in government, international institutions and environmental NGOs.



Read less
The aim of the Option is to provide graduates with the skills to enter a wide range of environmental careers, with particular emphasis on environmental consultancy and regulatory job markets. Read more

The aim of the Option is to provide graduates with the skills to enter a wide range of environmental careers, with particular emphasis on environmental consultancy and regulatory job markets. The Option is designed to train students in analysis and assessment methods applicable to environmental contamination problems.

The Environmental Analysis and Assessment (EAA) Option comprises lectures plus two practical case studies, each with a different technical emphasis.

 A large number of the lectures are from consultants, the regulators and industry professionals, many from alumni of the Option, providing the student with first-hand contact with live issues as well as the chance to discuss job opportunities with potential employers. 

The Option lectures are supported by a number of site visits plus a five-day study tour to provide practical underpinning of the Option material.

Aims

The EAA Option is designed to train students from diverse scientific and technical backgrounds in assessment methods applicable to environmental contamination and pollution problems.

The emphasis throughout the course is on the use of quantitative environmental assessment methodologies, including:

  • field sampling and laboratory analysis for direct determination of contaminant concentrations and distributions within environmental systems and;
  • predictive computer modelling techniques to assess the risks and impacts associated with either real or hypothetical contamination scenarios.

A thorough grounding in physical, chemical and biological processes of contaminant behaviour in the environment is provided as the basis for understanding the impacts of chemical contamination. This is strengthened by the introduction to, and use of, predictive modelling techniques for assessing risks and impacts associated with either real or hypothetical contamination scenarios.

To complement and enhance teaching of quantitative aspects of environmental assessment techniques, classical EIA and auditing methodologies are also an important course component.

After completion of the course the students should be able to:

  • understand the fundamental pathways and processes controlling the behaviour and fate of contaminants in environmental systems;
  • design suitable field sampling strategies for the assessment of contaminant distributions in the near-surface atmosphere, surface and ground waters and soils;
  • suggest appropriate sampling and analytical methods for inorganic and organic contaminants in different environmental media and to liaise effectively with analysts and laboratories specialising in the analysis of individual contaminating substances;
  • organise data sets obtained from field sampling and laboratory analytical studies and be able to configure these in a suitable format for higher level data analysis using a computer tool such as a Geographical Information System;
  • apply suitable computer models to evaluate critical pathways and processes of contaminant transport in the environment or to perform simulations of future impacts of contaminant releases from a variety of sources;
  • understand the legal and policy framework within which quantitative environmental assessment activities are carried out and to apply EIA and auditing methodologies where appropriate.

Module Aims and Learning Outcomes

Environment and Health

  • To give the student a foundation in science and policy basics to understand aspects of environmental management and technology and its impact on health.
  • Be able to explain the main chemical and biological processes important in the physical environment, the parameters that define environmental quality and its effect on health.

 Air Pollution and Climate Change

  • To familiarise students with how our incomplete but expanding scientific understanding of pollution is translated into policy and practice for Air Pollution & Climate Change management.
  • Be able to integrate understanding of atmospheric chemistry and physics together with biological implications and pollution control technology, with the application of Air Pollution modelling and monitoring for review and assessment of air quality & climate.

Waste and Resource Management

  • To provide students with an introduction to the legal, technical and practical issues involved in waste and resources management.
  • Be able to appreciate the principal features of legislation and policy relating to waste management and appreciate from a technical point of view the primary waste and resource management problems in the UK and European Union today.

Environmental Decision Making and Tools

  • To introduce students to some of the most important policy tools and techniques to assist them in decision-making.
  • Be able to select and use certain management techniques and policy tools to support decision- making in environmental management and policy.

Integrated Land Management

  • To provide students with an overview of problems, potential remedies and possible outcomes involved in holistic management of the environment.
  • Be able to assess environmental problems and environmental relationships in order to propose holistic solutions that maximise overall benefits and minimise adverse impacts.

Environmental Pollution and Assessment

  • To enhance students' understanding of the pollution pathways in the environment from source to receptor.
  • Be able to describe water recycling technologies and assess the physical and chemical processes involved in the progress of pollutants from source to receptor.

Careers

The majority of the graduates enter environmental consultancy both in the UK and abroad usually within the risk assessment and contaminated land areas, but this is not an exhaustive list. A second path of graduates is to regulatory agencies/government bodies such as the Environment Agency of England & Wales and the Department of Environment, Food & Rural Affairs. Other paths have included further study, the retail sector and banking. To date, the Option has had an excellent track record of employment with over 90% of graduates employed within 12 months of completing the MSc.

Fieldwork

One piece of fieldwork is undertaken in collaboration with the WM and Health and HGWEoptions of the MSc, and provides a "real-world" case study of contaminated land and water on Hounslow Heath, near Heathrow Airport, in close collaboration with Hounslow London Borough Council. The second piece of fieldwork is a waste management project in collaboration with Veolia Waste Management Services Ltd., providing an opportunity for students to work on a typical waste management problem.

At the end of the Option term the EAA students will spend a week on location at a city somewhere in the UK visiting a variety of industrial facilities, plants and operations.



Read less
The Energy Policy Option aims to produce graduates capable of combining the technical, environmental, economic, and legal and policy aspects of energy use and supply in tackling energy-related problems. Read more

The Energy Policy Option aims to produce graduates capable of combining the technical, environmental, economic, and legal and policy aspects of energy use and supply in tackling energy-related problems. Students from a wide range of backgrounds are given a broad understanding of the role of energy in the global and local economy, and the range of human and environmental impacts associated with energy systems.  

The course aims to foster a range of skills, incorporating an in depth appreciation of technical subjects and quantitative methods with a balanced approach to policy analysis and communication. The ability to produce clear, critical and authoritative analysis of technical, economic and policy issues is the key aim, making graduates sought-after energy analysts, consultants and campaigners in the private and public sectors.

Aims and Objectives

Energy plays a key role in most of the world’s environmental problems, from the global issue of climate change, through regional damage caused by acid rain, to poor local air quality. Energy markets throughout the world are evolving rapidly, with privatisation, competition, market structure and regulation all prominent issues in the UK, Europe and overseas. Resource depletion of fossil fuels, the role of renewable energy and social inequities such as fuel poverty are central issues for sustainable development. The influence of energy issues on international politics and security has come into sharp focus with conflicts affecting the Middle East and the former Soviet Union. The range of challenges for energy policy is diverse and exciting.

Option Aims 

  • To build on the foundations of the core course, by developing specialist knowledge of the energy field within a more general environmental framework
  • To inform and guide the choice of project for the third term
  • To provide students from natural science, engineering, social science and other backgrounds with a broad understanding of the role of energy in the global and local economy, and of the range of economic, human and environmental impacts associated with energy systems.
  • To develop a broad range of skills, incorporating an in depth appreciation of technical subjects and quantitative methods with a balanced approach to policy analysis and communication.
  • To produce graduates capable of combining the technical, economic and policy aspects of energy, so that they can draw conclusions of strategic significance in energy areas relating to corporate, government or non-government activity.

Option Objectives

At the conclusion of the course, students should be:

  • capable of developing policy analyses and recommendations in a broad range of areas across the energy sector
  • able to understand the legislative and regulatory frameworks which surround energy markets
  • able to apply their knowledge appropriately to energy issues in both developed and developing countries
  • able to conduct cost-benefit analyses of energy projects at different scales, and from different perspectives
  • capable of constructing simple energy models, and able to appreciate the possibilities and limitations of the modelling process
  • able to write clear, critical and authoritative reports, both on technical subjects and on policy issues
  • able confidently to present results orally, at a level appropriate to their audience

Option Content

The option is broadly divided into a series of modules: Policy, Assessment & Law; Energy Economics & Markets; Energy Use; Fossil Fuels & Nuclear Power; Renewable Energy; Energy & Development; Transport Energy; Energy Modelling. Some emphasis is placed on the future role of 'clean' and/or low carbon options, such as energy efficiency and renewable energy, but the intention is to equip graduates with a working knowledge of the full extent of the energy sector.

Teaching takes place through a mixture of lectures and seminars, workshops covering professional skills, analytical techniques and modelling methods, and small group project work. Short visits are made to a number of key energy facilities, and a week long fieldtrip is used to visit a wide range of renewable energy facilities. The group projects also foster team working, report writing and oral presentation skills, which are essential for many jobs.

The Option is taught by a wide range of specialists from both within and outside Imperial College: the current year has inputs from 29 people, including 14 external experts. External contributors include well-known figures from government, industry, specialist consultancies and NGOs (for example, British Petroleum, Price Waterhouse Coopers, Intermediate Technology Development Group).

The Option is associated with a highly successful research centre within the Department. The Imperial College Centre for Energy Policy and Technology (ICEPT), brings together energy related research and expertise from the full range of the College's science and technology departments with staff working in technology assessment, economics and policy. The Centre has strong links with industry, and is emerging as the key policy research and advisory group in the clean and low carbon energy field. The Centre's activities have tremendous spin-off benefits for the Option.

Track Record and Careers

The Energy Policy Option has been running for more than 20 years. Graduates can therefore be found throughout all levels of industry, government, international agencies, consultancy and NGOs. In specialist energy/environment consultancies it is not uncommon to find that a majority of the staff are Option graduates, ranging from the Director to the new junior consultant. The network of graduates is fostered through regular reunion dinners, and is used to great success in helping current students in their thesis projects and in finding employment - of benefit to both students and employers alike.

Thesis Collaborators

Recent examples of thesis collaborators include:

  • BP
  • Shell Renewables
  • Rolls Royce
  • Nokia
  • the Energy Saving Trust
  • Energy for Sustainable Development
  • Tata Energy Research Institute, India
  • Students have travelled in recent years on thesis fieldwork to Rodrigues (near Mauritius), Sri Lanka, Zambia, Nepal, Jordan, Colombia, the Ukraine and many countries within Europe.


Read less
The world is facing increasing environmental threats which are posing severe scientific, social and economic challenges to the human race. Read more

Overview

The world is facing increasing environmental threats which are posing severe scientific, social and economic challenges to the human race. These challenges include: the depletion of natural resources, the loss of diversity and the need to develop new forms of energy generation whilst efficiently utilising existing energy sources.
Tackling these environmental problems and establishing a sustainable environment requires the adoption of appropriate policies and managerial strategies. The interdisciplinary nature of this postgraduate course provides a broad understanding of these environmental problems whilst embedding the appropriate specialist scientific, managerial and generic skills for a career in the environmental sustainability sector.
The course incorporates Keele University’s internationally recognised expertise in research and teaching on environmental issues. It is taught by a team of environmental specialists working in the fields of environmental technologies, biological sciences, chemical science, project management, and environmental policy and politics.

See the website https://www.keele.ac.uk/pgtcourses/environmentalsustainabilityandgreentechnology/

Keele University Sustainability Hub

Keele University’s campus has unrivalled potential to form a unique hub for research, development and demonstration of a range of environmental and sustainable technologies.

The Keele Sustainability Hub site contains both academic buildings and buildings for technological companies. Renewable energy sources are integrated into these buildings, incorporating:
- Solar thermal
- Solar PV
- Climate control and underfloor heating
- Smart lighting systems
- Rainwater harvesting
- Ground source heat
- Bio-fuel woodchip burner
- Wind turbine

The main focus of the site is the specialist Hub for Sustainability building. The Sustainability Hub acts as a focus for the research into, teaching of, and management of sustainability and green technology that takes place at Keele University. It’s a means to bring all these different activities together and then to communicate the innovations and implications out to the rest of campus, schools, businesses and the wider community.

As a student on the MSc in Environmental Sustainability & Green Technology programme a lot of your teaching will take place at the Hub, and you’ll have direct access to these environmental developments first hand. The students use the Hub and its facilities as their base - a place to meet and to study - during their year at Keele.

Course Aims

The MSc in Environmental Sustainability and Green Technology is designed to provide an interdisciplinary understanding of environmental challenges whilst giving the opportunity to specialise in several sustainability themes related to geosciences, energy generation, biological science, green information technology, environmental policy and politics, and project management.

Successful students will gain
- An understanding of knowledge in the areas of science, technology, policy and green political theory relevant to environmental sustainability

- Experience in analytical and computer techniques which would allow them to contribute to the solving of environmental challenges

- A conceptual understanding to evaluate critically current research and advance scholarship in environmental sustainability

- A comprehensive understanding of experimental design, planning and scientific techniques within a research project

- Problem-solving and team-working skills relevant to the implementation of sustainable technologies and policies

Course Content

The MSc programme comprises 8 taught 15-credit modules and a 60-credit research project which is undertaken either at Keele University or on placement with an industrial collaborator.

This structure allows students to obtain a postgraduate certificate (60 credits) or a postgraduate diploma (120 credits) depending on the number of modules studied.

The first two modules provide an overview of important environmental technologies and policies relevant to sustainability. Students then choose four from ten optional modules which are arranged within four themes:
- Renewable and Sustainable Energy
- Biological Challenges and Sustainability
- Environmental Politics
- Policy and Project Management

Cross theme studies are encouraged. This interdisciplinary knowledge is then applied in a student-centred learning situation. This provides the necessary teamwork and problem-solving skills to formulate strategies to address a range of environmental and sustainability challenges.

The 60-credit research project is preceded by a Research Skills module.

Teaching & Assessment

Modules are assessed by assignment and/or examination. The research project is based on the submission of a 15 - 20,000 word report that is undertaken by the student in conjunction with an academic supervisor and, where appropriate, an industrial collaborator.

Field course costs

There will be no charge to new students taking field courses. The School receives an annual financial contribution from the University to support the cost of the field course programme. Therefore field course costs for new postgraduate students will be paid for by the University.

Employment Case Studies

Our unique inter-disciplinary course leads our graduates into a diverse range of careers.

Our students have chosen careers in research; in local, regional and national government; multi-national corporations; environmental consultancies and charities.

For examples of what graduates are doing now, see here - https://www.keele.ac.uk/gge/applicants/postgraduatetaughtcourses/msc-esgt/employmentcasestudies/

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less

Show 10 15 30 per page



Cookie Policy    X