• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
De Montfort University Featured Masters Courses
Coventry University Featured Masters Courses
University of St Andrews Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of London International Programmes Featured Masters Courses
"environmental" AND "info…×
0 miles

Masters Degrees (Environmental Informatics)

  • "environmental" AND "informatics" ×
  • clear all
Showing 1 to 15 of 53
Order by 
The MSc in Environmental Informatics aims to provide students with a multi-disciplinary education and training in geographical information systems in the context of environmental science, enabling them to gain employment in public/private agencies/ businesses that deal with the sustainable management of natural resources(including conservation, planning, and environmental management). Read more
The MSc in Environmental Informatics aims to provide students with a multi-disciplinary education and training in geographical information systems in the context of environmental science, enabling them to gain employment in public/private agencies/ businesses that deal with the sustainable management of natural resources(including conservation, planning, and environmental management).

Core Modules:
Introduction to GIS
Research Design and Methods in Geography
Geographic Visualisation
Theories, Concepts and Applications of Sustainable Development
Dissertation

Optional Modules:
Programming for Spatial Scientists
Spatial Information Science
Earth Observation and Remote Sensing
Environment, Space and Society
Global Climate and Environmental Change
Biodiversity Conservation and Global Change: Tropical East Africa (Kenya field trip)
Environmental Economics
Sustainable Management of Biological Resources

Read less
Life Sciences is one of the strategic research fields at the University of Helsinki. The multidisciplinary Master’s Programme in Life Science Informatics (LSI) integrates research excellence and research infrastructures in the Helsinki Institute of Life Sciences (HiLIFE). Read more
Life Sciences is one of the strategic research fields at the University of Helsinki. The multidisciplinary Master’s Programme in Life Science Informatics (LSI) integrates research excellence and research infrastructures in the Helsinki Institute of Life Sciences (HiLIFE). As a student, you will gain access to active research communities on three campuses: Kumpula, Viikki, and Meilahti. The unique combination of study opportunities tailored from the offering of the three campuses provides an attractive educational profile. The LSI programme is designed for students with a background in mathematics, computer science and statistics, as well as for students with these disciplines as a minor in their bachelor’s degree, with their major being, for example, ecology, evolutionary biology or genetics.

As a graduate of the LSI programme you will:
-Have first class knowledge and capabilities for a career in life science research and in expert duties in the public and private sectors.
-Competence to work as a member of a group of experts.
-Have understanding of the regulatory and ethical aspects of scientific research.
-Have excellent communication and interpersonal skills for employment in an international and interdisciplinary professional setting.
-Understand the general principles of mathematical modelling, computational, probabilistic and statistical analysis of biological data, and be an expert in one specific specialisation area of the LSI programme.
-Understand the logical reasoning behind experimental sciences and be able to critically assess research-based information.
-Have mastered scientific research, making systematic use of investigation or experimentation to discover new knowledge.
-Have the ability to report results in a clear and understandable manner for different target groups.
-Have good opportunities to continue your studies for a doctoral degree.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The Life Science Informatics Master’s Programme has six specialisation areas, each anchored in its own research group or groups.

Algorithmic Bioinformatics
Goes with the Genome-scale algorithmics, Combinatorial Pattern Matching, and Practical Algorithms and Data Structures on Strings research groups. This specialisation area educates you to be an algorithm expert who can turn biological questions into appropriate challenges for computational data analysis. In addition to the tailored algorithm studies for analysing molecular biology measurement data, the curriculum includes general algorithm and machine learning studies offered by the Master's Programmes in Computer Science and Data Science.

Applied Bioinformatics
Jointly with The Institute of Biotechnology and genetics. Bioinformatics has become an integral part of biological research, where innovative computational approaches are often required to achieve high-impact findings in an increasingly data-dense environment. Studies in applied bioinformatics prepare you for a post as a bioinformatics expert in a genomics research lab, working with processing, analysing and interpreting Next-Generation Sequencing (NGS) data, and working with integrated analysis of genomic and other biological data, and population genetics.

Biomathematics
With the Biomathematics research group, focusing on mathematical modelling and analysis of biological phenomena and processes. The research covers a wide spectrum of topics ranging from problems at the molecular level to the structure of populations. To tackle these problems, the research group uses a variety of modelling approaches, most importantly ordinary and partial differential equations, integral equations and stochastic processes. A successful analysis of the models requires the study of pure research in, for instance, the theory of infinite dimensional dynamical systems; such research is also carried out by the group.

Biostatistics and Bioinformatics
Offered jointly by the statistics curriculum, the Master´s Programme in Mathematics and Statistics and the research groups Statistical and Translational Genetics, Computational Genomics and Computational Systems Medicine in FIMM. Topics and themes include statistical, especially Bayesian methodologies for the life sciences, with research focusing on modelling and analysis of biological phenomena and processes. The research covers a wide spectrum of collaborative topics in various biomedical disciplines. In particular, research and teaching address questions of population genetics, phylogenetic inference, genome-wide association studies and epidemiology of complex diseases.

Eco-evolutionary Informatics
With ecology and evolutionary biology, in which several researchers and teachers have a background in mathematics, statistics and computer science. Ecology studies the distribution and abundance of species, and their interactions with other species and the environment. Evolutionary biology studies processes supporting biodiversity on different levels from genes to populations and ecosystems. These sciences have a key role in responding to global environmental challenges. Mathematical and statistical modelling, computer science and bioinformatics have an important role in research and teaching.

Systems Biology and Medicine
With the Genome-scale Biology Research Program in Biomedicum. The focus is to understand and find effective means to overcome drug resistance in cancers. The approach is to use systems biology, i.e., integration of large and complex molecular and clinical data (big data) from cancer patients with computational methods and wet lab experiments, to identify efficient patient-specific therapeutic targets. Particular interest is focused on developing and applying machine learning based methods that enable integration of various types of molecular data (DNA, RNA, proteomics, etc.) to clinical information.

Selection of the Major

During the first Autumn semester, each specialisation area gives you an introductory course. At the beginning of the Spring semester you are assumed to have decided your study direction.

Programme Structure

Studies amount to 120 credits (ECTS), which can be completed in two years according to a personal study plan.
-60 credits of advanced studies from the specialisation area, including a Master’s thesis, 30 credits.
-60 credits of other studies chosen from the programme or from other programmes (e.g. computer science, mathematics and statistics, genetics, ecology and evolutionary biology).

Internationalization

The Life Science Informatics MSc is an international programme, with international students and an international research environment. The researchers and professors in the programme are internationally recognized for their research. A significant fraction of the teaching and research staff is international.

As a student you can participate in an international student exchange programme, which offers the possibility to include international experience as part of your degree. Life Science Informatics itself is an international field and graduates can find employment in any country.

In the programme, all courses are given in English. Although the Helsinki region is very international and English is widely spoken, you can also take courses to learn Finnish via the University of Helsinki’s Language Centre’s Finnish courses. The Language Centre also offers an extensive programme of foreign language courses for those interested in learning new languages.

Read less
Join one of the world's most dynamic and interesting industries and become a professional who is in demand across all sectors of the economy in Australia and overseas. Read more
Join one of the world's most dynamic and interesting industries and become a professional who is in demand across all sectors of the economy in Australia and overseas.

Get the edge

Business informatics is a specialist area of IT that combines information technology, management and business.
Advancing your skills and knowledge with our Master of Information Technology (Business Informatics) program will give you the edge on other graduates embarking on a career in this exciting field.

Who is this course for?

This course is for graduates from Information Technology, Computer Science or related fields who wish to further their knowledge and skills in this specialist area.

Course learning outcomes

JCU graduates are committed to lifelong learning, intellectual development, and to the display of exemplary personal, professional and ethical standards. They have a sense of their place in the tropics and are charged with professional, community, and environmental responsibility. JCU graduates appreciate the need to embrace and be acquainted with the Aboriginal and Torres Strait Islander Peoples of Australia. They are committed to reconciliation, diversity and sustainability. They exhibit a willingness to lead and to contribute to the intellectual, environmental, cultural, economic and social challenges of regional, national, and international communities of the tropics.
In the context of a JCU graduate on successful completion of the Master of Information Technology graduates will be able to:
*Critically analyse to select appropriate tools and technologies to meet project requirements
*Evaluate industry standard contexts for project management approaches
*Apply lateral and original thinking to conceptualise and evaluate a range of solutions to relevant problems
*Demonstrate the ability to conduct their research in an ethical manner
*Advance knowledge of technologies and networking methods at both area networks and Internet level
*Critically evaluate legal and ethical issues including scope of liability and digital rights management
*Apply lateral and original thinking to conceptualise and evaluate a range of solutions to relevant problems
*Communicate technical information clearly through presentations, demonstrations and documentation
*Apply appropriate tools and technologies to meet project managements
*Use independent judgment to synthesise information to make intellectual and/or creative advances
*Critically reflect on progress to tailor self-learning goals to advance professional development.

Award title

MASTER OF INFORMATION TECHNOLOGY (MInfTech)

Entry requirements (Additional)

English band level 1 - the minimum English Language test scores you need are:
*Academic IELTS – 6.0 (no component lower than 5.5), OR
*TOEFL – 550 (plus minimum Test of Written English score of 4.0), OR
*TOEFL (internet based) – 79 (minimum writing score of 19), OR
*Pearson (PTE Academic) - 57

If you meet the academic requirements for a course, but not the minimum English requirements, you will be given the opportunity to take an English program to improve your skills in addition to an offer to study a degree at JCU. The JCU degree offer will be conditional upon the student gaining a certain grade in their English program. This combination of courses is called a packaged offer.
JCU’s English language provider is Union Institute of Languages (UIL). UIL have teaching centres on both the Townsville and Cairns campuses.

Minimum English language proficiency requirements

Applicants of non-English speaking backgrounds must meet the English language proficiency requirements of Band 1 – Schedule II of the JCU Admissions Policy.

Why JCU?

James Cook University’s professional programs are internationally recognised and teaching staff are often research leaders in their fields.

Application deadlines

*1st February for commencement in semester one (February)
*1st July for commencement in semester two (mid-year/July)

Read less
The MSc Climate Change. Read more
The MSc Climate Change: Environment, Science and Policy programme (please see separate description for the MA programme) enables those with degrees in geography, physical sciences, engineering, computer science, etc., to focus on specific issues relating to climate and other environmental change in the Earth system, in particular on anthropogenic influences on the terrestrial, hydrological and atmospheric environments.

Key benefits

- To expose students to current understanding of the processes and nature of environmental changes occurring in Earth’s terrestrial, hydrological and atmospheric environments, to understand the linkages and causes of these forcings, and to allow them to place this knowledge within the context of our understanding of both natural variability and Earth’s history of environmental changes over the period of human societies and before.

- To expose students to the methods used to examine the potential future consequences of current environmental changes, and the potential for future significant perturbations to the Earth environment, including changes to the carbon cycle, climate, to the planet’s hydrological regimes and to its land use and land cover.

- To enable students to evaluate environmental change research critically and with regard to the strengths and weaknesses and potential societal implications of the science.

- To allow students to develop research skills in the undertaking and presentation of environmental research, and to develop specialist skills in one or more of the research tools used to investigate such issues.

- To provide an understanding of the scientific evidence needed for policy makers and society to respond to the problems associated with global and regional environmental changes happening to the Earth system, and to understand the nature of the uncertainties involved in future predictions.

- To promote initiative and the exercise of independent critical judgement in identifying, analysing and providing answers to research questions at an advanced level.

- To develop relevant transferable skills embedded in the learning and assessment schemes in the programme.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/climate-change-environment-science-and-policy-msc.aspx

Course detail

- Description -

This programme provides a focus on specific issues relating to climate and other environmental change in the Earth system, and in particular on anthropogenic influences on the terrestrial, hydrological and atmospheric environments, and their biological, physical and societal consequences. The course exposes you to:

(i) current understanding of the processes and nature of environmental changes occurring in Earth’s terrestrial, hydrological and atmospheric environments, to understand the linkages and causes of these forcings, and to allow them to place this knowledge within the context of our understanding of both natural variability and Earth’s history of environmental changes over the period of human societies and before; and

(ii) the methods used to examine the potential future consequences of current environmental changes, and the potential for future significant perturbations to the Earth environment, including changes to the carbon cycle, climate, to the planet’s hydrological regimes and to its land use and land cover.

Students following the programme can opt for either the Policy Pathway or the Science Pathway.

Part-time students: As part of your two-year schedule, plan to take the compulsory modules Methods for Environmental Research and Global Environmental Change 1 in your first year and Dissertation in your second year.

- Course format and assessment -

Compulsory taught modules are assessed by coursework-based methods (essays, presentations, practical writeups, online quizzes). Optional modules are assessed by coursework and occasionally by examination. The three-month written research dissertation is core and is based upon work conducted overseas or in the UK.

Career prospects

This MSc is designed to prepare you for a career in environmental change research, consultancy and/or policy development. It provides interdisciplinary research training for those going onto a PhD in environmental and/or Earth system science within King's or elsewhere, and students entering the job market immediately after graduation are expected to be highly marketable in three main areas: local and national governmental and non-governmental agencies (eg Environment Agency, County Councils, Nature Conservancies); environmental consultancies and businesses (eg environmental informatics providers; environmental businesses - including carbon trading; insurance; waste management and energy industries), and policy development organisations (eg such government departments as Defra). The Seminars in Environmental Research, Management and Policy module offers you the chance to hear and meet practitioners in many of these key areas.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
This is a vibrant postgraduate community, with strong international links. Our research partners are global, from UK universities to institutions in southern Africa, Denmark, Iceland, Australia and the USA. Read more

About the course

This is a vibrant postgraduate community, with strong international links. Our research partners are global, from UK universities to institutions in southern Africa, Denmark, Iceland, Australia and the USA. Our teaching is invigorated by work from several interdisciplinary research groups, like the Sheffield Centre for International Drylands Research, the Urban and Regional Policy Research Institute and the Sheffield Institute for International Development.

How we teach

Our staff are active researchers at the cutting-edge of their fields. That research informs our masters courses. As well as the usual lectures and seminars, there are practicals, lab classes, field trips and research projects.

Facilities and equipment

A new £1m Sediment-Solute Systems lab enables geochemical analysis of aqueous and solid phases, especially in the context of biogeochemistry. We have equipment for chromatography, UV spectrometry and flow injection/auto analysis.

Our sample preparation facilities enable digestion, pre-concentration by evaporation under vacuum, and tangential flow filtration. There are alpha and gamma counters, a laser particle sizer and a luminescence dating lab. Field equipment includes automatic water samplers, weather stations, data loggers and environmental process characterisation sensors.

We have high-quality petrological microscopes for examining geological samples. We have labs for spectrometry and for palaeontological preparation, and you’ll also have access to specialist facilities in other departments at the University.

Laptops, camcorders, tape recorders and transcribers are available for your fieldwork. Our postgraduate computer labs have networked workstations for GIS research and climate modelling, ARC/INFO, ERDAS software and specialist software for remote sensing. GIS facilities are also provided by the £5m Informatics Collaboratory for the Social Sciences.

Our new postgraduate media GIS suite has facilities for Skype, video conferencing, web design, video editing and creative media.

Fieldwork

Most of our courses involve fieldwork. The MPH, MSc and MA International Development take students on a 10-day field trip where they put their research skills into practice. Recent classes visited the West Pokot region of Kenya, urban and rural areas of Nepal, the suburbs of Cairo and India.

Core modules

Ideas and Practice in International Development; Research Design and Methods in International Development; Understanding Environmental Change; Key Issues in Environment and Development; Professional Skills for Development; Dissertation with Placement; International Development field Class, currently in either Kenya or Nepal.

Examples of optional modules

Data, Visualisation and GIS; Living with Climate Change in the Global South; The Political Economy of Natural Resource-led Development in the Global South; Using Policy to Strengthen Health Systems; Cities of Diversity; Cities of ‘the South’: planning for informality.

Teaching and assessment

There are seminars, lectures, workshops and reading groups. You’ll be assessed on your coursework assignments and a dissertation.

Read less
Water security is a major concern facing humanity and engineers are the primary professionals tackling this issue. Read more

About the Course

Water security is a major concern facing humanity and engineers are the primary professionals tackling this issue. Annually, more than 3.4 million people die from water related diseases while 1 in 9 people world-wide do not have access to safe and clean drinking water and 1 in 3 people world-wide are affected by water scarcity. In addition, population growth, urbanisation, climate change and increasing energy demands, are placing unprecedented pressures on our finite water resources. This 1-year MSc programme aims to equip students with the skills needed to design solutions to deliver safe/clean water. The programme will also give opportunities to students to study the economics and management of large projects.

Programme Objectives

The MSc in Water resources Engineering will provide students with the technical competences to provide solutions to water security issues. Core modules will address technical aspects of water provision, water resource management and water / wastewater treatment. A primary objective of the programme is to ensure that students have a thorough understanding of modern hydrological modelling tools. The programme has a strong emphasis on the design of hydrological systems, with students working in groups to solve real-world problems. Graduates of this programme will be in a position to make significant contributions to solving water resource problems in both industry and academic roles worldwide.

Programme Structure and Content

This is a 90ECTS programme, one full year in duration, starting in September and finishing August. The programme comprises an individual research project and thesis (30 ECTS), an integrated group design project (15 ECTS) and a number of taught (core and elective) modules (55 ECTS).

The core taught modules include: Hydrology & Water Resources Engineering, Hydrological Modelling, Design of Sustainable Environmental Systems, Water Quality, Water Resources in Arid Regions, and Applied Field Hydrogeology. Sample elective modules include: Computational Methods in Engineering, Global Change, Offshore & Coastal Engineering, Environmental Economics, Project Management, and Estimates and Costing of Engineering Projects.

The Integrated Group Design Project involves the design of components of a water supply and/or treatment system and will be typical of real-world water resources engineering project. Each student will also complete an individual minor research thesis in the area of water resources engineering. This thesis accounts for one third of the overall programme mark.

What’s Special About CoEI/NUIG in this Area

• Water engineering has been taught at graduate level at NUI Galway for over 40 years. During this period students from over 50 countries have graduated from NUI Galway.
• The MSc in Water Resources Engineering is a re-launch of NUI Galway's International Postgraduate Hydrology Programme established by the late Prof Eamonn Nash. Many of the staff who lectured on the Hydrology Programme contribute to the current programme; so the recognised tradition of world-class teaching in water engineering at NUI Galway continues.
• Currently NUIG staff are involved in large-scale funded research projects in water resources, facilitated by the world-class research facilities at NUI Galway.

Testimonials

"It was a privilege and a pleasure to participate in the Galway MSc programme with world renowned hydrologists, excellent technicians and support staff, and Irish and international students. The comprehensive programme provided an excellent basis for my subsequent career in hydrology."
Charles Pearson, MSc Hydrology, NUIG, 1990 Graduating Class
Regional Manager, National Institute of Water and Atmospheric Research, New Zealand

"I am fortunate enough to have completed a world-class course in Hydrology at National University of Ireland, Galway which was taught by world-leading academics and researchers. Since my course completion in 1990, I have been able to play a key role in hydrologic application and research in Bangladesh and Australia based on the knowledge I gained from my studies in Galway."
Professor Ataur Rahman, MSc Hydrology, NUIG, 1990 Graduating Class
Water and Environmental Engineering, School of Computing, Engineering and Mathematics, University of Western Sydney

"NUI Galway gave me priceless experiences; it was my first travel outside the Philippines. Being a graduate of NUI Galway opened doors of opportunities for me. My being who I am now started with my NUI Galway experience and I will always be grateful to the institution, to my friends and to my former professors."
Dolores San Diego-Cleofas, MSc Hydrology, NUIG, 1995 Graduating Class,
Assistant Professor at University of Santo Tomas, Manila, Phillipines

How to Apply

Applications are made online via the Postgraduate Applications Centre (PAC): https://www.pac.ie
Please use the following PAC application code for your programme:
M.Sc. Water Resources Engineering - PAC code GYE23

Scholarship Opportunities

There are a number of funding opportunities for International Students planning to attend NUI Galway. Information on these can be found at: http://www.nuigalway.ie/international-students/feesfinance/internationalscholarships/

The College of Engineering and Informatics will also award the Nash Scholarship in Water Resource Engineering. This is in memory of our deceased colleague, Eamonn Nash who was our Professor of Engineering Hydrology for many years, and was a well-known in the international engineering community. The “Nash cascade” and “Nash-Sutcliffe coefficient” were named after him, and these still feature in scholarly publications. Over four hundred senior hydrologists throughout the world received their post-graduate hydrological education at this University. Please visit our website for more information on scholarships: http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/feesandscholarships/

The MSc in Water Resources Engineering is accredited by Irish Aid as an eligible course for their International Fellowship Training Programme (IFTP). Through the IFTP, Irish Aid provides funding for students from eligible developing countries to undertake postgraduate studies on selected courses in colleges and universities in Ireland. More information on Irish Aid Fellowships can be found on the website of the Irish Council for International Students at:
http://www.icosirl.ie/eng/irish_aid_fellowships/fellowship_training_programme

Further information is available on our website:
http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/mscwaterresourcesengineering/

Read less
Today more than ever, quantitative skills form an essential basis for successful careers in ecology, conservation, and animal and human health. Read more
Today more than ever, quantitative skills form an essential basis for successful careers in ecology, conservation, and animal and human health. This Masters programme provides specific training in data collection, modelling and statistical analyses as well as generic research skills. It is offered by the Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), a grouping of top researchers who focus on combining field data with computational and genetic approaches to solve applied problems in epidemiology and conservation.

Why this programme

-This programme encompasses key skills in monitoring and assessing biodiversity critical for understanding the impacts of environmental change.
-It covers quantitative analyses of ecological and epidemiological data critical for animal health and conservation.
-You will have the opportunity to base your independent research projects at the University field station on Loch Lomond (for freshwater or terrestrial-based projects); Millport field station on the Isle of Cumbria (for marine projects); or Cochno farm in Glasgow (for research based on farm animals). We will also assist you to gain research project placements in zoos or environmental consulting firms whenever possible.
-The uniqueness of the programme is the opportunity to gain core skills and knowledge across a wide range of subjects, which will enhance future career opportunities, including entrance into competitive PhD programmes. For example, there are identification based programmes offered elsewhere, but most others do not combine practical field skills with molecular techniques, advanced informatics for assessing biodiversity based on molecular markers, as well as advanced statistics and modelling. Other courses in epidemiology are rarely ecologically focused; the specialty in IBAHCM is understanding disease ecology, in the context of both animal conservation and implications for human public health.
-You will be taught by research-active staff using the latest approaches in quantitative methods, sequence analysis, and practical approaches to assessing biodiversity, and you will have opportunites to actively participate in internationally recognised research. Some examples of recent publications lead by students in the programme: Blackburn, S., Hopcraft, J. G. C., Ogutu, J. O., Matthiopoulos, J. and Frank, L. (2016), Human-wildlife conflict, benefit sharing and the survival of lions in pastoralist community-based conservancies. J Appl Ecol. doi:10.1111/1365-2664.12632. Rysava, K., McGill, R. A. R., Matthiopoulos, J., and Hopcraft, J. G. C. (2016) Re-constructing nutritional history of Serengeti wildebeest from stable isotopes in tail hair: seasonal starvation patterns in an obligate grazer. Rapid Commun. Mass Spectrom., 30:1461-1468. doi: 10.1002/rcm.7572. Ferguson, E.A., Hampson, K., Cleaveland, S., Consunji, R., Deray, R., Friar, J., Haydon, D. T., Jimenez, J., Pancipane, M. and Townsend, S.E., 2015. Heterogeneity in the spread and control of infectious disease; consequences for the elimination of canine rabies. Scientific Reports, 5, p. 18232. doi: 10.1038/srep18232.
-A unique strength of the University of Glasgow for many years has been the strong ties between veterinarians and ecologists, which has now been formalised in the formation of the IBAHCM. This direct linking is rare but offers unique opportunities to provide training that spans both fundamental and applied research.

Programme structure

The programme provides a strong grounding in scientific writing and communication, statistical analysis, and experimental design. It is designed for flexibility, to enable you to customise a portfolio of courses suited to your particular interests.

You can choose from a range of specialised options that encompass key skills in:
-Monitoring and assessing biodiversity – critical for understanding the impacts of environmental change
-Quantitative analyses of ecological and epidemiological data – critical for animal health and conservation
-Ethics and legislative policy – critical for promoting humane treatment of both captive and wild animals.

Core courses
-Key research skills (scientific writing, introduction to R, advanced linear models, experimental design and power analysis)
-Measuring biodiversity and abundance
-Programming in R
-Independent research project

Optional courses
-Molecular analyses for biodiversity and conservation
-Biodiversity informatics
-Molecular epidemiology and phylodynamics
-Infectious disease ecology and the dynamics of emerging disease
-Single-species population models
-Multi-species models
-Spatial and network processes in ecology & epidemiology
-Introduction to Bayesian statistics
-Freshwater sampling techniques
-Invertebrate identification
-Vertebrate identification
-Human Dimensions of Conservation
-Principles of Conservation Ecology
-Protected Area Management
-Animal welfare science
-Legislation related to animal welfare
-Enrichment of animals in captive environments
-Care of captive animals
-Biology of suffering
-Assessment of physiological state

Career prospects

You will gain core skills and knowledge across a wide range of subjects that will enhance your selection chances for competitive PhD programmes. In addition to academic options, career opportunities include roles in zoos, environmental consultancies, government agencies, ecotourism and conservation biology, and veterinary or public health epidemiology.

Read less
Anthropology prides itself on its inclusive and interdisciplinary focus. It takes a holistic approach to human society, combining biological and social perspectives. Read more
Anthropology prides itself on its inclusive and interdisciplinary focus. It takes a holistic approach to human society, combining biological and social perspectives.

All of our Anthropology Master’s programmes are recognised by the Economic and Social Research Council (ESRC) as having research training status, so successful completion of these courses is sufficient preparation for research in the various fields of social anthropology. Many of our students go on to do PhD research. Others use their Master’s qualification in employment ranging from research in government departments to teaching to consultancy work overseas.

We welcome students with the appropriate background for research. If you wish to study for a single year, you can do the MA or MSc by research, a 12-month independent research project.

If you are interested in registering for a research degree, you should contact the member of staff whose research is the most relevant to your interests. You should include a curriculum vitae, a short (1,000-word) research proposal, and a list of potential funding sources.

About the School of Anthropology and Conservation

Kent has pioneered the social anthropological study of Europe, Latin America, Melanesia, and Central and Southeast Asia, the use of computers in anthropological research, and environmental anthropology in its widest sense (including ethnobiology and ethnobotany).

Our regional expertise covers Europe, the Middle East, Central, Southeast and Southern Asia, Central and South America, Amazonia, Papua New Guinea, East Timor and Polynesia. Specialisation in biological anthropology includes forensics and paleopathology, osteology, evolutionary psychology and the evolutionary ecology and behaviour of great apes.

Course structure

The first year may include coursework, especially methods modules for students who need this additional training. You will work closely with one supervisor throughout your research, although you have a committee of three (including your primary supervisor) overseeing your progress. If you want to research in the area of applied computing in social anthropology, you would also have a supervisor based in the School of Computing.

Research areas

- Social Anthropology

The related themes of ethnicity, nationalism, identity, conflict, and the economics crisis form a major focus of our current work in the Middle East, the Balkans, South Asia, Amazonia and Central America, Europe (including the United Kingdom), Oceania and South-East Asia.

Our research extends to inter-communal violence, mental health, diasporas, pilgrimage, intercommunal trade, urban ethnogenesis, indigenous representation and the study of contemporary religions and their global connections.

We research issues in fieldwork and methodology more generally, with a strong and expanding interest in the field of visual anthropology. Our work on identity and locality links with growing strengths in customary law, kinship and parenthood. This is complemented by work on the language of relatedness, child health and on the cognitive bases of kinship terminologies.

A final strand of our research focuses on policy and advocacy issues and examines the connections between morality and law, legitimacy and corruption, public health policy and local healing strategies, legal pluralism and property rights, and the regulation of marine resources.

- Environmental Anthropology and Ethnobiology

Work in these areas is focused on the Centre for Biocultural Diversity. We conduct research on ethnobiological knowledge systems and other systems of environmental knowledge as well as local responses to deforestation, climate change, natural resource management, medical ethnobotany, the impacts of mobility and displacement and the interface between conservation and development. Current projects include trade in materia medica in Ladakh and Bolivia, food systems, ethno-ornithology, the development of buffer zones for protected areas and phytopharmacy among migrant diasporas.

- Digital Anthropology: Cultural Informatics, Social Invention and Computational Methods

Since 1985, we have been exploring and applying new approaches to research problems in anthropology – often, as in the case of hypermedia, electronic and internet publishing, digital media, expert systems and large-scale textual and historical databases, up to a decade before other anthropologists. Today, we are exploring cloud media, semantic networks, multi-agent modelling, dual/blended realities, data mining, smart environments and how these are mediated by people into new possibilities and capabilities.

Our major developments have included advances in kinship theory and analysis supported by new computational methods within field-based studies and as applied to detailed historical records; qualitative analysis of textual and ethnographic materials; and computer-assisted approaches to visual ethnography. We are extending our range to quantitative approaches for assessing qualitative materials, analysing social and cultural invention, the active representation of meaning, and the applications and implications of mobile computing, sensing and communications platforms and the transformation of virtual into concrete objects, institutions and structures.

- Biological Anthropology

Biological Anthropology is the newest of the University of Kent Anthropology research disciplines. We are interested in a diverse range of research topics within biological and evolutionary anthropology. These include bioarchaeology, human reproductive strategies, hominin evolution, primate behaviour and ecology, modern human variation, cultural evolution and Palaeolithic archaeology. This work takes us to many different regions of the world (Asia, Africa, Europe, the United States), and involves collaboration with international colleagues from a number of organisations. We have a dedicated research laboratory and up-to-date computing facilities to allow research in many areas of biological anthropology.

Currently, work is being undertaken in a number of these areas, and research links have been forged with colleagues at Kent in archaeology and biosciences, as well as with those at the Powell- Cotton Museum, the Budongo Forest Project (Uganda) and University College London.

Kent Osteological Research and Analysis (KORA) offers a variety of osteological services for human remains from archaeological contexts.

Careers

Higher degrees in anthropology create opportunities in many employment sectors including academia, the civil service and non-governmental organisations through work in areas such as human rights, journalism, documentary film making, environmental conservation and international finance. An anthropology degree also develops interpersonal and intercultural skills, which make our graduates highly desirable in any profession that involves working with people from diverse backgrounds and cultures.

Many of our students go on to do PhD research. Others use their Master’s qualification in employment ranging from research in government departments to teaching to consultancy work overseas.

Read less
MTSU's new Master's of Science in Professional Science concentration in Geosciences gives graduates a background in both science and management, unlike traditional research-based-only programs. Read more
MTSU's new Master's of Science in Professional Science concentration in Geosciences gives graduates a background in both science and management, unlike traditional research-based-only programs. The program also appeals to undergraduates from the anthropology and history departments as well as the hard sciences. Students may choose between specializations in geographic information systems (GIS) or environmental geosystems, or follow the general geoscience track. The department is well-equipped with modern research and teaching technologies. All master's candidates must complete a pre-professional internship. Full-time and part-time programs are available, and almost all classes are held during evening hours. The demand for professional geoscientists is high, and job growth is expected to rise up to 25 percent in coming years.

The Master of Science (M.S.) with a major in Professional Science includes a business core with specific concentrations in Actuarial Sciences, Biostatistics, Biotechnology, Engineering Management, Geosciences, and Health Care Informatics.

Students in Geosciences choose among three tracks: geographic information systems, environmental geosystems, and general geoscience. The degree is certified as a Professional Science Master’s degree by the Council of Graduate Schools.

Admission to the Geosciences master's program is open to all students with undergraduate degrees in the geosciences or related fields who meet the admission requirements of the M.S. degree program. Applications are welcomed from majors in disciplines such as anthropology, archeology, environmental science, and global studies.

Career

The Geosciences master’s program prepares students for careers in local, state, and federal government agencies; private industry; and academic positions supporting spatially related projects and research. This graduate concentration provides training for students seeking careers in the high-demand geosciences job market, as well as working professionals seeking advanced training or movement into managerial positions. Examples of some professions boosted by this master's degree:

Anthropologist
Archaeologist
Engineering geologist
Environmentalist
Environmental engineer
Geochemist
Geologist
Geophysicist
GIS professional
Historian
Oceanographer
Paleontologist
Petroleum geologist
Political scientist
Professor
Seismologist
Teacher

Read less
The Sustainable Smart Cities Dual Master’s program from the University of Alabama at Birmingham (USA) and Staffordshire University (UK) is a unique professional postgraduate program that provides an inter-disciplinary grounding in the principles, application and key technologies required to develop sustainable smart cities. Read more
The Sustainable Smart Cities Dual Master’s program from the University of Alabama at Birmingham (USA) and Staffordshire University (UK) is a unique professional postgraduate program that provides an inter-disciplinary grounding in the principles, application and key technologies required to develop sustainable smart cities.

Delivered by experienced faculty at both UAB and Staffordshire University, this genuinely international course will equip you with the knowledge, skills and critical thinking to assess, design and implement sustainable smart cities strategies across the globe.

Get two Master's degrees

As a Dual Award you will receive two Master’s degrees, one from the University of Alabama at Birmingham and one from Staffordshire University. Upon successful completion of the Master’s programme you will be awarded the following degrees:

MEng Sustainable Smart Cities (UAB)

MSc Sustainable Smart Cities (SU)

The course offers a broad curriculum covering sustainability theory, sustainable urban development, low carbon and renewable energy systems, green infrastructure, natural resource management, health and liveability, transport and mobility, big data analytics and smart technologies.

Course content

The Dual Master's in Sustainable Smart Cities is delivered via ten modules:

Principles of Sustainable Development (UAB)
Drivers of sustainable smart cities (i.e. climate change, population growth, resource scarcity, etc) and the principles of sustainable development.

Introduction to Sustainable Smart Cities (SU)
Sustainable urban planning and smart growth, engaging with smart citizens, sustainable governance and creating sustainable economic development.

Low Carbon and Renewable Energy Systems (SU)
Low carbon and renewable energy technologies, renewable energy integration and smart grids.

Managing Natural Resources and Sustainable Smart Cities (SU)
Water, waste and carbon management, pollution prevention, climate adaptation and resilience and integrated environmental systems management.

Green Infrastructure and Transportation (UAB)
Public and open space design, principles of urban design and smart sustainable mobility and transportation.

Green Buildings (UAB)
Smart buildings and infrastructure, principles of sustainable construction, sustainable building materials, building and energy management systems and standards and rating systems.

Health & Liveability (UAB)
Genomics, health informatics, designing for well-being:, environmental justice and food smart cities.

Smart Technologies for Cities & Buildings (SU)
Internet of things, remote sensing and communication technologies at individual building, neighbourhood and city-scale.

Big Data & Smart Cities (SU)
Big data platforms and cloud computing, urban informatics, GIS and spatial analysis, measuring impact and data visualization.

Research Methods & Project Planning (UAB & SU)
Introduction to research methods and the principles of project planning to enable students to plan for their capstone project.

Capstone Research Project (UAB & SU)
You will design and implement a piece of research that will enable you to reflect on the knowledge and skills which you have learned during your taught modules and apply them to a real world problem or issue. This research may draw on the practical and work-related experiences of the student.

You will have an opportunity to present their capstone project findings at the annual Sustainable Smart Cities Research Symposium hosted by the University of Alabama at Birmingham and Staffordshire University.

Read less
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. Read more
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. The process industry has a high dependence on material and energy resources. Because of this, there is a strong interest in improving resource efficiency to increase competitiveness and decrease environmental impact.

Resource efficiency is about 'doing more and/or better with less' and delivering this sustainably presents a major opportunity and challenge for engineers and scientists. Industry needs skilled graduates with the expertise to take up this challenge now.

This course benefits from the support of our multidisciplinary EPSRC Centres for Doctoral Training:

- Sustainable Chemical Technologies (University of Bath)
- Water Informatics: Science and Engineering (Universities of Bath, Exeter, Bristol, Cardiff)
- Catalysis (Universities of Bath, Cardiff, Bristol).

The three Centres for Doctoral Training offer excellent opportunities for cross-disciplinary projects in engineering and science as well as access to a lively programme of talks and other events throughout the year. At the start of the MSc programme you will be assigned a doctoral student who will act as your mentor in addition to an academic tutor and supervisor.

Make an Impact: Sustainability for Professionals

If you are interested in sustainability, you can sign up for our free MOOC (massive open online course) Make an Impact: Sustainability for Professionals (https://www.futurelearn.com/courses/sustainability-for-professionals). The course starts in April.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/sustainable-chemical-engineering/index.html

Learning Outcomes

This course teaches and builds on advanced concepts and technologies core to sustainable chemical engineering. It will train you how to integrate systems thinking and economic, environmental and social objectives in problem solving and decision making. You will graduate with the practical and interpersonal skills required by professionals to work in the emerging and expanding employment market in the green sector.

You will:

- gain a holistic understanding of the environmental, social, ethical, regulatory and economic dimensions of sustainable chemical engineering and how they interact

- apply methodologies and tools to design and evaluate alternative products, processes and systems based on sustainability criteria

- apply your knowledge of resource conservation to deal with complex scenarios, real-life problems and decision making in the face of incomplete or uncertain information

- develop 'big picture' thinking to evaluate alternative products, processes and systems using whole systems approaches, which consider the multiple criteria and stakeholders along the process industry value chain

- develop the skills to formulate and implement research and design projects independently and in professional multidisciplinary teams.

Structure

The programme creates many opportunities for interdisciplinary and active learning through authentic, industrially relevant case studies, games and project work. There are guest speakers from industry and other organisations, as well as opportunities for industrial visits. Transferable skills development, such as problem solving, teamwork, effective communication, networking and time and resource management, is embedded throughout the programme.

- Semester 1 (September to January):
The first semester consists of five taught compulsory units that provide you with a foundation in sustainability and systems analysis to apply throughout the programme.

The units advance your understanding of the concepts, technologies and issues in resource recovery, including the valorisation and the re-use of waste streams (waste2resource). You will examine in detail how resources can be conserved by transforming wastes and other feedstocks into high value products in the bioeconomy.

Each unit consists of lectures, tutorials and case studies, and is supplemented by private study and preparation for in-class activities.

Assessment is by a combination of coursework and examination.

- Semester 2 (February to May):
In the second semester you will take two further technical specialist units on resource conservation. These cover a range of advanced technologies and concepts, including process intensification and waste, water and energy integration.

You will also develop your understanding of Sustainable Chemical Engineering in a design, research and management context through three project-based units, focused on resource efficiency and conservation.

In the group activity, you will apply engineering and project management techniques to solve a design problem, just as an industry-based design team would.

Project unit 1 introduces you to research methods and project planning. You will then apply this to detailed background research in your discipline area to prepare for your individual summer dissertation project in Project unit 2.

Assessment is by a combination of coursework and examination.

- Semester 3 (June to September):
The final semester consists of an individual project leading to an MSc dissertation. Depending on your chosen area of interest, the project may involve theoretical, computational and/or experimental activities. You will conduct your individual project at Bath under the supervision of a member of academic staff, with opportunities for industrial co-supervision. You will have access to the state-of the-art facilities in the Department of Chemical Engineering.

Assessment is through a written dissertation and an oral presentation.


Facilities and equipment
The Department has a full range of research facilities with pilot plants for all major areas of research. Our analytical facilities include gas chromatography, mass spectrometry, high performance liquid chromatography (HPLC), UV-VIS, FTIR and Raman, photon correlation spectroscopy (PCS), microcalorimetry, adsorption measurement systems, surface and pore structure analysis systems and particle sizing equipment. Within the University, there is access to atomic force, scanning and transmission electron microscopes.

Research Excellence Framework 2014
We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

Careers information
We are committed to ensuring that postgraduate students acquire a range of subject-specific and generic skills during their research training including personal effectiveness, communication skills, networking and career management. Most of our graduates take up research, consultancy or process and product development and managerial appointments in the commercial sector, or in universities or research institutes.

Find out how to apply here - https://secure.bath.ac.uk/prospectus/cgi-bin/applications.pl?department=chem-eng

We have Elite MSc Scholarships for £2,000 towards your tuition fees available for this course - http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/funding/

Read less
This new and exciting programme is aimed at training graduates from a range of scientific disciplines who wish to pursue a research career in cold-regions science, notably within the disciplines of glaciology, glacial geomorphology, polar climatology / oceanography, environmental science, polar biogeochemical processes, or their intersections. Read more

About the course

This new and exciting programme is aimed at training graduates from a range of scientific disciplines who wish to pursue a research career in cold-regions science, notably within the disciplines of glaciology, glacial geomorphology, polar climatology / oceanography, environmental science, polar biogeochemical processes, or their intersections.

The programme’s underlying theme is contemporary, as its key interest is to explore the expressions, mechanisms and impacts of rapid ongoing changes in our planet’s cold regions.

Your career

You’ll develop the skills to work in private or public sector research, or join the civil service. Recent graduates have started careers in consulting or with organisations like CAFOD, the Environment Agency and the British Library. Many of our graduates stay on to do research. We have a high success rate in securing funding for those who wish to study for a PhD with us after finishing a masters.

Study with the best

This is a vibrant postgraduate community, with strong international links. Our research partners are global, from UK universities to institutions in southern Africa, Denmark, Iceland, Australia and the USA. Our teaching is invigorated by work from several interdisciplinary research groups, like the Sheffield Centre for International Drylands Research, the Urban and Regional Policy Research Institute and the Sheffield Institute for International Development.

How we teach

Our staff are active researchers at the cutting-edge of their fields. That research informs our masters courses. As well as the usual lectures and seminars, there are practicals, lab classes, field trips and research projects.

Facilities and equipment

A new £1m Sediment-Solute Systems lab enables geochemical analysis of aqueous and solid phases, especially in the context of biogeochemistry. We have equipment for chromatography, UV spectrometry and flow injection/auto analysis.

Our sample preparation facilities enable digestion, pre-concentration by evaporation under vacuum, and tangential flow filtration. There are alpha and gamma counters, a laser particle sizer and a luminescence dating lab. Field equipment includes automatic water samplers, weather stations, data loggers and environmental process characterisation sensors.

We have high-quality petrological microscopes for examining geological samples. We have labs for spectrometry and for palaeontological preparation, and you’ll also have access to specialist facilities in other departments at the University.

Laptops, camcorders, tape recorders and transcribers are available for your fieldwork. Our postgraduate computer labs have networked workstations for GIS research and climate modelling, ARC/INFO, ERDAS software and specialist software for remote sensing. GIS facilities are also provided by the £5m Informatics Collaboratory for the Social Sciences.

Our new postgraduate media GIS suite has facilities for Skype, video conferencing, web design, video editing and creative media.

Fieldwork

Most of our courses involve fieldwork. The MPH, MSc and MA International Development take students on a 10-day field trip where they put their research skills into practice. Recent classes visited the West Pokot region of Kenya, urban and rural areas of Nepal, the suburbs of Cairo and India.

Core modules

Research Design in Analysis of Environmental Systems; Current Issues in Polar and Alpine Science; Arctic/Alpine Field Course; Polar and Alpine Change Research Project.

Teaching and assessment

Modules are delivered through a mixture of lectures, seminars, workshops and independent study.

The Research Project is assessed by oral presentation of mid-project findings, submission of a project report in the summer and by a poster presentation of project findings.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Applied Analytical Science (LCMS) at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Applied Analytical Science (LCMS) at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

World demand for mass spectrometry and chromatography has grown at an unprecedented rate, with qualified graduates in short supply and highly sought after. Swansea is the only UK institution to offer a range of schemes solely dedicated to these topics, drawing upon expertise in the Institute of Mass Spectrometry (IMS), based at a long established UK centre of excellence. The MSc in Applied Analytical Science (LCMS) includes fundamentals of MS and chromatography with key industrial topics covering ‘-omics’, pharmaceutical, environmental and forensic analysis, data handling, professional management and good laboratory practice (GLP). The unique combination of industry participation and content on the Applied Analytical Science (LCMS) programme provides a vocationally-relevant qualification with invaluable training and experience sought in the UK and worldwide.

Professional Accreditation

We are pleased to announce that the Royal Society of Chemistry (RSC) has accredited the “MSc in Applied Analytical Science (LCMS)” for satisfying the academic requirements of the award of CHARTERED CHEMIST (CChem) from 2015 and awarded to qualifying students. Accreditation of Postgraduate schemes have only recently been undertaken by the RSC and our scheme is one of the first to achieve accreditation.

Key Features

Course content for the Applied Analytical Science (LCMS) programme is designed for the needs of industry: Essential topics such as fundamentals of mass spectrometry and separation science, professional management of laboratory practice, data analysis and method development plus industrially-current applications areas.

Extensive training in a research-led Institute: To improve their analytical science skills to professional levels required for the workplace.

Highly practical course and extensive in-house equipment: MSc students can experience more in-depth and ‘hands-on’ learning than most current analytical MSc programmes. Additional sessions including experiment design, health and safety, and laboratory skills are held in preparation of the research project, to ensure students are adequately equipped for project work.

Many taught modules encourage problem solving skills, involving relevant simulated (pre-existing) scenarios: To develop analytical thinking, professional and academic skills through advanced practical and theoretical studies and the submission of a scientifically defensible dissertation.

Participation of expert industrial guest lecturers: Unique opportunities to network with potential employers and enhanced employability prospects in highly skilled and relevant areas such as pharmaceuticals, agriculture, food and nutrition, homeland security, clinical diagnostics, veterinary and forensic science, environmental analysis, plus marketing and sales, to name a few.

Assessment that encourage transferrable skills essential for employment: Including case studies, presentations, problem sheets, data processing and informatics exercises in addition to the traditional examinations and essay based assignments.

Modules

Modules on the Applied Analytical Science (LCMS) programme typically include:

• Mass spectrometry – basics and fundamentals
• Separation science and sample handling
• Data analysis and method development
• Professional management and laboratory practice
• Proteomics
• Pharmaceutical
• Environmental and forensic analysis
• Medical and life sciences
• Metabolomics, lipidomics and bioactive lipids
• Data analysis and method development
• Dissertation: MS experimental project

Read less
The Master of Science Programme (LM) in Safety Engineering for Transport, Logistics, and Production wants to provide students with a high level of advanced training, to enable them to operate in the areas the most qualified with reference to the various activities related to safety in transport systems, logistics, and related manufacturing. Read more

Aims and Basic Characteristics:

The Master of Science Programme (LM) in Safety Engineering for Transport, Logistics, and Production wants to provide students with a high level of advanced training, to enable them to operate in the areas the most qualified with reference to the various activities related to safety in transport systems, logistics, and related manufacturing.

The degree course aims at training a professional engineer with a thorough knowledge and understanding of the principles of systems engineering of transportation, logistics and production, in which to realize the acquired ability to conceive, plan, design and manage complex, innovative systems and processes, with particular attention to the related safety aspects.
The degree in Safety Engineering for Transport, Logistics, and Production will support the state exam for a license to practice in all the three areas of Engineering: Civil and Environmental, Industrial, and Information.

The typical professional fields for graduates in Safety Engineering for Transport, Logistics, and Production are those of the design and management of safety systems, with particular reference to the transport systems, the development of advanced innovative services, the management of logistics and production, in private and public enterprises, and public administration.

For any information, feel free to write to Prof. Nicola Sacco: safety_at_dime.unige.it

Job opportunities:

• engineering companies and/or large professional firms operating in the field of design, implementation, security management with reference of the transport systems and territorial
• public and private institutions that handle large lines infrastructure (railways, highways, ...)
• government (municipalities, provinces, regions, port authorities, ...)
• freelance
• research structures (universities, research centers, ...)

What Will You Study and Future Prospects:

The main goal is to enable M.Sc. graduates to operate in the various activities related to safety in transport systems, logistics, and production, but also of the territory where they are located.

The course provides notions about:

• the risk assessment of local systems, and in particular the planning, design and management of both safety (protection against accidental events) and security (protection than intentional events);
• the evaluation in terms of cost/benefits of different design alternatives for risk mitigation in transport, logistics, and production systems;
• the planning and management of the mobility of people and goods, through the knowledge of the fundamental elements of transport and logistic systems, as well as the criteria to define the physical characteristics of isolated infrastructures a network of infrastructures, with particular reference to the relevant functions and interdependencies;
• the design and safe management of transport, logistic, and production systems, with reference to either the systems as a whole, and to the relevant single components, such as infrastructures, facilities, vehicles, equipment;
• the development and use of advanced methods to manage and optimize the performance and safety of road, rail, air and sea infrastructure and transport services, as well as their interactions in an intermodal framework, by means of the design and implementation of monitoring, regulation, and control systems via the most advanced technologies related to their specific disciplines;
• the analysis and evaluation of the externalities of transport and logistic systems, with explicit reference to the particular safety aspect and issues characterizing each phase of the mobility of people and goods, even within the production plants connected, and their interaction with surrounding environment.

The course is articulated into two alternative curricula:

1. TRANSPORT AND LOGISTICS: This curriculum concentrates on the problems related to design and manage the complex systems that realize a safe and effective mobility of passengers and freights.

2. INDUSTRIAL LOGISTICS AND PRODUCTION: This curriculum concentrates on the problems related to design and manage the complex systems that realize a safe and effective production plant internal logistics and management.

Entry Requirements:

Admission to the Master of Science in Safety Engineering for Transport, Logistics and Production is subject to the possession of specific curricular requirements and adequacy of personal preparation.

The access requirements are equivalent to those provided by the general educational objectives of all three-year university degree in classes of Civil and Environmental Engineering, Information Engineering, and Industrial Engineering. In fact, one of the following curricular requirements must be fulfilled:

• possession of a Bachelor, or a Master degree, or a five-year degree in classes of Civil and Environmental Engineering, Information Engineering, and Industrial Engineering, awarded by an Italian University, or equivalent qualifications;
• possession of a Bachelor, or a Master degree, or a five-year degree with at least 36 ECTS (“Base Courses”, e.g. Mathematics, Physics, Chemistry, Informatics) and at least 45 ECTS that pertain to the Engineering classes, awarded by an Italian University, or equivalent qualifications;

To access, a knowledge of English is required, at least equivalent at B1 European Level.

Read less
A country's physical land resources are a fundamental pillar of support for human life and welfare. Read more
A country's physical land resources are a fundamental pillar of support for human life and welfare. Worldwide, population pressures and severe degradation, pollution and desertification problems are threatening this - for several countries relatively scarce - natural resource, and cause competition between agricultural or industrial purposes, urban planning and nature conservation. To guarantee a proper use and management of this for a nation basic commodity, well trained specialists with a thorough knowledge of the properties and characteristics of this natural resource, and a solid insight in factors and measures that may alter its actual state and value are warranted and call for a high standard scientific and practical education.

The main subject in Soil Science aims at training researchers, academics, government staff and expert consultants in the inventory and detailed characterization of land capacity, and of soils in particular. Graduates should be able to understand the development and evolution of soils under natural conditions or following human interference using field, map, laboratory and remote sensing data. They should have the scientific knowledge to use and manage soil and water in a sustainable way, and to optimize land use under different natural and environmental conditions.

Structure

The Master of Science degree programme in Physical Land Resources is a two year, full time course. The first year provides a fundamental basis in physical land resources, with a main subject in either Soil Science or Land Resources Engineering. The second year offers specialised courses in one of the two main subjects. The students have to prepare a master dissertation in the second year. Successful completion of the programme leads to the award of an Master of Science degree in Physical Land Resources. The course curriculum of the first year, and of the main subject in soil science of the second year is organised at the Ghent University, whereas all courses of the main subject in Land Resources Engineering of the second year are lectured at "Vrije Universiteit Brussel".

The academic year starts the last week of September. However students are advised to arrive in Ghent in the first week of September to follow the preparatory summer course.

Teaching methods
A wide variety of teaching methods are used in the PLR programme. All course units, except for “Internship” and “Master Dissertation” include lectures. Lectures are fundamental to provide students with the necessary basic knowledge in order to acquire the requested competences. Besides lectures the following teaching methods are very frequently used: practical classes, PC-room classes and coached exercises. Teaching methods like guided self-study, group work and microteaching are occasionally used. Field work and excursions are naturally an important component of the Physical Land Resources programme, especially in the first year.

Learning Outcomes

The Master of Science in Physical Land Resources is organized at both UGent and VUB and aims to contribute to an increased knowledge in Physical Land Resources both in terms of quantity (more experts with a broad knowledge) and of quality (knowledge and its use at an advanced scientific level). The incoming students have diverse backgrounds in geology-related sciences, civil engineering or agronomy and the large majority of students originate from developing countries.
-Possesses a broad knowledge at an advanced level in basic disciplines (soil physics, soil chemistry, soil mineralogy, meteorology and climatology) that provide a polyvalent scientific understandinga. needed to evaluate land potential for agricultural and environmental applications, understand the evolution of soils under natural and human-impacted conditions, and contribute to sustainable land use planning and integrated management of land and water (Soil Science); or in non-agricultural applications of land, such as geotechnical aspects, the role of soil and groundwater in water resources management and water supplies, and of land management in relation to other environmental and land use aspects (Land Resources Engineering).
-Possesses the basics to conduct field work (soil survey, soil profile description, soil sampling), interpret analytical data, classify the soil, and manage and interpret existing cartographic and remote sensing data using modern equipment, informatics and computer technology.
-Characterize soil physico-chemically and mineralogically with advanced techniques to understand soil processes, translate this to soil quality and assess the influences by and on natural and anthropogenic factors.
-Recognize interaction with other relevant science domains and identify the need to integrate them within the context of more advanced ideas and practical applications and problem solving.
-Demonstrate critical consideration of and reflection on known and new theories, models or interpretation within the specialty.
-Plan and execute target orientated experiments or simulations independently and critically evaluate the collected data.
-Develop and execute original scientific research and/or apply innovative ideas within research units.
-Formulate hypotheses, use or design experiments to test these hypotheses, report on the results, both written and orally, and communicate findings to experts and the general public.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted)
-TOEFL IBT 80.
-TOEFL PBT 550.
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing.
-CEFR B2 Issued by a European university language centre.
-ESOL CAMBRIDGE English CAE (Advanced).

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X