• Coventry University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Cass Business School Featured Masters Courses
University of Worcester Featured Masters Courses
University of Bradford Featured Masters Courses
Bath Spa University Featured Masters Courses
"environmental" AND "chem…×
0 miles

Masters Degrees (Environmental Chemistry)

  • "environmental" AND "chemistry" ×
  • clear all
Showing 1 to 15 of 303
Order by 
Are you up to the challenge of finding innovative methods and sustainable solutions to the threats facing the environment? The Environmental Sciences Master programme at Wageningen University has its roots in the natural, technological and social sciences. Read more

MSc Environmental Sciences

Are you up to the challenge of finding innovative methods and sustainable solutions to the threats facing the environment? The Environmental Sciences Master programme at Wageningen University has its roots in the natural, technological and social sciences.

Students will gain insight into the socio-economic causes and the characteristics of pollution and degradation of the natural environment, including the effects on human beings, the atmosphere, ecosystems and other organisms. This two-year programme is based on an interdisciplinary approach. Students learn to develop analytical tools and models, as well as technologies, socio-political arrangements and economic instruments to prevent and control environmental and sustainability issues.

Programme summary

We are facing a future with an increased demand for food, water, energy and other resources, which will have an enormous impact on our already heavily burdened environment. Environmental challenges for the future include using our resources efficiently, minimising our impact on nature, and creating and changing people’s awareness and behaviour towards their environment.

The MSc Environmental Sciences programme is designed for students who want to take up this challenge in finding innovative and sustainable approaches to secure and improve the state of the environment. This programme provides insight into the socioeconomic causes, the characteristics of pollution and degradation of the natural environment, and their effects on human beings and ecosystems. By taking an interdisciplinary approach, students learn to develop analytical tools and models, environmental technologies, socio-political arrangements and economic instruments to prevent and control environmental problems.

To allow you maximum flexibility in your individual course of study, there are no formal specialisations and compulsory elements are kept at a minimum. This allows you to tailor the programme to your individual needs. Major thesis research can be conducted in one of the ten thesis tracks (major) and each major can be combined with a minor in Environmental Communication or Education.

Thesis tracks

The ten thesis tracks are clustered in 4 groups.

Environmental Quality
Investigates the physical, chemical and biological processes that influence the quality of the environmental compartments: Soil, Water and Air; and the effects of pollutants on humans and ecosystems. Students can choose the thesis tracks Aquatic Ecology and Water Quality Management, Air Quality and Atmospheric Chemistry, Soil Biology and Biological Soil Quality, Soil Chemistry and Chemical Soil Quality, or Environmental Toxicology.

Environmental Systems Analysis
Studies the natural and social processes involved in environmental issues. It aims to develop integrative tools and methodologies and to apply these in strategic research. Students can choose to develop such an integrated approach via the thesis track Environmental Systems Analysis.

Environmental Policy and Economics
Covers the contribution of the social sciences to environmental research. The focus is on the social, political, legal and economic aspects of environmental issues and the goal is to provide students with the skills for studying, formulating and designing innovative forms of national and international environmental governance. You can choose a thesis track in the disciplines of Environmental Policy, Environmental Economics and Natural Resources, or Integrated Water Management.

Environmental Technology
Concentrates on biological, chemical and physical processes for water reuse and the recovery of nutrients, minerals and energy. The aim is to fully understand these processes in order to design and optimise innovative technologies for renewable energy, closing nutrient cycles and solving environmental issues. You can choose any of these topics via the thesis track Environmental Technology.

Your future career

Graduates from this programme are well-equipped to continue their scientific training in a PhD programme or to begin - or continue - a professional career requiring independent scientific performance. Students are taught the knowledge and skills needed to communicate with experts from different disciplines allowing them to play a key role in complex environmental and sustainability issues. Most graduates enter careers in environmental consultancy, research and management, while others are involved in policy development and higher education.

Alumna Charlotte Van Erp Taalman Kip.
Upon graduation, Charlotte started working as environmental consultant at MWH Global. Two years later, she continued her career at the water board Hollandse Delta as innovation engineer. She works together with different parties for implementing innovative and sustainable ideas. One project she is involved in is an initiative of all water boards that focuses on the recovery of valuable compounds in sewage. “It’s time to see our sewage not as a dirty waste stream, but as a valuable resource. We should not destroy this potential of sewage. On the contrary, it is our duty to recover and reuse all its valuable components.”

Related programmes:
MSc Climate Studies
MSc Urban Environmental Management
MSc Earth and Environment
MSc Forest and Nature Conservation
MSc Aquaculture and Marine Resource Management.

Read less
The MSc in Environmental Assessment and Management (EAM) examines the principles, procedures and methods of EAM against the background of current UK, European and international environmental policy. Read more
The MSc in Environmental Assessment and Management (EAM) examines the principles, procedures and methods of EAM against the background of current UK, European and international environmental policy.

The course covers the complementary roles of natural resource management and planning within core areas of EAM such as Environmental and Social Impact Assessment (ESIA), as well as new and evolving fields such as mitigation banking, climate change adaptation, environmental inequality, ecosystem services, and strategic environmental assessment (SEA) and sustainability appraisal.

The course is accredited by the Royal Institution of Chartered Surveyors (RICS) and the Royal Town Planning Institute (RTPI). On completing the course, students are ideally placed to undertake the exams for the Institute of Environmental Management and Assessment (IEMA) Associate Membership.

Why choose this course?

Staff that teach on the MSc have published widely, including authoring the leading textbooks in Environmental Impact Assessment and Strategic Environmental Assessment . Our teaching is always informed by the latest developments in theory and in practice. The teaching team regularly undertake related applied research and consultancy work with respected environmental consultancies such as ERM, WSP / Parsons Brinckerhoff, and Land Use Consultants, as well as the European Union, UK public sector bodies and NGOs. The course has excellent links with the professional practitioner community. Our contacts from industry provide valuable inputs via guest lecture sessions that serve to bring real-world experience to the programme, in addition to providing the opportunity for you to meet with potential employers.

Potential employers are familiar with the programme content and delivery and regularly approach the course team in search of our graduates. You will have regular opportunities to gain real world experience, ranging from dissertation research with the RSPB, TVERC and consultancies, and applied coursework with Grundon, to voluntary work with the Environmental Information Exchange. Excellent feedback from employers, "Both our environmental and planning teams have recruited graduates from the Oxford Brookes MSc courses. We find that the graduates from these courses have a wide range of interests and are well rounded candidates in terms of their environmental and planning knowledge." - URS

Professional accreditation

The MSc in Environmental Assessment and Management is fully accredited by the Royal Institution of Chartered Surveyors (RICS). This means that on graduation, students can progress to complete the Assessment of Professional Competence programme of RICS in order to become full members.

The course is also accredited by the Royal Town Planning Institute (RTPI) as a specialist Master's programme. Students who wish to progress to Chartered Membership of the RTPI with the MSc EAM must also complete an accredited PG Diploma qualification in spatial planning - please refer to http://www.rtpi.org.uk for further information regarding accreditation.

This course in detail

The MSc course consists of three core modules, three optional modules and a dissertation (representing 180 level 7 credits). The PGDip consists of three core modules and three options (representing 120 level 7 credits).

Please note: as courses are reviewed regularly, the module list you choose from may vary from that shown here.

The core modules:
-Principles of Environmental Assessment and Management (20 credits)
-Procedures and Methods of EIA (double module, 40 credits)

The dissertation element comprises:
-Research Methods (half module, 10 credits)
-Dissertation (50 credits)

One single module generally involves one taught session per week over the 12 weeks of the semester.

Optional modules provide an opportunity for students to widen or deepen their field of study. There are three types of optional module. Recommended Optional Modules are considered to be particularly relevant to the course and include:
-Ecosystem Degradation and Management
-Environmental Management Systems
-GIS and Environmental Modelling
-Strategic Environmental Assessment (SEA)
-Spatial Planning in Action

Alternative Optional Modules are normally selected from an approved list of courses currently running in the university, including Globalisation, Environment and Development; Environmentally Sustainable Business; and International Transport Planning.

Independent Study Module involves individual work on an appropriate topic or set of topics, conducted under supervision and with prior approval of the programme leaders. No more than one independent study unit may be included in a programme.

Teaching and learning

The teaching and learning methods used in the programme reflect the wide variety of topics and techniques associated with EAM. Lectures provide the essential background and knowledge base for each module and workshops, seminars and project work provide opportunities for analysis and synthesis of this information.

The programme will also offer site visits (included in course fees), where appropriate, to provide direct experience of the important issues in environmental assessment and management.

A wide range of staff are involved in teaching on the programme. Most are from the Faculty of Technology, Design and Environment and the Faculty of Health and Life Sciences.

Our contacts from industry provide valuable inputs via guest lecture sessions including speakers from the Institute of Environmental Assessment and Management, regulatory bodies such as the Environment Agency and the Planning Inspectorate, and leading environmental consultancies such as ERM, AECOM, WSP / Parsons Brinckerhoff, and PBA.

These sessions serve to bring real-world experience to the programme, in addition to providing the opportunity for students to meet with potential employers.

A variety of materials and resources, including student experience, is used to provide a varied educational experience and a teaching and learning environment appropriate for graduate students.

The early parts of the programme focus on the background to EAM, particularly on establishing a solid grounding in planning, resource management, and principles of EAM.

Over time, increasing emphasis is placed on the skills required for environmental impact assessment and environmental management, culminating in the preparation of a major environmental impact statement (EIS) project.

Approximately two-thirds of the core-module element of the programme is devoted to environmental assessment, and one-third to environmental management. However, additional training in environmental management can be obtained by the selection of appropriate options.

Advice will be given at Induction on making appropriate choices in relation to students’ interests and intended career paths. The dissertation gives students the opportunity to explore a subject related to EAM in depth, and to integrate the various elements of the programme.

Read less
A Master’s degree in chemistry qualifies you for expert positions in a wide range of fields, such as industry, research or education. Read more
A Master’s degree in chemistry qualifies you for expert positions in a wide range of fields, such as industry, research or education. The chemicals industry is a major employer and one of the largest export industries in Finland. Your work could also involve applications of environmental or biological sciences, the manufacture of pharmaceutical products, or the development of technological materials or new energy solutions. In the private sector, your duties might include research and development, quality management, training or commerce. Customs and forensic chemists, and chemists working in environmental control, analyse samples as part of their duties. Chemical research often requires interdisciplinary and international cooperation. As a chemist, you can be a part of developing new inventions and serve as an expert in your field and as a connoisseur of natural phenomena!

After completing the Master’s Programme in Chemistry and Molecular Sciences, you will:
-Be profoundly familiar with experimental research methods in one or more fields of chemistry, such as analytical and synthetic chemistry, radiochemistry, molecular research, and spectroscopy.
-Have an in-depth knowledge of the theoretical basis of your field and be able to apply this knowledge to broader topics.
-Know how to search for and manage chemical research data and use them to plan and perform demanding duties in chemical laboratories.
-Be able to act as a chemical expert in project planning and management, both independently and as a member of a team.
-Be able to present your results accurately in accordance with the practices of the field, both orally and in writing, and prepare extensive papers and reports.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

In the Master’s programme, you will deepen the knowledge and skills acquired during your Bachelor’s degree studies. Depending on your choices, you will familiarise yourself with one or more branches of chemistry and learn modern research methodology. The studies include lecture courses, examinations and contact teaching, laboratory courses, presentation series and seminars. Compared to the Bachelor’s degree, these studies require more independent work. The Master’s degree culminates in an extensive Master’s thesis that includes practical research. You can find further details about the studies in the course catalogue (in Finnish) and on WebOodi - http://www.helsinki.fi/ml/opinto-opas/index.html

Students are automatically granted admission to the Master’s programme through the Bachelor’s Programme in Chemistry at the University of Helsinki. You can also apply for the programme after completing an applicable Bachelor’s degree in a different programme or university.

Selection of the Major

In the Master’s programme, you may select study modules from different special fields of chemistry according to your interests and career goals. You can either complete a broad-ranging degree by selecting studies from several modules or specialise in a specific branch of chemistry. In connection with the Master’s programme operates also the international programme Advanced Spectroscopy in Chemistry, where you have the possibility to apply. You will receive assistance in preparing your personal study plan from your student advisor.

Career Prospects

Chemistry is needed in many sectors. Similarly, Master’s studies in chemistry allow you to specialise in many kinds of tasks. In your Master’s degree studies, you will familiarise yourself thoroughly with at least one branch of chemistry, after which you will be qualified to work in demanding expert positions. As a Master’s graduate, you can apply for postgraduate study in a doctoral programme. Approximately one quarter of chemistry graduates continue to complete a doctorate.

As a chemical expert you can embark on a career in industry, research or education, or in the business sector. Your work might also involve applications of environmental or biological sciences, the manufacture of pharmaceutical products, or the development of technological materials or new energy solutions. Potential employers include private companies, research and educational institutes, public agencies and supervisory authorities. A traineeship completed during your studies could help you to choose your career. Chemistry is an international field, so there are also plenty of career opportunities abroad and in international organisations.

Internationalization

An international learning environment: The Master’s Programme in Chemistry and Molecular Sciences accepts students through an international admissions procedure. Lectures are in English. Students of the international Master’s Programme in Advanced Spectroscopy in Chemistry, as well as several exchange students further increase the international scope. In addition, the Department includes several international teachers and researchers. Chemical research is an international effort, and research groups at the University of Helsinki have several international partners.

Student exchange: The University of Helsinki has student exchange agreements with several foreign universities, so you can complete part of your degree abroad. Once you have completed your Master’s degree, you can pursue doctoral studies at a foreign university. The Master’s degree in chemistry completed at the University of Helsinki has been certified with the Euromaster® quality label, which guarantees the recognition of the degree at European universities.

Language studies: The University of Helsinki offers a wide range of opportunities for improving your language skills.

Research Focus

Chemical research is multifaceted and extensively covers the methodology of different branches of chemistry. Operations have been divided into three research programmes: Molecular Sciences, Materials Chemistry, and Synthesis and Analysis. In addition, the Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN) operates at the Department. The Unit of Chemistry Teacher Education actively researches the teaching of chemistry and the development of teaching methods.

Chemical research methods range from laboratory work to demanding equipment technologies, computational research and modelling. Research projects are often multidisciplinary. Researchers at the Department of Chemistry have joint projects with University units in the fields of, for example, physics, biological sciences, pharmacy and medicine. Other key partners include Aalto University, VTT Technical Research Centre of Finland and many universities, research institutes and companies in Finland and abroad.

Read less
This MSc course addresses scientific, technological and legislative aspects of the diagnosis (analysis and assessment) and management (remediation and restoration) of important environmental issues concerned with contaminated land, water quality, air pollution and waste. Read more
This MSc course addresses scientific, technological and legislative aspects of the diagnosis (analysis and assessment) and management (remediation and restoration) of important environmental issues concerned with contaminated land, water quality, air pollution and waste.

It has been designed with industry advice to enable good science and engineering graduates begin and advance successful careers in the environmental sector, and pursue postgraduate scientific research. The MSc is delivered in first-class teaching and research facilities by a dedicated team of internationally renowned environmental scientists, and presents considerable interaction with environmental consultancies and engineers, industry, local and regulatory authorities, and research institutes.

During 2007-2011, the course was supported by 6 NERC studentships, the most awarded annually to an environmental MSc. Students on the course have won the most EMpower research projects funded by companies within the nuclear industry, and since 2008, a Prize for Best Performance Overall has been awarded annually by Arup, a global environmental engineering and consultancy company.

See the website https://www.royalholloway.ac.uk/earthsciences/coursefinder/mscenvironmentaldiagnosismanagement.aspx

Why choose this course?

- The quality of teaching and learning on the course is enhanced considerably by significant professional networking and interaction with leading experts from environmental consultants and engineers, industry, local and regulatory authorities, and universities and research institutes; who present seminars, host study visits, co-supervise research projects, and act as an advisory panel.

- Graduates of the course are skilled and knowledgeable scientists with excellent employment prospects within the environmental sector, particularly as environmental consultants and engineers, in local and regulatory authorities, industry, charitable trusts, and research institutes and universities.

- In the 2008 Research Assessment Exercise (RAE), the Department’s research was ranked equal 6th in the UK with 70% rated as world-leading or internationally excellent in terms of originality, significance and rigour.

Course content and structure

You will study seven taught modules, three case studies and complete an Independent Research Project:

- Communication & Co-operation Skills
Provides practical training in written and verbal communication media; project, team and time management; role playing in environmental impact assessment; careers advice and a mock job interview.

- Environmental Inorganic Analysis
A practical laboratory and field-work based introduction to quality assured sampling strategies, preparation processes and analytical methods for heavy metals in soils, surface waters, and vegetation.

- Diagnostic & Management Tools
Provides practical computer-based training in statistical analysis of environmental data, geographical information systems, and environmental risk assessment.

- Environmental Organic Chemistry Pathways Toxicology
Comprises physical and chemical properties, transport, fate and distribution, and toxicology of organic compounds in the environment.

- Contaminated Land Case Study
A practical laboratory and field-work based human health risk assessment of pollutant linkages at a former gravel extraction and landfill site. It comprises desk-top study, site investigation and sampling, laboratory analysis, data interpretation, quantitative risk assessment, and remediation options.

- Water Quality: Diagnosis & Management
A practical laboratory and field-work based introduction to aquatic science, hydrogeology, treatment of water and wastewater, and chemical, biological and physical monitoring of water quality. Includes a study visit to a global manufacturer of pesticides and herbicides.

- River Thames Basin Case Study
A combination of fieldwork, laboratory work and desk-top study to diagnose water quality in chemical and ecological terms, to identify industrial and agricultural pollutant linkages, and to determine environmental, ecological and health impacts.

- Air Pollution: Monitoring, Impacts & Management
Covers: sources, sinks, dispersion, conversion, monitoring, impacts and management of air pollutants with study visits to a local authority and a government research institute.

- Royal Holloway Campus Air Quality Case Study
Involves a consultancy company-style investigation of ambient and indoor air quality within the confines of RHUL campus; and combines desk-top research with practical fieldwork and laboratory analysis.

- Waste Management & Utilisation
Considers municipal, industrial and radioactive waste management options, with study visits to a landfill site, a waste incinerator, composting facility, recycling centre and nuclear power station.

- Independent Research Project
Consists of a four-month, independent scientific investigation, usually in collaboration with environmental consultants and engineers, local and regulatory authorities, industry, research institutes, and universities. Projects may comprise a desk-top study or practical laboratory and field investigation, they may be funded, and often lead to employment or to PhD research. Final results are presented at the Research Project Symposium to an audience from within the environmental sector

On completion of the course graduates will have acquired the experience, knowledge, and critical understanding to enable them to:

- Conduct themselves as professional environmental research scientists, consultants, and managers, convey in a professional manner, scientific, technical and managerial information, and manage projects and resources efficiently

- Apply quality assured sampling strategies, preparation procedures and analytical systems to quantify health risks posed by inorganic and organic pollutant linkages in soils, waters and air

- Apply statistical analysis, geographical information systems, and environmental impact and risk assessment to the interpretation of environmental data

- Appreciate the importance and impacts of hydro-geological, and bio- and physico-chemical processes on the treatment of water and wastewater, and on the quality of groundwater and aquatic ecosystems

- Appreciate the emissions, dispersion, conversion, and monitoring of natural and man-made gaseous and particulate air pollutants, their impacts on climate change, human health and vegetation, and management on local, regional and global scales

- Appreciate the prevention, re-use, recycling, recovery, disposal and utilisation of municipal and industrial waste and the management of nuclear waste within the constraints of national and international legislation

- Manage an independent environmental science research project, often with professional collaboration, and of significant value to their career development.

Assessment

- Written examinations test understanding of the principles and concepts taught in the modules and case studies, and the ability to integrate and apply them to environmental diagnosis and management.

- Assessment of module work and practical computing, laboratory and fieldwork evaluates critical understanding of the environmental science taught, and mastery of producing quality assured data, and its analysis, interpretation, presentation and reporting.

- Assessment also reflects the ability to work independently and in teams, and to learn during study visits.

- Assessment of research projects is based on the ability to manage and report on an original piece of independent scientific work.

- All assessed work has significant confidential written and verbal feedback.

Employability & career opportunities

94% of the graduates of the MSc from 2008 to 2013 either successfully secured first-destination employment as international environmental consultants and engineers, in industry, local and regulatory authorities and charitable trusts, or are conducting postgraduate research within international research institutes and universities.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. Read more
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. They are designed to provide advanced knowledge and hands-on training in modern analytical instrumental techniques. Separation science, sensors, and spectroscopic techniques are key elements alongside chemometrics, instrumentation and advanced research project completion. You will have the flexibility to specialise in a chosen field and further advancement to PhD research is available to highly motivated and talented postgraduates.

Visit the website: http://www.ucc.ie/en/ckr04/

Course Details

On completion of this course, you will be able to:

- identify, formulate, analyse and solve problems in the analysis of chemical compounds
- outline fundamental and applied aspects of chemical analysis
- design and carry out a method of pharmaceutical and chemical analysis, including instrumental analysis
- prepare written laboratory reports that provide a description of the experiment, explain the experiment and reasoning clearly, and provide an appropriate conclusion
- communicate effectively with the chemistry, environmental and pharmaceutical communities
- carry out research and method development in chemical, pharmaceutical and environmental analysis
- prepare a written research report in the form of a dissertation

Format

The courses consist of a 12 month full-time intensive programme of lectures, laboratory work on set experiments and a dissertation based on individual research and development in the selected field of modern analytical science, under the supervision of an expert staff member. Part-time students may complete the course over 24 months subject to flexible day release from industry.

Core modules

CM6012 Modern Analytical Techniques, Chemical Data Analysis and GLP (10 credits)
CM6013 Separation Science, Sensors and Process Analytical Technology (10 credits)
CM6014 Materials, Pharmaceutical and Bio-analysis (10 credits)
CM6015 Practice of Analytical Chemistry (10 credits)
CM6027 Industry Led Workshops (5 credits)
CM6027 Taught Postgraduate Transferable Skills Development (5 credits)
EV4002 Environmental Monitoring (10 credits)

Research Project Module (30 credits)

CM6021 Research Project and Dissertation in Environmental Analytical Chemistry (30 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#analysis

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees. Students also have the opportunity to travel aboard to do their research project. This highlights the international recognition of the course and the close links established between the course and the relevant institutes.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in future careers as PhD researchers, research projects are offered across a broad range of topics.

Careers

The MSc courses aim to provide you with the necessary skill set to develop methods and solve problems as demanded by many industries today (including pharmaceutical, environmental and forensic analytical laboratories). You are also introduced to research and innovation in analytical science.

Many analytical chemists, pharmaceutical chemical analysts and environmental chemical analysts go on to pursue careers in industry, government and forensic laboratories and opportunities for further research often result.

The course sets out to bridge the gap between the current undergraduate degree knowledge and what is relevant and expected by industry. There is a strong emphasis on developing transferable skills and ensuring that the career path for the student is either industry or academically focused. A large percentage of students gain employment in industry after completion of the course, however a number of graduates also decide to progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Our mission is to educate engineers who can design infrastructures and plan human development while balancing environmental health and the society’s need for better living conditions. Read more

Mission and goals

Our mission is to educate engineers who can design infrastructures and plan human development while balancing environmental health and the society’s need for better living conditions. The MSc in Environmental and Land Planning Engineering focuses on a broad range of interdisciplinary professional capabilities and expertise required to deal with all the issues related to a sustainable utilization of natural resources. We provide a full track in English, which offers a panoply of specialized courses and laboratories addressing all the environmental components, air, water, soil and the biota, and the impacts due to natural hazards and to human activities, as well as their mitigation. We achieve the mission through advanced scientific and technological education.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-land-planning-engineering/environmental-engineering-for-sustainability-track/

Career opportunities

Graduates are expected to be employed in land and environmental service enterprises, engineering firms for design and construction of plants for water and air emissions treatment, energy generation and waste disposal, companies for producing and managing environmental instrumentation, remote sensors and environmental monitoring systems and networks, public authorities and agencies for land planning and control.

The track in Environmental engineering for sustainability is taught in English.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Environmental_Engineering_for_Sustainability.pdf
Our mission is to educate engineers who can design infrastructures and plan human development while balancing environmental health and the society’s need for better living conditions. The MSc in Environmental and Land Planning Engineering focuses on a broad range of interdisciplinary professional capabilities and expertise required to deal with all the issues related to a sustainable utilization of natural resources. We provide a full track in English, which offers a panoply of specialized courses and laboratories addressing all the environmental components (air, water, soil and the biota) and the impacts due either to natural hazards or to human activities, as well as their mitigation. We achieve the mission through advanced scientific and technological education.
Graduates are expected to be employed in land and environmental service enterprises, engineering firms for design and construction of plants for water and air emissions treatment, energy generation and waste disposal, companies for producing and managing environmental instrumentation, remote sensors and environmental monitoring systems and networks, public authorities and agencies for land planning and control.
The track in Environmental engineering for sustainability is taught in English.

Subjects

Available courses include: chemistry for sustainability, soil remediation, engineering and process technologies for water, air and solid wastes treatment, hydrology and hydraulic engineering, ecology, energy systems technologies, environmental impact assessment and quality evaluation, environmental systems engineering and management, geotechnical and seismic engineering, water, land and soil resource management, surface and subsurface water quality modelling and evaluation.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-land-planning-engineering/environmental-engineering-for-sustainability-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-land-planning-engineering/environmental-engineering-for-sustainability-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Penn’s Master of Chemical Sciences is designed for your success. Chemistry professionals are at the forefront of the human quest to solve ever-evolving challenges in agriculture, healthcare and the environment. Read more
Penn’s Master of Chemical Sciences is designed for your success
Chemistry professionals are at the forefront of the human quest to solve ever-evolving challenges in agriculture, healthcare and the environment. As new discoveries are made, so are new industries — and new opportunities. Whether you’re currently a chemistry professional or seeking to enter the field, Penn’s rigorous Master of Chemical Sciences (MCS) builds on your level of expertise to prepare you to take advantage of the myriad career possibilities available in the chemical sciences. With a faculty of leading academic researchers and experienced industry consultants, we provide the academic and professional opportunities you need to achieve your unique goals.

The Penn Master of Chemical Sciences connects you with the resources of an Ivy League institution and provides you with theoretical and technical expertise in biological chemistry, inorganic chemistry, organic chemistry, physical chemistry, environmental chemistry and materials. In our various seminar series, you will also regularly hear from chemistry professionals who work in a variety of research and applied settings, allowing you to consider new paths and how best to take advantage of the program itself to prepare for your ideal career.

Preparation for professional success
If you’ve recently graduated from college and have a strong background in chemistry, the Master of Chemical Sciences offers you a exceptional preparation to enter a chemistry profession. In our program, you will gain the skills and confidence to become a competitive candidate for potential employers as you discover and pursue your individual interests within the field of chemistry. Our faculty members bring a wealth of research expertise and industry knowledge to help you define your career direction.

For working professionals in the chemical or pharmaceutical industries, the Master of Chemical Sciences accelerates your career by expanding and refreshing your expertise and enhancing your research experiences. We provide full- and part-time options so you can pursue your education without interrupting your career. You can complete the 10-course program in one and a half to four years, depending on course load.

The culminating element of our curriculum, the capstone project, both tests and defines your program mastery. During the capstone exercise, you will propose and defend a complex project of your choice, that allows you to stake out a new professional niche and demonstrate your abilities to current or prospective employers.

Graduates will pursue fulfilling careers in a variety of cutting-edge jobs across government, education and corporate sectors. As part of the Penn Alumni network, you’ll join a group of professionals that spans the globe and expands your professional horizons.

Courses and Curriculum

The Master of Chemical Sciences degree is designed to give you a well-rounded, mechanistic foundation in a blend of chemistry topics. To that end, the curriculum is structured with a combination of core concentration courses and electives, which allow you to focus on topics best suited to your interests and goals.

As a new student in the Master of Chemical Sciences program, you will meet with your academic advisor to review your previous experiences and your future goals. Based on this discussion, you will create an individualized academic schedule.

The Master of Chemical Sciences requires the minimum completion of 10 course units (c.u.)* as follows:

Pro-Seminar (1 c.u.)
Core concentration courses (4-6 c.u., depending on concentration and advisor recommendations)
Elective courses in Chemistry, such as computational chemistry, environmental chemistry, medicinal chemistry, catalysis and energy (2-4 c.u., depending on concentration and advisor recommendations)
Optional Independent Studies (1 c.u.)
Capstone project (1 c.u.)
Pro-Seminar course (CHEM 599: 1 c.u.)
The Pro-Seminar will review fundamental concepts regarding research design, the scientific method and professional scientific communication. The course will also familiarize students with techniques for searching scientific databases and with the basis of ethical conduct in science.

Concentration courses
The concentration courses allow you to develop specific expertise and also signify your mastery of a field to potential employers.

The number of elective courses you take will depend upon the requirements for your area of concentration, and upon the curriculum that you plan with your academic advisor. These concentration courses allow you to acquire the skills and the critical perspective necessary to master a chemical sciences subdiscipline, and will help prepare you to pursue the final capstone project (below).

You may choose from the following six chemical sciences concentrations:

Biological Chemistry
Inorganic Chemistry
Organic Chemistry
Physical Chemistry
Environmental Chemistry
Materials
Independent Studies
The optional Independent Studies course will be offered each fall and spring semester, giving you an opportunity to participate in one of the research projects being conducted in one of our chemistry laboratories. During the study, you will also learn analytical skills relevant to your capstone research project and career goals. You can participate in the Independent Studies course during your first year in the program as a one-course unit elective course option. (CHEM 910: 1 c.u. maximum)

Capstone project (1 c.u.)

The capstone project is a distinguishing feature of the Master of Chemical Sciences program, blending academic and professional experiences and serving as the culmination of your work in the program. You will develop a project drawing from your learning in and outside of the classroom to demonstrate mastery of an area in the chemical sciences.

The subject of this project is related to your professional concentration and may be selected to complement or further develop a work-related interest. It's an opportunity to showcase your specialization and your unique perspective within the field.

Your capstone component may be a Penn laboratory research project, an off-campus laboratory research project or a literature-based review project. All components will require a completed scientific report. It is expected that the capstone project will take an average of six months to complete. Most students are expected to start at the end of the first academic year in the summer and conclude at the end of fall semester of the second year. Depending on the capstone option selected, students may begin to work on the capstone as early as the spring semester of their first year in the program.

All capstone project proposals must be pre-approved by your concentration advisor, Master of Chemical Sciences Program Director and if applicable, your off-campus project supervisor. If necessary, nondisclosure agreements will be signed by students securing projects with private companies. Additionally, students from private industry may be able to complete a defined capstone project at their current place of employment. All capstone projects culminate in a final written report, to be graded by the student's concentration advisor who is a member of the standing faculty or staff instructor in the Chemistry Department.

*Academic credit is defined by the University of Pennsylvania as a course unit (c.u.). Generally, a 1 c.u. course at Penn is equivalent to a three or four semester hour course elsewhere. In general, the average course offered at Penn is listed as being worth 1 c.u.; courses that include a lecture and a lab are often worth 1.5 c.u.

Read less
Conserve our environment for future generations – work with industry and governments to reduce human impacts and provide solutions to environmental problems. Read more
Conserve our environment for future generations – work with industry and governments to reduce human impacts and provide solutions to environmental problems. MSc Environmental Consultancy will help launch your career, giving you the skills and knowledge required for a job in the environment sector. Maximise your career prospects by learning the latest techniques used in the management and assessment of environmental impact, and develop your practical skills with an eight week industry placement.

Key features

-Embark on an eight week work placement in the environmental sector which will give you an invaluable insight into the environmental business sector and, in many cases, has led to permanent positions being offered by employers. See the organisations we partner with to provide student placements.
-Work towards achieving chartered environmentalist status through your masters. The award has also received considerable support and recognition from employers and professional bodies such as the Institute of Environmental Management and Assessment (IEMA).
-Benefit from our expertise in areas including species and habitat restoration, evaluation of contaminated water and terrestrial environments, environmental law, geographical information systems, waste management and marine surveys.
-Take the opportunity to carry out your own environmental impact assessment, from data acquisition to production of a full environmental statement.
-Investigate through field work how environmental issues and constraints have been managed in the South West and further afield.
-Use the University’s high specification analytical equipment for environmental monitoring and the research vessel, Falcon Spirit, for marine sampling.
-Undertake a research-based project – you’ll be encouraged to develop a solution to a problem-based research question, working where possible in association with industry and your academic advisor.
-All modules are assessed 100 per cent by coursework, designed to reflect the outputs of the industry, readying you for what you are likely to be asked to do in your job.

Course details

Learn from our environmental management expertise in areas including ecological impact assessment, protected species and habitat survey, pollution prevention, evaluation of contaminated environments, water resource management, geographical information systems, waste minimisation and marine ecological survey. The programme consists of a 12 week and 7 week period of taught modules with an 8 week environmental sector work placement and 18 week dissertation period. Modules are assessed 100 per cent by coursework and designed to mirror professional practice. You’ll be provided with subject-specific knowledge and training in research methods. You’ll carry out an environmental impact assessment, from data acquisition to public inquiry, and develop your field survey skills over the equivalent of two weeks. Practising consultants give you an insight into opportunities within the environmental sector and you’ll hear how environmental management can help protect the environment and save money.

Core modules
-ENVS5004 Work Placement Project
-GEES515 Professional Practice in the Environmental Sector
-GEES517 Environmental Assessment
-GEES519 Environmental Knowledge: From Field to Stakeholder
-GEES520 MSc Dissertation

Optional modules
-MAR515 Management of Coastal Environments
-GEES505 Sustainable Management of Freshwater Ecosystems
-MATH500 Big Data and Social Network Visualization
-ENVS5003 Ecological Survey Evaluation and Mitigation
-ENVS5002 Investigation and Assessment of Contaminated Environments
-GEES506 Climate Change: Science and Policy
-CHM5002 Analytical Chemistry Principles
-MATH501 Modelling and Analytics for Data Science

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Master of Chemistry in Environmental Forensics offers an exciting education using active learning and providing practical experience in close cooperation with the industry and environmental researchers. Read more
Master of Chemistry in Environmental Forensics offers an exciting education using active learning and providing practical experience in close cooperation with the industry and environmental researchers.

Environmental forensics is the systematic and scientific evaluation using various disciplines for the purpose of developing defensible scientific and legal conclusions regarding the source, age and history of chemical pollutants released into the environment. You, together with industry and leading researchers, have the opportunity to develop the knowledge needed for you to contribute to a future resilient society. The education offers insight in several disciplines including analytical and environmental analysis in order to characterize the source and amount of chemical pollutants in the environment as well as describing their history. In order to facilitate a broad understanding of the specialities involved in Environmental Forensics, the curriculum will include a wide-range of multidisciplinary expertise within natural sciences such as environmental science, isotope chemistry, environmental sampling, advanced statistics, and transportation modelling. To ensure that the students gain practical field experience, real-life cases are provided in collaboration with the industry. The education use problem-based learning (PBL) to encourage active learning and to develop problem solving abilities. These skills will be used to identify sources and history of environmental pollution. The program is a two-year programme but can be finished after one year resulting in a 60 credit Master of Science degree in Chemistry. Year one deals with distribution of environmental pollutions, environmental toxicology, forensic analytical methods and environmental agreements. Year two includes advanced statistical methods, research methodology and project management. Both alternatives ends with a project work in a research group and/or with industry.

Read less
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. Read more
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. They are designed to provide advanced knowledge and hands-on training in modern analytical instrumental techniques. Separation science, sensors, and spectroscopic techniques are key elements alongside chemometrics, instrumentation and advanced research project completion. You will have the flexibility to specialise in a chosen field and further advancement to PhD research is available to highly motivated and talented postgraduates.

Visit the website: http://www.ucc.ie/en/ckr03/

Course Details

On completion of this course, you will be able to:

- identify, formulate, analyse and solve problems in the analysis of chemical compounds
- outline fundamental and applied aspects of chemical analysis
- design and carry out a method of pharmaceutical and chemical analysis, including instrumental analysis
- prepare written laboratory reports that provide a description of the experiment, explain the experiment and reasoning clearly, and provide an appropriate conclusion
- communicate effectively with the chemistry, environmental and pharmaceutical communities
- carry out research and method development in chemical, pharmaceutical and environmental analysis
- prepare a written research report in the form of a dissertation

Format

The courses consist of a 12 month full-time intensive programme of lectures, laboratory work on set experiments and a dissertation based on individual research and development in the selected field of modern analytical science, under the supervision of an expert staff member. Part-time students may complete the course over 24 months subject to flexible day release from industry.

Core modules

CM6012 Modern Analytical Techniques, Chemical Data Analysis and GLP (10 credits)
CM6013 Separation Science, Sensors and Process Analytical Technology (10 credits)
CM6014 Materials, Pharmaceutical and Bio-analysis (10 credits)
CM6015 Practice of Analytical Chemistry (10 credits)
CM6026 Industry Led Workshops (5 credits)
CM6027 Taught Postgraduate Transferable Skills Development (5 credits)

Elective modules

EV4002 Environmental Monitoring (10 credits)
PF6301 Biopharmaceuticals: Formulation Design, Secondary Processing and Regulatory Compliance (10 credits)

Research Project Module (30 credits)

CM6020 Research Project and Dissertation in Analytical Chemistry (30 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#analysis

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees. Students also have the opportunity to travel aboard to do their research project. This highlights the international recognition of the course and the close links established between the course and the relevant institutes.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in future careers as PhD researchers, research projects are offered across a broad range of topics.

Careers

The MSc courses aim to provide you with the necessary skill set to develop methods and solve problems as demanded by many industries today (including pharmaceutical, environmental and forensic analytical laboratories). You are also introduced to research and innovation in analytical science.

Many analytical chemists, pharmaceutical chemical analysts and environmental chemical analysts go on to pursue careers in industry, government and forensic laboratories and opportunities for further research often result.

The course sets out to bridge the gap between the current undergraduate degree knowledge and what is relevant and expected by industry. There is a strong emphasis on developing transferable skills and ensuring that the career path for the student is either industry or academically focused. A large percentage of students gain employment in industry after completion of the course, however a number of graduates also decide to progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
This master's programme focuses on the analysis of dynamic environments. past. present, and future. Concerns over human impacts on the environment have stimulated demand from governments and industry for the monitoring, analysis and modelling of natural processes in environmental systems. Read more
This master's programme focuses on the analysis of dynamic environments: past. present, and future. Concerns over human impacts on the environment have stimulated demand from governments and industry for the monitoring, analysis and modelling of natural processes in environmental systems. This is essential if we are to improve understanding of the interrelation of environmental variables in order to predict and manage their responses to anthropogenic perturbations.

You will gain:
-Advanced theoretical knowledge and practical expertise in order to collect, interpret and analyse contemporary and past environmental data.
-Modelling skills, in order to investigate the interrelationships between environmental variables, and to predict their responses to changing internal and external conditions.
-Intellectual and practical skills, in order to design and undertake field and/or laboratory experiments in contemporary environmental process-monitoring, or palaeoenvironmental reconstruction, and to design and test appropriate environmental models with the data you collect.

These skills are highly relevant if you wish to pursue a career in environmental management, or consultancy, and provide a firm grounding for research in the environmental sciences. Dr Jason Dortch directs the course, with input from other physical geographers working on a wide variety of aspects of environmental change. Current research includes:
-Measurements and predictions of climate change
-Glaciers and ice sheets (past and present)
-Biogeography
-Palaeoecology
-Environmental pollution
-Upland geomorphology (low relief, e.g. British uplands, and high relief, e.g. Himalayas)
-Remote sensing for environmental management
-Moorland erosion control
-Hydrology
-Water resource management
-Fire management
-Tectonic geomorphology

We also use the proximity of Manchester to the upland areas of the Peak District; several past MSc students completed dissertation work in close collaboration with various organisations responsible for land management in the Peak District, giving their work direct policy relevance.

Aims

Teaching focuses on training in theory, concepts and research skills in the first semester, and practical applications and research experience in the second semester.

We teach course units in small-group interactive styles with a mix of lectures, tutorials, seminars, practicals and presentations. A range of physical geographers provide training in their specialised fields, covering both content and practical research methods.
In a typical week, expect to spend some time in the library, preparing for seminars; in the laboratory, completing practicals; in the dedicated postgraduate computer laboratory, or writing reports; and in the classroom.

The second semester in particular gives you increased opportunities to go out into the field, both for practicals and to gain research experience by doing field research with members of staff. We maintain an intensively monitored catchment on the moors near the Snake Pass in the Peak District and this is the focus of several practical exercises, as well as a source of data to support dissertation work.

Field and laboratory research are essential to your learning process in environmental monitoring, and these form integrated parts of both the taught units and dissertation work.

Career opportunities

In the second semester, various speakers from environmental employers visit the department to give a flavour of their work and advice on employment.

The MSc in Environmental Monitoring, Modelling and Reconstruction has an excellent track record in providing a springboard for students to go on to careers in environmental industries, consultancies and government agencies, or to further research for higher degrees.

Recent graduates have found employment in agencies like the UK Atomic Energy Authority, The Environment Agency, Natural England and a range of environmental consultancies. Others have moved on to undertake full-time research for a PhD.

Read less
Environmental Monitoring, Modelling and Management enables you to gain a deeper understanding of environmental processes and techniques for managing environmental change. Read more
Environmental Monitoring, Modelling and Management enables you to gain a deeper understanding of environmental processes and techniques for managing environmental change. Study how to assess the causes and manage the consequences of environmental, climatic and land use change. Students choose to take either a research or a consultancy stream.

Key benefits

- Focuses on the delivery of important technical skills (GIS, Remote Sensing, modelling and monitoring).

- Students form strong links with departmental research groups and external organisations in the UK and beyond.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/environmental-monitoring-modelling-and-management-msc.aspx

Course detail

- Description -

The MSc Environmental Monitoring, Modelling and Managementprogramme provides advanced-level core training in environmental modelling and monitoring, remote sensing and Geographical Information Systems (GIS), and in the research methods training required to use them effectively. Modules examine how to assess the causes and consequences of environmental, climatic and land-use change. Students can opt for a research pathway or a consultancy pathway. The two pathways share key training elements. The research pathway links a student with a departmental research group working on research aspects of environmental modelling and monitoring, and is designed explicitly for those going on to a career in research. The consultancy pathway focuses on the application of key training to environmental management, and is designed for those who wish to use their skills directly in environmental management.

- Course purpose -

For those seeking a deeper understanding of environmental processes and techniques for managing environmental change. Provides advanced-level training in the application of environmental modelling and monitoring, remote sensing and geographical information systems (GIS) to environmental management and the prevention, mitigation or adaptation to environmental change.

- Course format and assessment -

Specialist taught modules assessed by report, presentation, lab work and occasionally by examination. The three-month dissertation is compulsory and can be taken overseas or in the UK.

Career prospects

National or international consultancies and NGOs; private and public service research and management; further higher level research in UK and overseas universities and research centres.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
The University of Venice offers a MSc (Master of Science/Laurea Magistrale) degree in "Environmental Sciences" which includes three available study plans; among them, the Global Environmental Change is taught entirely in English (http://www.unive.it/nqcontent.cfm?a_id170980). Read more

Overview

The University of Venice offers a MSc (Master of Science/Laurea Magistrale) degree in "Environmental Sciences" which includes three available study plans; among them, the Global Environmental Change is taught entirely in English (http://www.unive.it/nqcontent.cfm?a_id=170980)

Joint degree

The Msc programme in Enviromental Sciences offers the possibility of getting a Joint Master's Degree in Sustainable Development (http://www.unive.it/nqcontent.cfm?a_id=75952).
The programme offers an interdisciplinary approach, combining the specialisation in teaching and research of 6 partner universities: Graz (Austria), Ca' Foscari Venice, Leipzig (Germany), Utrecht (the Netherlands), Basel (Switzerland), and Hiroshima (Japan).
Admission to the programme is open to students holding the equivalent of an undergraduate/first cycle degree programme (Italian Laurea triennale), who will be selected on the basis of their research skills, basic knowledge of natural and/or social sciences, and a general insight in the subject of sustainable development and intervention strategies.

The study plans

The programme unfolds into three semesters of full-time lectures and lab experience. The last semester is dedicated to the development of individual projects and of the thesis, supervised by a department member. Each study plan is organized around a set of core courses, two elected activities and a final examination, in which the candidates will defend the thesis.

Students can choose among three study plans:

Global Environmental Change [English-taught Programme], which provides a thorough understanding of Earth System dynamics, taking a holistic and systemic approach, which also include the social and economic systems. Several disciplines are covered, including: climatology, past and recent climate history, tools for predicting changes in climate, analysis and forecasting of the impacts of climate change on the environment, society and human welfare, adaptation and mitigation strategies, integrated assessment of global change drivers.

Environmental Control and Reclamation [IT] which provides advanced knowledge and skills related to the analysis of the processes that contribute to the de-contamination and environmental qualification; technologies currently in use for the treatment of solid, liquid and gaseous fuels and their energy conversion; methodologies for environmental monitoring; productive activities and sustainable rehabilitation of the environment.

Assessment and Management of Environmental Systems [IT], which provides in-depth knowledge intended application and development of methodologies for the management of environmental data; the assessment and management of natural resources; the resource assessment of natural ecosystems; rehabilitation and environmental restoration of ecosystems modified by man; planning and land management, landscape and marine and coastal ecosystems; the assessment and management of environmental sustainability.

Applying to the programme

In order to enter the programme, applicants need to have an equivalent of a three-year Italian undergraduate degree (laurea) such as a BSc degree in Environmental Sciences or related subjects (Biology, Chemistry, Engineering, ecc.) with good background on fundamental topics in Biology, Chemistry, Geology, Mathematics, Physics, Data Sciences.

When and how to apply

The classes start in September. Please note that it is best to apply as early as possible. Applications are made directly to Ca' Foscari University of Venice. For full details visit How to apply, or contact the Administration office () or the Head of the teaching committee ().

Graduate careers & Occupational Profiles

Students graduating from the MSc in Environmental Sciences may use their new skills to enhance their employment prospects in work related to their first degree. In particular this MSc will suit skilled motivated science graduates wishing to develop a scientific career in ecosystem research as well as those aiming to contribute to evidence-based environmental policy. Graduates interested in foundational, experimental, and applied research, can join Ca' Foscari PhD Programmes in Environmental Sciences or in Science and Management of Climate Change.
Possible career opportunities include:
- Geologist
- Biologist and similar professions
- Planning, landscape architecture and territory conservation
- Agriculture and forestry
- Botanist
- Ecologist
- Zoologist

Read less
This market-leading Master's course in Environmental Management addresses the management principles necessary for the successful implementation of sound environmental management practice and legal processes involved in environmental control at a range of scales. Read more
This market-leading Master's course in Environmental Management addresses the management principles necessary for the successful implementation of sound environmental management practice and legal processes involved in environmental control at a range of scales.

The course develops understanding of environmental processes and applies this to both the legal framework and management decision-making activities. The course seeks to raise your ability to understand and analyse environmental problems at Master's level, in order to develop solutions.

You will be presented with the tools needed for environmental management, including project management, life cycle analysis, accounting and reporting, environmental reviews and audits. The course includes the processes and legislative approaches related to the reduction of emissions to air, land and water, and the effects of pollution together with the legislative framework in which they are set.

Accreditation

The MSc in Environmental Science: Legislation and Management is accredited by the Institution of Environmental Sciences (IES) and the Chartered Institution of Water and Environmental Management (CIWEM). This entitles students to free student membership of the IES and CIWEM.

Scholarships

For our September intake we have 2 specific scholarship schemes available: the Queen's Anniversary Prize Scholarships provide 6 x £3000 fee waiver scholarships to our best applicants (no additional application is required for these); and the £4000 Water Conservators Bursary is awarded to one student who writes the essay on water and the environment (some years we split the scholarship between 2 exceptional applicants). Brunel Univeristy London also has some scholarship schemes available for applicants to any MSc programme.

Designed to suit your needs

This MSc course can be taken in part-time (from 1 day a week for 2 years) or full-time (from 2 days a week for 1 years) mode. Students can start in September or January.

Employability

Our alumni have gone on to work in key public and private sector organisations as well as more entrepreneurial pursuits. Employability is a major focus within the university with support for transferable skills, CV and application writing, interview skills and opportunities for internships and work placements.

Course modules

Compulsory modular blocks

- Environmental Law (15 credits)
- Environmental Hazards and Risk (15 credits)
- Environmental Management (15 credits)
- Sustainable Development in Practice (15 credits)
- Biosphere (15 credits)
- Research and Critical Skills in Environmental Science (15 credits)
- Dissertation (60 credits)

Optional modular blocks
Students normally choose 1 module from Group A and 1 module from Group B. (If desired, students are also able to choose “no modules from Group A and 2 modules from Group B” or “2 modules from Group A and no modules from Group B” but must understand that this unbalances the 2 terms: 45:75 or 75:45 credits as opposed to 60:60.)

Group A (pick 1)
- Environment, Health and Societies
- Climate Change: Science and Impacts
- Chemical Regulation and Legislation in the EU
- Environmental Modelling

Group B (pick 1)
- Current Practice in Chemical Risk Assessment
- Clean Technology
- Climate Change Mitigation and Adaptation
- GIS and Data Analysis

Dissertation (60 credits)

Read less
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Read more
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Not only must further research be done, but industry and business also need environmental specialists with a strong background in natural sciences. As new regulations and European Union directives are adopted in practice, people with knowledge of recent scientific research are required.

Upon graduating from the Programme you will have competence in:
-Applying experimental, computational and statistical methods to obtain and analyse atmospheric and environmental data.
-Knowledge applicable to solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.
-Making systematic and innovative use of investigation or experimentation to discover new knowledge.
-Reporting results in a clear and logical manner.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The six study lines are as follows:
Aerosol Physics
Aerosol particles are tiny liquid or solid particles floating in the air. Aerosol physics is essential for our understanding of air quality, climate change and production of nanomaterials. Aerosol scientists investigate a large variety of phenomena associated with atmospheric aerosol particles and related gas-to-particle conversion using constantly improving experimental, theoretical, model-based and data analysis methods. As a graduate of this line you will be an expert in the most recent theoretical concepts, measurement techniques and computational methods applied in aerosol research.

Geophysics of the Hydrosphere
Hydrospheric geophysics studies water in all of its forms using physical methods. It includes hydrology, cryology, and physical oceanography. Hydrology includes the study of surface waters such as lakes and rivers, global and local hydrological cycles as well as water resources and geohydrology, the study of groundwater. Cryology focuses on snow and ice phenomena including glacier mass balance and dynamics, sea ice physics, snow cover effects and ground frost. Physical oceanography covers saline water bodies, focusing on describing their dynamics, both large scale circulation and water masses, and local phenomena such as surface waves, upwelling, tides, and ocean acoustics. Scientists study the hydrosphere through field measurements, large and small scale modelling, and formulating mathematical descriptions of the processes.

Meteorology
Meteorology is the physics of the atmosphere. Its best-known application is weather forecasting, but meteorological knowledge is also essential for understanding, predicting and mitigating climate change. Meteorologists study atmospheric phenomena across a wide range of space and time scales using theory, model simulations and observations. The field of meteorology is a forerunner in computing: the development of chaos theory, for example, was triggered by the unexpected behaviour of a meteorological computer model. Meteorology in ATM-MP is further divided into dynamic meteorology and biometeorology. Dynamic meteorology is about large-scale atmospheric dynamics, modelling and observation techniques, whereas biometeorology focuses on interactions between the atmosphere and the underlying surface by combining observations and modelling to study the flows of greenhouse gases and energy with links to biogeochemical cycles, for example. As a graduate of the meteorology line, you will be an expert in atmospheric phenomena who can produce valuable new information and share your knowledge.

Biogeochemical Cycles
Biogeochemistry studies the processes involved in cycling of elements in terrestrial and aquatic ecosystems by integrating physics, meteorology, geophysics, chemistry, geology and biology. Besides natural ecosystems, it also studies systems altered by human activity such as forests under different management regimes, drained peatlands, lakes loaded by excess nutrients and urban environments. The most important elements and substances studied are carbon, nitrogen, sulphur, water and phosphorus, which are vital for ecosystem functioning and processes such as photosynthesis. Biogeochemistry often focuses on the interphases of scientific disciplines and by doing so, it also combines different research methods. It treats ecosystems as open entities which are closely connected to the atmosphere and lithosphere. You will thus get versatile training in environmental issues and research techniques. As a graduate of this line you will be an expert in the functioning of ecosystems and the interactions between ecosystems and the atmosphere/hydrosphere/lithosphere in the context of global change. You will have knowledge applicable for solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.

Remote Sensing
Remote sensing allows the collection of information about the atmosphere, oceans and land surfaces. Various techniques are applied for monitoring the state and dynamics of the Earth system from the ground, aircraft or satellites. While Lidar and radar scan from the surface or mounted on aircraft, instruments on polar orbiting or geostationary satellites permit measurements worldwide. In atmospheric sciences remote sensing has found numerous applications such as observations of greenhouse and other trace gases, aerosols, water vapour, clouds and precipitation, as well as surface observations, for example of vegetation, fire activity, snow cover, sea ice and oceanic parameters such as phytoplankton. Synergistic satellite data analysis enables the study of important processes and feedback in the climate system. Remote sensing advances climate research, weather forecasting, air quality studies, aviation safety and the renewable energy industry. As a graduate of the remote sensing line you will have broad expertise in the operational principles of remote sensing instruments as well as methods of data collection, analysis and interpretation.

Atmospheric Chemistry and Analysis
Atmospheric chemistry studies the composition and reactions of the molecules that make up the atmosphere, including atmospheric trace constituents and their role in chemical, geological and biological processes, including human influence. The low concentrations and high reactivity of these trace molecules place stringent requirements on the measurement and modelling methods used to study them. Analytical chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter and plays an essential role in the development of science. Environmental analysis consists of the most recent procedures for sampling, sample preparation and sample analysis and learning how to choose the best analytical methods for different environmental samples. Physical atmospheric chemistry studies focus on the reaction types and reaction mechanisms occurring in the atmosphere, with emphasis on reaction kinetics, thermodynamics and modelling methods. As a graduate of this line you will have understanding of the chemical processes of the atmosphere and the latest environmental analytical methods, so you will have vital skills for environmental research.

Programme Structure

The basic degree in the Programme is the Master of Science (MSc). The scope of the degree is 120 credits (ECTS). As a prerequisite you will need to have a relevant Bachelor’s degree. The possible major subjects are Physics, Meteorology, Geophysics, Chemistry, and Forest Ecology. The programme is designed to be completed in two years. Studies in ATM-MP consist of various courses and project work: lecture courses, seminars, laboratory work and intensive courses.

Your first year of studies will consist mainly of lecture courses. During the second year, you must also participate in the seminar course and give a presentation yourself. There is also a project course, which may contain laboratory work, data analysis, or theoretical or model studies. You will have to prepare a short, written report of the project. There are also several summer and winter schools as well as field courses for students in the Programme. Many of the courses take place at the Hyytiälä Forestry Field Station in Southern Finland. The intensive courses typically last 5–12 days and include a concise daily programme with lectures, exercises and group work.

Career Prospects

There is a global need for experts with multidisciplinary education in atmospheric and environmental issues. Governmental environmental agencies need people who are able to interpret new scientific results as a basis for future legislation. Industry, transportation and businesses need to be able to adapt to new regulations.

As a Master of Science graduating from the Programme you will have a strong background of working with environmental issues. You will have the ability to find innovative solutions to complex problems in the field of environmental sciences, climate change and weather forecasting. Graduates of the Programme have found employment in Meteorological Institutes and Environmental Administration in Finland and other countries, companies manufacturing instrumentation for atmospheric and environmental measurements and analysis, and consultancy companies. The Master's degree in ATM-MP also gives you a good background if you intend to proceed to doctoral level studies.

Internationalization

The Programme offers an international study environment with more than 30% of the students and teaching staff coming from abroad.

The ATM-MP is part of a Nordic Nordplus network in Atmosphere-Biosphere Studies, which gives you good opportunities to take courses currently in fourteen Nordic and Baltic universities. There are also several Erasmus agreements with European universities. The PanEurasian Experiment (PEEX) project provides you with opportunities to carry out part of your studies especially in China and Russia.

Research Focus

All the units teaching in the Programme belong to the National Centre of Excellence (FCoE) in Atmospheric Science – From Molecular and Biological processes to the Global Climate (ATM), which is a multidisciplinary team of the Departments of Physics, Forest Sciences and Chemistry at the University of Helsinki, the Department of Applied Physics at the University of Eastern Finland (Kuopio) and the Finnish Meteorological Institute.

The main objective of FCoE ATM is to quantify the feedbacks between the atmosphere and biosphere in a changing climate. The main focus of the research is on investigating the following topics:
1. Understanding the climatic feedbacks and forcing mechanisms related to aerosols, clouds, precipitation and biogeochemical cycles.
2. Developing, refining and utilising the newest measurement and modelling techniques, from quantum chemistry to observations and models of global earth systems.
3. Creating a comprehensive understanding of the role of atmospheric clusters and aerosol particles in regional and global biogeochemical cycles of water, carbon, sulphur, nitrogen and their linkages to atmospheric chemistry.
4. Integrating the results in the context of understanding regional and global Earth systems.

In addition to the research focus of FCoE, current research in hydrospheric geophysics at Helsinki University has an emphasis on cryology, with a focus on the effect of aerosols on Indian glaciers, the impact of climate change on the Arctic environment, the dynamics of the Austfonna ice cap in Svalbard, and the winter season in the coastal zone of the Baltic Sea.

Read less

Show 10 15 30 per page



Cookie Policy    X