• Birmingham City University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Cardiff University Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Cass Business School Featured Masters Courses
University of Warwick Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"environmental" AND "biot…×
0 miles

Masters Degrees (Environmental Biotechnology)

We have 139 Masters Degrees (Environmental Biotechnology)

  • "environmental" AND "biotechnology" ×
  • clear all
Showing 1 to 15 of 139
Order by 
Environmental change affects everyone on the planet and sustainably managing a changing natural environment is one of the 21st century’s most pressing challenges. Read more
Environmental change affects everyone on the planet and sustainably managing a changing natural environment is one of the 21st century’s most pressing challenges. This course will develop your theoretical knowledge and practical skills, enabling you to begin to meet these challenges in your chosen career.

You will learn about the changes happening to the environment at different spatial scales and will develop your understanding of the concepts used to manage environmental change, from site-based project management to sustainable development.

You will also learn about the legal and economic context of the environment, exploring how the environment can be integrated into a range of policy sectors.

Each of the topics you cover will draw upon the latest scientific literature and teaching from leading academic researchers.

Why choose this course?

• Study how the integration of environmental science, biotechnological methods and project management can help with the sustainable management of environmental, biodiversity and ecosystem services
• Explore the principles and methodologies of environmental biotechnology, and gain the ability to critically evaluate and identify technologies applicable for the sustainable management of global environmental change
• Develop a systematic understanding and critical awareness of the biological, ecological and socio-economic drivers of global environmental change, and how these are inter-related
• Gain the ability to evaluate methods of managing environmental change at local and global levels, including legislative, voluntary and economic management
• Benefit from the opportunity to choose a career with environmental consultancies, biotechnological research organisations, and national and international government agencies and non-governmental bodies.

Visit the website: https://www.beds.ac.uk/howtoapply/courses/postgraduate/next-year/environmental-management

Course detail

In a rapidly changing world, there has never been a greater need for people to sustainably manage the environment. Whether you are a recent graduate seeking career opportunities in the environmental sector, or a more experienced professional looking to develop your range of competencies, MSc Environmental Management provides you with the knowledge and skills necessary for success.

Developing and demonstrating a wide range of abilities in both taught and project work, our graduates go on to a diverse range of careers in government, NGOs, business and industry, as well as further study leading to PhD. At the University of Bedfordshire, you will develop practical skills in our well-equipped new laboratories and be taught by staff with expertise in ecology, biotechnology, management and environmental microbiology, enabling specialist tuition and supervision of your practical work.

Modules

• Environmental Project Management
• Environmental Management and Sustainability
• Global Environmental Change
• Environmental Biotechnology
• Environmental Research Project

Assessment

Practical reports are a key assessment type used throughout the course as they reinforce professional standards of presenting scientific reports, practice your ability to interpret data and to place experimental results within a broader scientific context, develop your ability to relate experimental results to theory, and teach you to apply the scientific method.

Consultancy-style reports develop your writing for non-academic professional audiences.

End of year exams are included in all units (except the project) with essay-style questions focused on integration and evaluation of understanding.

Oral presentations to small groups or to examiners in a viva voce setting and academic poster presentations (a standard style of scientific conference presentation) will develop your portfolio of communication skills.

Case studies are used within assessments where appropriate to provide real-world and employment-centred context to the assignments.

Careers

Lecturing staff are actively engaged in scientific research, so our teaching and the course are directly informed by our research knowledge and activities.

Many of the skills you will develop are applicable to professions away from the subject itself. The ability to research complex information, analyse data and write professional reports are highly valued and our students are encouraged to think about potential careers in a wide variety of sectors.

Key aspects of the course that emphasise employability of our graduates include:
• Training in key techniques relevant to employment within the environmental sector, including awareness of relevant health and safety, legal and ethical considerations. Training and practice in the scientific method that underpins all scientific research (developing novel hypotheses, testing these by experiment, accurately interpreting data and understanding error, and drawing valid conclusions).
• Practice in professional standards of reporting, including laboratory reports using the standards of professional research publications, preparation of scientific conference posters, and written and oral presentations. You will also develop your writing in a professional consultancy style, providing you with the opportunity to learn the subtle differences required when writing for different professional audiences.
• Maintenance of laboratory or field diaries and research diaries following standard practice within the sector.
• Guest lectures from external speakers from academic and industry.

Funding

For information on available funding, please follow the link: https://www.beds.ac.uk/howtoapply/money/scholarships/pg

How to apply

For information on how to apply, please follow the link: https://www.beds.ac.uk/howtoapply/course/applicationform

Read less
This programme will give you hands-on practical experience of both laboratory and bioinformatics techniques. You will also be trained in biotechnology research strategies. Read more
This programme will give you hands-on practical experience of both laboratory and bioinformatics techniques. You will also be trained in biotechnology research strategies. A strong practical foundation is provided in the first semester (Semester A) when you study two modules: 'Cellular Molecular Biology' and 'Core Genetics and Protein Biology'. These modules concentrate on the basic principles and the techniques used in modern molecular biology investigations, and on aspects of cellular molecular biology and development.

The second semester (Semester B) has a problem-based learning approach to the application of the knowledge you gained in Semester A. You will study two modules: 'Industrial Biotechnology' and 'Molecular Biotechnology'. These modules will give you an in depth understanding of the application of molecular biological approaches to the production of industrial and medicinal proteins. You will also learn how to apply and design industrial and environmental biotechnology processes, such as process kinetics and design, reactor design and oxygen transfer, sterilization kinetics and the application of biotechnology processes for the bioremediation of contaminated sites.

In the third semester (Semester C) you undertake a research project to develop your expertise further. The research project falls into different areas and may include aspects of fermentation biotechnology, genetic manipulation and protein engineering, bioinformatics, microbial physiology and environmental biotechnology.

Why choose this course?

-This course gives in-depth knowledge of biotechnology and molecular biology for biosciences or biological chemistry graduates
-It has a strong practical basis giving you training in biotechnology research strategies and hand-on experience of laboratory and bioinformatics techniques
-It equips you for research and development positions in the biotechnology and pharmaceutical industries, as well as a wide range of non-research roles in industry
-Biosciences research facilities cover fermentation biotechnology, high performance liquid chromatography, (HPLC), cell culture, molecular biology and pharmacology
-There are excellent facilities for chemical and biomedical analysis, genetics and cell biology studies and students have access to the latest equipment for chemical synthesis and purification, PCR, qPCR and 2D protein gel analysis systems for use during their final year projects
-The School of Life and Medical Science will move into a brand new science building opening in September 2015 providing us with world class laboratories for our teaching and research. At a cost of £50M the new building provides spacious naturally lit laboratories and social spaces creating an environment that fosters multi-disciplinary learning and research

Careers

On successful completion of the programme you will be well qualified for research and development positions in the biotechnology and pharmaceutical industries, to progress to a research degree or to consider non-research roles in industry such as management, manufacturing and marketing.

Teaching methods

The course consists of five modules including a research project:
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Industrial Biotechnology
-Molecular Biotechnology
-Biosciences Research Methods for Masters
-Research project

All modules are 100% assessed by coursework which includes in-course tests.

Structure

Core Modules
-Biosciences Research Methods for Masters
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Industrial Biotechnology
-Molecular Biotechnology
-Project-Mol Biology, Biotechnology, Pharmacology

Read less
Biotechnology encompasses all aspects of the industrial application of living organisms and/ or biological techniques. It is a collection of technologies that capitalise on the attributes of cells and biological molecules, such as DNA, to work for us. Read more
Biotechnology encompasses all aspects of the industrial application of living organisms and/ or biological techniques. It is a collection of technologies that capitalise on the attributes of cells and biological molecules, such as DNA, to work for us. The primary biotechnology activity carried out in Ireland is research and development. Ireland has experienced massive growth across the biotechnology sector including food, environmental and pharmaceutical industries in the last decade. Ireland is home to nine of the top 10 global pharmaceutical and biotechnology companies, such as GlaxoSmithKline, Pfizer, Merck, BristolMyers Squibb and Genzyme, with seven of the 10 world blockbuster pharmaceuticals made here. The MSc in Biotechnology is taught by leading
academics in the UCD School of Biomolecular and Biomedical Science and focuses on broadening your knowledge and understanding of the current technologies and processes in the biotechnology industry, including approaches being applied to further advance the discovery and design of new and highly innovative biotech and pharmaceutical products and technologies. It also provides modules on food and environmental biotechnology, as well as industrially relevant expertise in facility design, bioprocess technology, regulatory affairs and clinical trials.

Key Fact

During the third semester you will conduct research in an academic or industrial lab. Projects will be carried out within research groups of the UCD School of Biomolecular and Biomedical Science using state-of-the-art laboratory and computational facilities or in Irish and multinational biotechnology companies, across the spectrum of the dynamic biotechnology industry in Ireland.

Course Content and Structure

Taught masters Taught modules Individual research project
90 credits 60 credits 30 credits
You will gain experimental and theoretical knowledge in the following topics:
• Pharmacology and Drug Development
• Medical Device Technology
• Biomedical Diagnostics
• Recombinant DNA Technology
• Microbial and Animal Cell Culture
• Food Biotechnology
• Facility Design
• Environmental Biotechnology
• Regulatory Affairs
• Drug Development and Clinical Trials
• Bioprocessing Laboratory Technology
Assessment
• Your work will be assessed using a variety
of methods including coursework, group
and individual reports, written and online
exams, and presentations

Career Opportunities

This advanced graduate degree in Biotechnology has been developed in consultation with employers and therefore is recognised and valued by them. A key feature is the opportunity to carry out a project in industry which will allow graduates to develop connections with prospective employers, thereby enhancing chances of employment on graduation. You will also have the opportunity to become part of a network of alumni in the fi eld of Biotechnology. Prospective employers include Abbott; Allergan; Amgen; Baxter Healthcare; Beckman Coulter; Biotrin International Ltd.; Boston Scientifi c; Elan Corporation; Eli Lilly and Co.; Celltech; GlaxoSmithKline; Icon Clinical Research; Johnson & Johnson Ltd.; Kerry Group Plc.; Merck Sharp & Dohme; Quintiles; Sandoz; Serology Ltd.

Facilities and Resources

• The UCD School of Biomolecular and Biomedical Science is closely linked to the UCD Conway Institute of Biomolecular and Biomedical Research, which provides cutting edge core technologies including the premier Mass Spectrometry Resource in the country, NMR spectroscopy, real time PCR, electron microscopy, light microscopy, digital pathology and fl ow cytometry.

Read less
This course will enhance your understanding of key concepts in biotechnology and environmental sustainability and their practical application from innovation to commercialisation. Read more
This course will enhance your understanding of key concepts in biotechnology and environmental sustainability and their practical application from innovation to commercialisation.

This course is designed to enhance your career in a wide range of sectors, such as biorenewables, bioremediation and bioprocessing in which environmental sustainability is a key consideration. It will enable you to undertake a variety of fulfilling roles from research, and product and technology development to environmental protection and other leadership positions.

Biotechnology for Environmental Sustainability will equip you with broad theoretical knowledge and critical understanding of advanced principles in biotechnology. You’ll also gain the practical skills required to underpin a career within an industrial or research setting.

You’ll be supported by an active research group with varied interests and links with relevant industries, research institutes and other organisations.

See the website http://www.napier.ac.uk/en/Courses/MSc-Biotechnology-for-Environmental-Sustainability-Postgraduate-FullTime

What you'll learn

This course provides you with in-depth knowledge and critical understanding of key concepts in fermentation and bioprocessing, environmental microbiology, business planning and environmental policy which are relevant to the application of commercial-scale biotechnologies in an environmentally sustainable manner.

You’ll study the scientific concepts that underpin modern biotechnologies and how innovations can be exploited for the development of products and processes such as biofuels, novel bioactive compounds and waste conversion technologies. You’ll also explore the bioethical, socio-economic and regulatory aspects of environmental sustainability and the role of biotechnologies in environmental protection.

There is an emphasis on developing your practical laboratory skills with various opportunities for hands-on experience in a range of current techniques and practices such as fermentation and environmental monitoring. In your final trimester you’ll undertake an independent project within a vibrant research team, allowing you to apply and further develop your technical, research and professional skills. There may be the opportunity to conduct your research project with one of our Edinburgh Napier start-up companies or externally in a relevant organisation or industry.

You’ll also develop key skills including communication, problem solving, team work, project management, and leadership. You’ll learn through interactive lectures, workshops, tutorials, site visits, field trips and laboratory sessions, and by engaging with guided independent study. A variety of assessment tools are used to enhance and evaluate your learning.

This is a full-time programme over one year and is split up into three trimesters. You can choose to start in either January or September. There may also be some opportunities to study abroad.

Modules

• Cell technology
• Business and bioethics
• Biotechnology for sustainable renewables
• Research skills
• Biotechnology for sustainable remediation
• Environmental sustainability management
• Independent research project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

Environmental sustainability is an increasingly important consideration in many aspects of our lives. Biotechnology underpins many of the solutions to existing unsustainable practices and offers the possibility of new products and as such is predicted to be a key driver in the future global economy.

This course provides a wide range of career opportunities in areas such as sustainable waste management, bioremediation, environmental protection and monitoring, biorenewables, and bioprocessing, as well as product/technology development. You'll be prepared for a variety of roles including those with a research focus and those with an emphasis on leadership in both multinational companies and smaller biotechnology enterprises.

Opportunities may also exist in contract research companies and service providers to the environmental and industrial biotechnology sectors, in addition to government and environment protection agencies.

Successful completion of the MSc programme also provides a sound platform for further study in a research setting; graduates will be qualified to continue to PhD studies in the biosciences.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms. Read more

Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms. Its practical applications include age-old techniques such as brewing and fermentation, which are still important today. In recent decades, gene modification has revolutionized the biotechnology industry, spawning countless new products and improving established processes.

More and more types of fermentation are being used, and most new medicines are products of biotechnology. Modern biotechnology has become an applied area of science with a multidisciplinary approach embracing recombinant DNA technology, cellular biology, microbiology, biochemistry, as well as process design, engineering, modelling and control.

Programme summary

Biotechnology is a broad, multidisciplinary area of science. A Master of Science in Biotechnology is an expert in one (group of) discipline(s) and has to have sufficient knowledge and skills in other disciplines to cooperate with experts from the other disciplines. Therefore, students specialise during the Master programme and learn how to solve complex biotechnological problems in a multidisciplinary team.

On the programme of Biotechnology page you can find the general outline of the programme and more detailed information about courses, theses and internships.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Your future career

The first job after graduation, obtained by Msc biotechnologist, is often localised at a research institute or an university in- or outside The Netherlands. It usually concerns a research project or, more detailed, a PhD project: more than 50% of the graduated biotechnologist becomes PhD. Although most graduates choose for a career in science about 1/3 also starts in functions as engineer or technical expert. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Molecular Life Sciences 

MSc Food Technology

MSc Bioinformatics

MSc Plant Biotechnology

MSc Environmental Sciences



Read less
Whether you are a new graduate or already employed and seeking to further your career prospects, this course offers a solid career development path. Read more

Whether you are a new graduate or already employed and seeking to further your career prospects, this course offers a solid career development path. You can also choose this course if you wish to pursue research in biotechnology at PhD level.

Biotechnology is the application of biological processes and is underpinned by • cell biology • molecular biology • bioinformatics • structural biology. It encompasses a wide range of technologies for modifying living organisms or their products according to human needs.

Applications of biotechnology span medicine, technology and engineering.

Important biotechnological advances including

  • the production of therapeutic proteins using cloned DNA, for example insulin and clotting factors
  • the application of stem cells to treat human disease
  • the enhancement of crop yields and plants with increased nutritional value
  • herbicide and insect resistant plants
  • production of recombinant antibodies for the treatment of disease
  • edible vaccines, in the form of modified plants
  • development of biosensors for the detection of biological and inorganic analytes

You gain

  • up-to-date knowledge of the cellular and molecular basis of biological processes
  • an advanced understanding of DNA technology and molecular biotechnology
  • knowledge of developing and applying biotechnology to diagnosis and treatment of human diseases
  • practical skills applicable in a range of bioscience laboratories
  • the transferable and research skills to enable you to continue developing your knowledge and improving your employment potential

The course is led by academics who are actively involved in biotechnology research and its application to the manipulation of proteins, DNA, mammalian cells and plants. Staff also have expertise in the use of nanoparticles in drug delivery and the manipulation of microbes in industrial and environmental biotechnology.

You are supported throughout your studies by an academic advisor who will help you develop your study and personal skills.

What is biotechnology

Biotechnology is the basis for the production of current leading biopharmaceuticals and has already provided us with the 'clot-busting' drug, tissue plasminogen activator for the treatment of thrombosis and myocardial infarction. It also holds the promise of new treatments for neurodegeneration and cancer through recombinant antibodies.

Genetically modified plants have improved crop yields and are able to grow in a changing environment. Manipulation of cellular organisms through gene editing methods have also yielded a greater understanding of many disease states and have allowed us to understand how life itself functions.

Course structure

You begin your studies focusing on the fundamentals of advanced cell biology and molecular biology before specialising in both molecular and plant biotechnology. Practical skills are developed throughout the course and you gain experience in molecular biology techniques such as PCR and sub cloning alongside tissue culture.

Core to the program is the practical module where you gain experience in a range of techniques used in the determination of transcription and translational levels, for example.

All practicals are supported by experienced academic staff, skilled in the latest biotechnological techniques.

Research and statistical skills are developed throughout the program. Towards the end of the program you apply your skills on a two month research project into a current biotechnological application. Employability skills are developed throughout the course in two modules.

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits. 

Core modules:

  • Cell biology (15 credits)
  • Biotechnology (15 credits)
  • Plant biotechnology (15 credits)
  • Molecular biology (15 credits)
  • Applied biomedical techniques (15 credits)
  • Professional development (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Optional modules :

  • Human genomics and proteomics (15 credits)
  • Cellular and molecular basis of disease (15 credits)
  • Cellular and molecular basis of cancer (15 credits)

Assessment

As students progress through the course they are exposed to a wide range of teaching and learning activities. The assessment strategy of the postgraduate course considers diverse assessment methods. Some modules offer dedicated formative feedback to aid skills development with assessments going through several rounds of formative tutor and peer feedback. Summative assessment methods are diverse, with examinations present in theory-based modules to test independent knowledge and data analysis. Several modules are entirely coursework-based, with a portfolio of skills such laboratory practical's and research proposals generated throughout the course forming the summative tasks. In all cases, the assessment criteria for all assessed assignments are made available to student prior to submission. 

Employability

The course is suitable for people wishing to develop their knowledge of molecular and cell biotechnology and its application to solving health and industrial problems.

You can find career opportunities in areas such as

  • biotechnology research
  • medical research in universities and hospitals
  • government research agencies
  • biotechnology industry
  • pharmaceutical industry.

Students on this course have gone on to roles including experimental officers in contract research, research and development in scientists, diagnostics specialists and applications specialists. Many of our graduates also go on to study for PhDs and continue as academic lecturers.



Read less
The Biotechnology MSc within the Institute of Biological, Environmental and Rural Sciences (IBERS) provides you with key skills, specialist knowledge and essential training for a career in industrial or academic bioscience. Read more

About the course

The Biotechnology MSc within the Institute of Biological, Environmental and Rural Sciences (IBERS) provides you with key skills, specialist knowledge and essential training for a career in industrial or academic bioscience. Increasingly, biotechnology companies are recruiting Master’s students with specialised skills to perform jobs previously the reserve of Doctorate level scientists.
At the end of the course you will be able to meet the challenges of biotechnology, demonstrate critical thinking and solve problems, exploit opportunities, and know how ideas can be turned into viable businesses or a successful grant application.

Why study Biotechnology at IBERS?

You want specialist experience and knowledge in biotechnology research and commercial application to give you a competitive edge in the job market and underpin your successful career. IBERS has the credentials to deliver these goals.

With 360 members of staff, 1350 undergraduate students and more than 150 postgraduate students IBERS is the largest Institute within Aberystwyth University. Our excellence in teaching was recognised by outstanding scores in the National Student Satisfaction Survey (2016), with three courses recording 100% student satisfaction and a further 10 scoring above the national average. The latest employability data shows that 92% of IBERS graduates were in work or further study six months after leaving Aberystwyth University. The most recent joint submission to the Research Excellence Framework (REF) displayed that 78% of our research as world-leading or internationally excellent, 97% of our research is internationally recognised, and 76% judged as world-leading in terms of research impact.

IBERS is internationally-recognised for research excellence and works to provide solutions to global challenges such as food security, sustainable bioenergy, and the impacts of climate change. IBERS hosts 2 National bioscience facilities: The National Plant Phenomics Centre –a state of the art automated plant growth facility that allows the high throughput evaluation of growth and morphology in defined environments, and the BEACON Centre of Excellence for Biorefining - a £20 million partnership between Aberystwyth, Bangor and Swansea Universities set up to help Welsh businesses develop new ways of converting biomass feedstocks and waste streams into products for the pharmaceutical, chemicals, fuel and cosmetic industries.

IBERS has a track record of working with academic and industrial partners to develop and translate innovative bioscience research into solutions that help mitigate the impacts of climate change, animal and plant disease, and deliver renewable energy and food and water security.

Course structure and content

In the first 2 semesters the course focuses on 2 key areas of biotechnology: industrial fermentation (manufacturing processes, feedstock pretreatment, fermentation, and the biorefining of low cost feedstocks to high value products) and plant biotechnology (synthetic biology, gene editing, precision genome modification, transformation technologies, up and down gene regulation and silencing, and gene stacking). In addition you will receive practical training in state of the art molecular and analytical bioscience techniques and technologies, and learn of marine, food and health biotechnology, and how the sustainable use of bio-resources and bioscience can help meet the needs of the growing human population. All course modules are delivered by academics and professional practitioners at the forefront of activity in the field.

In the final semester you will work on your own research project with your dissertation supervisor. This could be a project of your own design and will focus on an aspect of biotechnology that you found particularly interesting; it may even be something that you want to develop as a business idea in the future. During your dissertation project you will use the knowledge and the skills that you gained during the first 2 semesters. Your dissertation project will give you an opportunity to become an expert in your topic and to develop research skills that will prepare you for your future career in biotechnology. Your tutor will mentor you in hypothesis driven experimental design, train you in analytical techniques e.g. gas and liquid chromatography, mass spectrometry, vibrational spectroscopy, fermentation, product isolation, biomass processing, analysis of complex experimental data, and the formation of robust conclusions. You will also be guided in writing your dissertation.

Core modules:

- Bioconversion and Biorefining
- Frontiers in Biosciences
- Research Methods in the Biosciences
- Current Topics in Biotechnology
- Crop Biotechnology
- Biotechnology for Business
- Dissertation

Employability

There is great demand nationally and internationally for skilled graduates in Biotechnology, indeed the UK Biotechnology and Biological research Council (BBSRC) have made ‘Bioenergy and Biotechnology’ a strategic priority for science funding. The sector is expanding rapidly and provides excellent employment opportunities for biotechnology graduates. A recent report for the British research councils estimated that in the financial year 2013/14, British industrial biotechnology and bioenergy activities involved around 225 companies and generated £2.9billion of sales. The biotechnology industry makes a significant contribution to the United Kingdom’s net exports, equivalent to £1.5 billion and offsetting 4% of the country’s total trade deficit. In this year alone, biotechnology attracted £922 million in investment (4.6% of investment in the UK by the private sector). In the same year the biotechnology industry employed approximately 8,800 jobs in the UK in jobs ranging from scientists, technicians and analytical staff, and an extimated 11,000 additional jobs in UK suppliers and support industries - see http://www.bbsrc.ac.uk/documents/capital-economics-biotech-britain-july-2015/. These figures are typical of international trends and students graduating from the Biotechnology MSc at IBERS will be very well placed to follow a career in the Biotechnology sector.

Read less
This Masters in Biotechnology programme provides you with an advanced practical knowledge of biotechnology and molecular genetic technologies underpinning modern biotechnology and how they can be applied to solve real world problems. Read more

This Masters in Biotechnology programme provides you with an advanced practical knowledge of biotechnology and molecular genetic technologies underpinning modern biotechnology and how they can be applied to solve real world problems. The programme offers training in a broad range of topics including environmental biotechnology, synthetic biology, plant engineering, stem cell therapies and vaccine development.

Why this programme

  • Ranked amongst the world top 100 for biological sciences.
  • If you wish to improve your knowledge of modern molecular, biochemical, cell biological and genetic techniques for biotechnological applications, this programme is designed for you.
  • You will gain a sound understanding of the nature of business based on bioscience knowledge and research, their opportunities for innovation and regulatory requirement constraints, intellectual property and ethical issues.
  • We have exciting scholarship opportunities.
  • You will learn how to assess the current literature, be encouraged to form opinions based on scientific merit, and implement these ideas in future research planning.
  • You will be taught by experts in the field of Biotechnology who run active, internationally recognised, research groups here at Glasgow.
  • The course involves extensive interaction with industry, through site visits, guest lectures and an 'Industrial Networking Symposium' where representatives from the European biotechnology and pharmaceutical industry will discuss their companies and answer your questions on working in the industrial sector.
  • This course has a strong laboratory component, with courses that run throughout the year, giving you hands on experience of diverse biotechnological research skills.
  • The flexible independent research project provides valuable training for students wishing to proceed to a PhD or into an industrial career; this may also be completed as a business based project.
  • Additional programme components include industrial networking sessions and a dedicated career workshop on progression planning. 
  • Our Masters in Biotechnology provides an advanced practical knowledge of how research and industry are being applied to solve real world problems.

Programme structure

The programme is made up of five teaching modules and a dissertation project. Each module explores different aspects of biotechnology. The dissertation allows you to specialise the degree through a chosen field of research. You will undertake this project with the support and guidance of your chosen academic expert.

The aims of these five course are to

  • enable students to study a wide range of biotechnology topics in depth.
  • allow students to benefit from leading-edge research-led teaching.
  • enhance students' conceptual, analytical and generic skills and to apply them to biotechnology problems.
  • prepare students for leading positions in the biotechnology industry or entry into PhD programmes.

Career prospects

This programme will prepare you for a career in the pharmaceutical or biotechnology industrial sectors or for entry into PhD programmes.



Read less
Goal of the pro­gramme. Global socio-ecological problems call for multidisciplinary solutions that transcend the usual boundaries of science and decision-making. Read more

Goal of the pro­gramme

Global socio-ecological problems call for multidisciplinary solutions that transcend the usual boundaries of science and decision-making. The Environmental Change and Global Sustainability (ECGS) Master’s programme trains you in wide-ranging interdisciplinary thinking skills and provides you with the ability to:

  • Study environmental and sustainability issues in your respective fields of expertise and
  • Solve problems of socio-ecological sustainability in cooperation with various social actors.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

ECGS is a truly multidisciplinary Master’s programme. It covers an introductory Core Module common to all students, followed by two distinct study tracks.

The introductory Core Module focuses on the methodologies of environmental and sustainability science as well as the interactions between science and society. The Core Module also offers a pool of optional methodological studies, providing you with the necessary research tools to tackle socio-ecological challenges.

If your orientation is in natural sciences, the Environmental Change study line can provide you with an understanding of the functioning of terrestrial and aquatic ecosystems and can give guidance toward their sustainable use.

If your interests are more in the social sciences and humanities, on the other hand, the Global Sustainability study line provides an understanding of the socio-cultural underpinnings of global sustainability challenges so that you can help to develop solutions that take social and environmental justice into consideration.

Se­lec­tion of the study track

You can apply for one of the two studytracks in the ECGS Master’s programme: the Environmental Change study line or the Global Sustainability study line. You can refine your expertise in your chosen study line by choosing from study modules related to your specialised field of science or from interdisciplinary phenomenon-based modules.

Environmental Change modules are offered in, for example, the following research fields: aquatic sciences, soil and earth sciences, environmental ecology, environmental biotechnology and agroecology. Global Sustainability modules include themes such as environmental and natural resource economics, environmental policy, development studies, public and social policy, consumer research, forest policy and economics, and development geography. ECGS also offers a variety of modules integrating both natural and social scientific perspectives including phenomenon-based modules on the Baltic Sea and the Arctic as well as a variety of interdisciplinary fields such as climate change, food and consumption systems, urban studies and socio-ecological systems studies.

As an international applicant, you will be assessed and accepted for the Master’s program based on the scientific relevance of your bachelor’s degree and your success in previous studies.



Read less
Molecular Biology with Biotechnology (MSc). This taught MSc course in the School of Biological Sciences provides intensive training in this important area of Biology and is designed both for fresh graduates and for those wishing to develop and extend their expertise in this area. Read more
Molecular Biology with Biotechnology (MSc)

This taught MSc course in the School of Biological Sciences provides intensive training in this important area of Biology and is designed both for fresh graduates and for those wishing to develop and extend their expertise in this area. The course has a strong practical emphasis and will provide the advanced theoretical and practical background necessary for employment in the Biotechnology industry, as well as equipping students with the knowledge required to pursue advanced studies in this area.
Course structure

The course consists of a taught component and a Research project. During the taught phase of the degree, you will take modules in Marine Biotechnology, Molecular and Medical Laboratory Techniques, Techniques of Molecular Biology and Biotechnology; Systems Biology; Plant Biotechnology, Environmental Biotechnology and Medical Biotechnology.

Topics covered in these modules will include Agrobacterium Ti plasmid based plant transformation vectors and the development of transgenic crops; the use and interpretation of microarrays and proteome systems; the development of transgenic fish and the diagnosis of fish diseases using molecular markers; bioremediation, biomining and the use of bacteria to degrade novel organic pollutants; stem cell technologies and the diagnosis of genetic disease using single nucleotide polymorphisms. image of students in the labDuring this part of the course, you will also take part in intensive laboratory exercises designed to introduce you to essential techniques in molecular biology and biotechnology including nucleic acid and protein extraction, PCR and QTL analysis, northern, southern and western blotting etc. In addition, most of the taught theory modules will have an associated practical component. The Research project will take place during the summer and will be conducted under the direct supervision of one of the staff involved in teaching the course. Students will be able to choose their Research project from a wide range of topics which will be related to the taught material.

Career options

The 21st century post genomics era offers a wide range of job opportunities in the agricultural, medical, pharmaceutical, aquaculture, forensics and environmental science areas. The rapidly developing economies of China and India in particular have recognised the enormous opportunities offered by Biotechnology. Job openings in sales and marketing with companies who have a science base are also common. Some graduates will also choose to extend their knowledge base by undertaking PhD programmes in relevant areas.

Read less
This programme offers an expansion of our already successful MSc Biotechnology into industrial biotechnology and business management. Read more

This programme offers an expansion of our already successful MSc Biotechnology into industrial biotechnology and business management. It is jointly run with Adam Smith Business School.

Why this programme

  • Ranked world top 100 for biological sciences.
  • If you wish to improve your knowledge of modern molecular, biochemical, cell biological and genetic techniques for biotechnological applications, this programme is designed for you.
  • You will gain a sound understanding of the nature of business based on bioscience knowledge and research, opportunities for innovation and regulatory requirement constraints, intellectual property and ethical issues.
  • You will learn how to assess the current literature, be encouraged to form opinions based on scientific merit, and implement these ideas in future research planning.
  • You will be taught by experts in the field of biotechnology who run active, internationally recognised, research groups here at Glasgow.
  • The course involves extensive interaction with industry, through site visits, guest lectures and an 'Industrial Networking Symposium' where representatives from the European biotechnology and pharmaceutical industry will discuss their companies and answer your questions on working in the industrial sector.
  • This course has a strong laboratory component, with courses that run throughout the year, giving you hands on experience of diverse biotechnological research skills.
  • The flexible independent research project provides valuable training for students wishing to proceed to a PhD or into an industrial career; this may also be completed as a business based project.
  • Additional programme components include industrial networking sessions and a dedicated career workshop on progression planning.
  • This Masters in biotechnology & management provides an advanced practical knowledge of how research and industry are being applied to solve real world problems.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with biotechnology courses.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

  • Contemporary Issues in Human Resource Management 
  • Managing Creativity and Innovation 
  • Managing Innovative Change 
  • Marketing Management 
  • Operations Management 
  • Project Management

Semester 2

You will study biotechnology courses, which aim to enhance your understanding of using biological processes, organisms, or systems to manufacture products intended to improve the quality of human life. These courses will provide training in state-of-the-art biotechnology applications what have resulted in ground-breaking developments in the areas of medicine, pharmaceuticals, agriculture and food production, environmental clean-up and protection and industrial processes.

Core course

  • Biotechnology Applications

Optional courses

  • Omic Technologies for the Biomedical Sciences
  • Synthetic Biology: Concepts and Applications
  • Bioimaging
  • Biosensors and Diagnostics
  • Plant Genetic Engineering
  • Crop Biotechnology

Project or dissertation

If you are studying for an MSc you will undertake individual project in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project options are closely linked to staff research interests.

The aims of the courses are to

  • enable students to study state-of-the-art biotechnology topics in depth.
  • allow students to benefit from leading-edge research-led teaching.
  • provide a critical appreciation of relevant theoretical, methodological and technical literature from the central business disciplines.
  • develop students’ ability to critically appraise published research related to biotechnology.
  • cultivate analytical and interpretive abilities and enable students to integrate these with essential managerial and business skills.
  • develop students laboratory skills relevant to biotechnology.
  • enhance students’ conceptual, analytical and presentation skills and to apply them to biotechnology problems.
  • prepare students for management positions in the biotechnology industry or entry into PhD programmes.

Career prospects

This programme will prepare you for a career in the pharmaceutical or biotechnology industrial sectors or for entry into PhD programmes.



Read less
The School of the Environment offers opportunities for advanced study and research leading to the Master of Science degree in Environmental Sciences. Read more

The School of the Environment offers opportunities for advanced study and research leading to the Master of Science degree in Environmental Sciences. The Master of Science degree is awarded to candidates who display an in-depth understanding of the subject matter by successfully completing the program of study and who demonstrate the ability to make significant contributions to their field of study.

This program requires completion of a minimum of 36 credit hours as follows: 19hrs of core courses, 12hrs of concentration courses, and 6hrs for thesis.

Concentration offerings include:

  • Environmental Biotechnology
  • Environmental Restoration & Waste Management
  • Marine & Estuarine Environments
  • Environmental Policy & Management
  • Radiation Protection


Read less
Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. Read more

Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. In a nutshell, we can't do without plants. Modern molecular biology has opened up a whole new range of techniques and possibilities to scientists working in the different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology). The combination of these disciplines forms a challenging domain: Plant Biotechnology.

Study programme

Plant Biotechnology aims to impart understanding of the basic principles of the plant sciences and molecular biology, as well as the integration of these disciplines, to provide healthy plants in a safe environment for food, non-food, feed and health applications. Besides covering the technological aspects, Plant Biotechnology also deals with the most important environmental, quality, health, socio-economic and infrastructural aspects.

On the programme of Plant Biotechnology page you can find the general outline of the programme and more detailed information about courses, theses and internships.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Your future career

Graduates in Plant Biotechnology are university-trained professionals. Their main career focus will be on research and development positions at universities, research institutes and biotech or agribusiness companies. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Biotechnology 

MSc Molecular Life Sciences 

MSc Plant Sciences

MSc Nutrition and Health

MSc Bioinformatics 

MSc Biology 



Read less
Research degrees are ideal for those wishing to study for a PhD and/or those aiming to improve their laboratory and practical skills. Read more

Course summary

Research degrees are ideal for those wishing to study for a PhD and/or those aiming to improve their laboratory and practical skills. Students wishing to study for a PhD must identify a project supervisor with whom they work to develop a project outline.

Key features

-Intensive period of independent laboratory based training

Career opportunities

Possible careers include: academic/research positions; pharmaceutical industry; biotech companies; environmental agencies; entrepreneurship; patent or science communication

The University welcomes research degree applications in the following areas:

-Biochemistry and cell biology
-Biosensors
-Cancer
-Computational biology
-Ecology, conservation and environmental policy
-Environmental biotechnology and sustainability
-Forensic science
-Immunology
-Kidney disease and diabetes
-Metabolic disease
-Microbiology
-Neuroscience
-Pharmacology

Read less
Biotechnology constitutes one of the key disciplines of the 21st century, with enormous potential for growth and professional development. Read more

State of The Art

Biotechnology constitutes one of the key disciplines of the 21st century, with enormous potential for growth and professional development. On the one hand that is due to progress made in biomedical research, leading to the development of new diagnostic and therapeutic procedures. At the same time the chemical industry is showing a growing interest in biotechnological processes to reduce its environmental footprint and increase the efficiency of the methods employed. In addition to the pharmaceutical, chemical and food industries, which make use of biotechnological processes in varying degrees, there is now a biotechnology-based industry in its own right, in which added value is generated primarily with the help of biotechnological principles.

Curriculum

The Master’s program in Biotechnology is designed to communicate the knowledge, methodological skills and problem-solving competence needed to tackle a very wide range of scientific and engineering problems.

Excellent Education Guarantee

First-class faculty from the worlds of science, engineering and business, a strong industry orientation and the limited number of places guarantee excellent conditions for study and student support in keeping with the MCI’s motto “Mentoring the Motivated” plus attractive prospects for the future. As a technical university program positioned at the interface with business and management, the Master’s program satisfies the highest international standards.

Contents

With its focus on industrial and pharmaceutical biotechnology, the study program is designed to enable graduates to convert laboratory
results in the field of bioscience into full-scale industrial processes.

The Master’s program combines various methodological modules – such as molecular biotechnology, bioprocess engineering, biotechnological separation processes, bioanalytics and bioinformatics – with applications-oriented modules covering the whole field of biotechnology, including pharmaceutical biotechnology, food biotechnology and industrial biotechnology.

The program is also designed to take account of the growing interest shown in trade and industry in graduates with the ability to fulfill overarching functions like quality, project and process management, including the relevant key competences (working methods, social competence, team working skills, etc). In addition to solving technical problems, graduates are also in a position to evaluate the economic impacts of the decisions taken. Thanks to project-based learning, industry visits, practicals and laboratory work, the study program also has a strong focus on practical relevance.

Find out more about this course of study:

https://www.mci.edu/en/study-program/master/biotechnology

Admission

Applications for this study program can be submitted at any time. Applications for admission to the Master of Engineering, Environmental & Biotechnology program must be submitted online using the standardized application form accompanied by the required documents within the period stipulated. You can sign up for the upcoming semester here:

https://tasks.mci.edu/index.php?option=com_onlinebewerbung&view=register&lang=en&fromstg=Master-MAUVBT

Download the latest brochure here:

https://www.mci.edu/index.php?option=com_phocadownload&view=category&download=224&Itemid=1115

Read less

Show 10 15 30 per page



Cookie Policy    X