• Cardiff University Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
University of Reading Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
FindA University Ltd Featured Masters Courses
"engineers"×
0 miles

Masters Degrees (Engineers)

  • "engineers" ×
  • clear all
Showing 1 to 15 of 1,132
Order by 
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in electrical engineering. Read more
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in electrical engineering
- Practical guidance from electrical engineering experts in the field
- Knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college
- Credibility as the local electrical engineering expert in your firm
- Networking contacts in the industry
- Improved career prospects and income
- An Advanced Diploma of Applied Electrical Engineering (Electrical Systems)

Next intake starts October 09, 2017. Registrations are now open.

Payment is not required until 2 to 4 weeks before the start of the program.

The EIT Advanced Diploma of Applied Electrical Engineering (Electrical Systems) is recognized worldwide and has been endorsed by the International Society of Automation (ISA). Please ask us about specific information on accreditation for your location.

OVERVIEW

Join the next generation of electrical engineers and technicians and embrace a well paid, intensive yet enjoyable career by embarking on this comprehensive course on electrical engineering. It is presented in a practical and useful manner - all theory covered is tied to a practical outcome. Leading electrical engineers who are highly experienced engineers from industry, having 'worked in the trenches' in the various electrical engineering areas present the course over the web in a distance learning format using our acclaimed live e-learning techniques.

The course starts with an overview of the basic principles of electrical engineering and then goes on to discuss the essential topics in depth. With a total of 16 modules, everything that is of practical value from electrical distribution concepts to the equipment used, safety at work to power quality are all looked at in detail. Each module contains practical content so that the students can practice what they learn including the basic elements of designing a system and troubleshooting.

Most academic courses deal with engineering theory in detail but fall short when it comes to giving practical hints on what a technician is expected to know for a job in the field. In this course, the practical aspects receive emphasis so that when you go out into the field you will have the feeling that ‘you have seen it all.

*JOB OUTCOMES, INTERNATIONAL RECOGNITION AND PROFESSIONAL MEMBERSHIP:

A range of global opportunities awaits graduates of the Advanced Diploma of Applied Electrical Engineering (Electrical Systems). Pending full accreditation you may become a full member of Engineers Australia and your qualification will be recognized by Engineers Australia and (through the Dublin Accord) by leading professional associations and societies in Australia, Canada, Ireland, Korea, New Zealand, South Africa, United Kingdom and the United States. The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

For example, current enrolled students can apply for free student membership of Engineers Australia. After graduation, you can apply for membership to become an Engineering Associate, while graduates interested in UK recognition can apply for membership of the Institution of Engineering and Technology (IET) as a Technician Member of the Institution of Engineering and Technology.

This professional recognition greatly improves the global mobility of graduates, and offers you the opportunity of a truly international career.

You will be qualified to find employment as an Engineering Associate in public and private industry including transportation, manufacturing, process, construction, resource, energy and utilities industries. Engineering Associates often work in support of professional engineers or engineering technologists in a team environment. If you prefer to work in the field you may choose to find employment as a site supervisor, senior technician, engineering assistant, or similar.

WHO SHOULD COMPLETE THIS PROGRAM?

- Electrical Engineers and Technicians
- Project Engineers
- Design Engineers
- Instrumentation and Design Engineers
- Electrical Technicians
- Field Technicians
- Electricians
- Plant Operators
- Maintenance Engineers and Supervisors
- Energy Management Consultants
- Automation and Process Engineers
- Design Engineers
- Project Managers
- Instrument Fitters and Instrumentation Engineers
- Consulting Engineers
- Production Managers
- Chemical and Mechanical Engineers
- Instrument and Process Control Technicians

In fact, anyone who wants to gain solid knowledge of the key elements of electrical engineering – to improve work skills and to create further job prospects. Even those of you who are highly experienced in electrical engineering may find it useful to attend some of the topics to gain key, up to date perspectives on electrical engineering.

PROGRAM STRUCTURE

The course is composed of 16 modules. These cover the following seven main threads to provide you with maximum practical coverage in the field of electrical engineering

- Electrical technology fundamentals
- Distribution equipment and protection
- Rotating machinery and transformers
- Power electronics
- Energy efficiency
- Earthing and safety regulations
- Operation and maintenance of electrical equipment

The 16 modules will be completed in the following order:

- Electrical Circuits
- Basic Electrical Engineering
- Fundamentals of Professional Engineering
- Electrical Drawings
- Electrical Power Distribution
- Transformers, Circuit Breakers and Switchgear
- Electrical Machines
- Power Cables and Accessories
- Earthing and Lightning / Surge Protection
- Power System Protection
- Electrical Safety and Wiring Regulations
- Testing, Troubleshooting and Maintenance of Electrical Equipment
- Energy Efficiency and Energy Use
- Power Quality
- Power Electronics and Variable Speed Drives
- DC and AC High Reliability Power Supplies

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located all around the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. We aim to give you a rapid response regarding course fees that are relevant to your individual circumstances.

We understand that cost is a major consideration before a student begins to study. For a rapid reply to your query regarding course fees and payment options, please contact a Course Advisor in your region via the below button and we will respond within two (2) business days.

Read less
WHAT YOU WILL GAIN. - Practical guidance from biomedical engineering experts in the field. - 'Hands on' knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college reading. Read more
WHAT YOU WILL GAIN

- Practical guidance from biomedical engineering experts in the field
- 'Hands on' knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college reading
- Credibility as a biomedical engineering expert in your firm
- Skills and know-how in the latest technologies in biomedical engineering
- Networking contacts in the industry
- Improved career prospects and income
- An EIT Advanced Diploma of Biomedical Engineering

Next intake is scheduled for June 06, 2017. Applications are now open; places are limited.

INTRODUCTION

Biomedical engineering is the synergy of many facets of applied science and engineering. The advanced diploma in biomedical engineering provides the knowledge and skills in electrical, electronic engineering required to service and maintain healthcare equipment. You will develop a wide range of skills that may be applied to develop software, instrumentation, image processing and mathematical models for simulation. Biomedical engineers are employed in hospitals, clinical laboratories, medical equipment manufacturing companies, medical equipment service and maintenance companies, pharmaceutical manufacturing companies, assistive technology and rehabilitation engineering manufacturing companies, research centres. Medical technology industry is one of the fast-growing sectors in engineering field. Join the next generation of biomedical engineers and technicians and embrace a well paid, intensive yet enjoyable career by embarking on this comprehensive and practical program. It provides a solid overview of the current state of biomedical engineering and is presented in a practical and useful manner - all theory covered is tied to a practical outcomes. Leading biomedical/electronic engineers with several years of experience in biomedical engineering present the program over the web using the latest distance learning techniques.

There is a great shortage of biomedical engineers and technicians in every part of the world due to retirement, restructuring and rapid growth in new industries and technologies. Many companies employ electrical, electronic engineers to fill the vacancy and provide on the job training to learn about biomedical engineering. The aim of this 18-month eLearning program is to provide you with core biomedical engineering skills to enhance your career prospects and to benefit your company/institution. Often universities and colleges do a brilliant job of teaching the theoretical topics, but fail to actively engage in the 'real world' application of the theory with biomedical engineering. This advanced diploma is presented by lecturers who are highly experienced engineers, having worked in the biomedical engineering industry. When doing any program today, a mix of both extensive experience and teaching prowess is essential. All our lecturers have been carefully selected and are seasoned professionals.

This practical program avoids weighty theory. This is rarely needed in the real world of industry where time is short and immediate results, based on hard-hitting and useful know-how, is a minimum requirement. The topics that will be covered are derived from the acclaimed IDC Technologies' programs attended by over 500,000 engineers and technicians throughout the world during the past 20 years. And, due to the global nature of biomedical engineering today, you will be exposed to international standards.

This program is not intended as a substitute for a 4 or 5 year engineering degree, nor is it aimed at an accomplished and experienced professional biomedical engineer who is working at the leading edge of technology in these varied fields. It is, however, intended to be the distillation of the key skills and know how in practical, state-of-the-art biomedical engineering. It should also be noted that learning is not only about attending programs, but also involves practical hands-on work with your peers, mentors, suppliers and clients.

WHO WOULD BENEFIT

- Electrical and Electronic Engineers
- Electrical and Electronic Technicians
- Biomedical Equipment/Engineering Technician
- Field Technicians
- Healthcare equipment service technicians
- Project Engineers and Managers
- Design Engineers
- Instrumentation Engineers
- Control Engineers
- Maintenance Engineers and Supervisors
- Consulting Engineers
- Production Managers
- Mechanical Engineers
- Medical Sales Engineers

In fact, anyone who wants to gain solid knowledge of the key elements of biomedical engineering in order to improve work skills and to create further job prospects. Even individuals who are working in the healthcare industry may find it useful to attend to gain key, up to date perspectives.

COURSE STRUCTURE

The program is composed of 18 modules. These cover the basics of electrical, electronic and software knowledge and skills to provide you with maximum practical coverage in the biomedical engineering field.

The 18 modules will be completed in the following order:

- Basic Electrical Engineering
- Technical and Specification Writing
- Fundamentals of Professional Engineering
- Engineering Drawings
- Printed Circuit Board Design
- Anatomy and Physiology for Engineering
- Power Electronics and Power Supplies
- Shielding, EMC/EMI, Noise Reduction and Grounding/Earthing
- Troubleshooting Electronic Components and Circuits
- Biomedical Instrumentation
- Biomedical Signal Processing
- C++ Programming
- Embedded Microcontrollers
- Biomedical Modelling and Simulation
- Biomedical Equipment and Engineering Practices
- Biomedical Image Processing
- Biomechanics and Assistive Technology
- Medical Informatics and Telemedicine

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.

Read less
The Placement Course for Professional Engineers in the Construction Infrastructure and Oil & Gas sectors aims to train engineers to become managers in Construction and Oil & Gas Companies who are able to manage business processes and construction site procedures. Read more
The Placement Course for Professional Engineers in the Construction Infrastructure and Oil & Gas sectors aims to train engineers to become managers in Construction and Oil & Gas Companies who are able to manage business processes and construction site procedures.

The Placement Course for Professional Engineers Construction and Oil & Gas Sectors is accredited by CPD Certification Service in London. Accredited CPD training means the learning activity has reached the required Professional Development standards and benchmarks. The learning value has been scrutinised to ensure integrity and quality. The CPD Certification Service provides recognised independent CPD accreditation compatible with global CPD requirements.

The Course is delivered with the support of Multinational Companies operating worldwide

Dirextra has more than 2,300 alumni engineers who have worked on the construction of major infrastructures around the world. There is no growth without engineers.

6 months (1000 hours) of training on a Construction or Oil & Gas Site. Accommodation will be provided by the host company. (not applicable to positions in the office headquarters).

Kick-start your career with a programme in Construction and Oil & Gas. Dirextra is a leader in the field of Construction Infrastructure, Oil & Gas and Engineering education.

EMPLOYMENT OPPORTUNITIES
The programme is supported by large Oil & Gas and Construction Infrastructure Companies operating all over the world aiming to hire young engineers.
100% successful placement in previous cohorts.

Next editions
27th cohort will start in Rome on 26 Sep 2017
28th cohort will start in Manchester on 26 Feb 2018

Fees and Financing
Tuition fees £ 12,000. (pounds).
Payment can be made in the following ways:
-in total at the time of registration (discount of £ 1,000 (pounds)
-in 4 installments
The Construction and Oil & Gas Companies sponsoring our Programme grant Scholarships to cover part of Tuition Fees.
6 scholarship up to 40% and 4 scholarship up to 30%.

Scholarships are limited students who register in advance will receive a higher amount based on selection performance.
Selection will be determined by qualifications and psychometric tests and interviews.

Programme and Certification acquired
Organization of Construction Companies and Strategies;Organization of Oil&Gas Companies and Strategies;Administration, Management Control and Finance;Tenders Department;Contract Management: from signature to testing;Standard Contract Forms and Claims;Procurement and Risk Management;Construction Project Management;Planner Primavera P6;Managerial Accounting;Cost Control;Technical Management of Construction Site;Management Control and Budget;Quality Management System of Construction Sites;Environmental Management of Construction Sites;Health and Safety Management of Construction Sites;Management of Claims, Litigation and Arbitration;Drilling Engineering of Wells;People Management;Plant Production and Processing of Hydrocarbons;Excavated Rocks and Fluids in the Subsurface.
Certification Acquired:
1. Master’s Degree in Professional Engineers Construction and Oil&Gas Sector
2. Mini Master Construction Planner: Oracle Primavera P6 EPPM. 24 PMI Contacts Hours (24h)
3. Mini Master Construction Cost Control. 16 PMI Contacts Hours (16h)
4. Construction Business English Course (40h).
5. Construction CAPM Course. 40 PMI Contacts Hours (40h)

Read less
IN THIS 18-MONTH INTENSIVE PART-TIME PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in instrumentation, process control and industrial automation. Read more
IN THIS 18-MONTH INTENSIVE PART-TIME PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in instrumentation, process control and industrial automation
- Guidance from industrial automation experts in the field
- Knowledge from the extensive experience of instructors, rather than from the clinical information gained from books and college
- Credibility as the local industrial automation expert in your firm
- Networking contacts in the industry
- Improved career prospects and income
- An Advanced Diploma of Industrial Automation

Next intake starts October 09, 2017. Applications now open; places are limited.

Contact us now to secure your place!

Payment is not required until around 2 to 4 weeks before the start of the program.

The EIT Advanced Diploma of of Industrial Automation is recognized worldwide and has been endorsed by the International Society of Automation (ISA). Please ask us about specific information on accreditation for your location.

OVERVIEW

Gain strong underpinning knowledge and expertise in Industrial Automation covering a wide range of skills ranging from instrumentation, automation and process control, industrial data communications, process plant layout, project and financial management and chemical engineering with a strong practical focus. Industrial Automation is an extremely fast moving area especially compared to the more traditional areas such as electrical and mechanical engineering. The field is diverse and dynamic and offers the opportunity for a well paid and enjoyable career. The aim of the course is to empower you with practical knowledge that will improve your productivity in the area and make you stand out as a leader in industrial automation amongst your peers.

*JOB OUTCOMES, INTERNATIONAL RECOGNITION AND PROFESSIONAL MEMBERSHIP:

A range of global opportunities awaits graduates of the Advanced Diploma of Industrial Automation. Pending full accreditation you may become a full member of Engineers Australia and your qualification will be recognized by Engineers Australia and (through the Dublin Accord) by leading professional associations and societies in Australia, Canada, Ireland, Korea, New Zealand, South Africa, United Kingdom and the United States. The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

For example, current enrolled students can apply for free student membership of Engineers Australia. After graduation, you can apply for membership to become an Engineering Associate, while graduates interested in UK recognition can apply for membership of the Institution of Engineering and Technology (IET) as a Technician Member of the Institution of Engineering and Technology.

This professional recognition greatly improves the global mobility of graduates, and offers you the opportunity of a truly international career.

You will be qualified to find employment as an Engineering Associate in public and private industry including transportation, manufacturing, process, construction, resource, energy and utilities industries. Engineering Associates often work in support of professional engineers or engineering technologists in a team environment. If you prefer to work in the field you may choose to find employment as a site supervisor, senior technician, engineering assistant, or similar.

PROGRAM STRUCTURE

The program is composed of 72 topics within 21 modules. These cover the following seven engineering threads to provide you with maximum practical coverage in the field of industrial automation:

- Instrumentation, Automation and Process Control
- Electrical Engineering
- Electronics
- Industrial Data Communications and Networking
- Mechanical Engineering
- Project Management
- Chemical Engineering

The modules will be completed in the following order:
1. Practical Instrumentation for Automation and Process Control
2. Practical Fundamentals of Chemical Engineering (for Non- Chemical Engineers)
3. Control Valve Sizing, Selection and Maintenance
4. Fundamentals of Process Plant Layout and Piping Design
5. Practical Process Control for Engineers and Technicians
6. Practical Tuning of Industrial Control Loops for Engineers and Technicians
7. Practical Distributed Control Systems (DCS)
8. Practical Programmable Logic Controllers (PLCs) for Automation and Process Control
9. Best Practice in Industrial Data Communications
10. Practical Advanced Process Control for Engineers and Technicians
11. Practical Boiler Control and Instrumentation for Engineers and Technicians
12. Practical Hazardous Areas for Engineers and Technicians
13. Practical Safety Instrumentation and Emergency Shutdown Systems for Process Industries Using IEC 6155 and IEC 61508
14. Practical HAZOPS (Hazard and Operability Studies) for Engineers and Technicians
15. Practical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board Layout of Electronic Systems
16. Practical Wireless Ethernet and TCP/ IP Networking
17. Practical Radio Telemetry Systems for Industry
18. Practical SCADA Systems for Industry
19. Motor Protection, Control and Maintenance Technologies
20. Practical Power Distribution for Engineers and Technicians
21. Practical Project Management for Electrical, Instrumentation and Mechanical Engineers and Technicians

COURSE FEES

EIT provides distance education to students located all around the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. We aim to give you a rapid response regarding course fees that are relevant to your individual circumstances.

We understand that cost is a major consideration before a student begins to study. For a rapid reply to your query regarding course fees and payment options, please contact a Course Advisor in your region via the below button and we will respond within two (2) business days.

Read less
Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production?… Read more

Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production? Would you like to know whether it is possible to produce bio-polymers (plastics) and biofuels from municipal or agricultural waste? If you are thinking of a career in the pharma or biotech industries, the Biochemical Engineering MSc could be the right programme for you.

Degree information

Our MSc programme focuses on the core biochemical engineering principles that enable the translation of advances in the life sciences into real processes or products. Students will develop advanced engineering skills (such as bioprocess design, bioreactor engineering, downstream processing), state-of-the-art life science techniques (such as molecular biology, vaccine development, microfluidics) and essential business and regulatory knowledge (such as management, quality control, commercialisation).

Three distinct pathways are offered tailored for graduate scientists, engineers, or biochemical engineers. Students undertake modules to the value of 180 credits. The programme offers three different pathways (for graduate scientists, engineers, or biochemical engineers) and consists of core taught modules (120 credits) and a research or design project (60 credits).

Core modules for graduate scientists

-Advanced Bioreactor Engineering

-Bioprocess Synthesis and Process Mapping

-Bioprocess Validation and Quality Control

-Commercialisation of Bioprocess Research

-Fluid Flow and Mixing in Bioprocesses

-Heat and Mass Transfers in Bioprocesses

-Integrated Downstream Processing

-Mammalian Cell Culture and Stem Cell Processing

Core modules for graduate engineers

-Advanced Bioreactor Engineering

-Bioprocess Validation and Quality Control**

-Cellular Functioning from Genome to Proteome

-Commercialisation of Bioprocess Research

-Integrated Downstream Processing

-Mammalian Cell Culture and Stem Cell Processing

-Metabolic Processes and Regulation

-Structural Biology and Functional Protein Engineering

-Bioprocess Microfluidics*

-Bioprocess Systems Engineering*

-Bioprocessing and Clinical Translation*

-Cell Therapy Biology*

-Industrial Synthetic Biology*

-Sustainable Bioprocesses and Biorefineries*

-Vaccine Bioprocess Development*

*Core module for graduate biochemical engineers; **core module for both graduate engineers and graduate biochemical engineers

Research project/design project

All MSc students submit a 10,000-word dissertation in either Bioprocess Design (graduate scientists) or Bioprocess Research (graduate engineers and graduate biochemical engineers).

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, and individual and group activities. Guest lectures delivered by industrialists provide a professional and social context. Assessment is through unseen written examinations, coursework, individual and group project reports, individual and group oral presentations, and the research or design project.

Careers

The rapid advancements in biology and the life sciences create a need for highly trained, multidisciplinary graduates possessing technical skills and fundamental understanding of both the biological and engineering aspects relevant to modern industrial bioprocesses. Consequently, UCL biochemical engineers are in high demand, due to their breadth of expertise, numerical ability and problem-solving skills. The first destinations of those who graduate from the Master's programme in biochemical engineering reflect the highly relevant nature of the training delivered.

Approximately three-quarters of our graduates elect either to take up employment in the relevant biotechnology industries or study for a PhD or an EngD, while the remainder follow careers in the management, financial or engineering design sectors.

Top career destinations for this degree:

-PhD Degree/Further Studies(Imperial College London, UCL, Cambridge)

-Consultancy (PwC)

-Bioprocess/Biopharma Industry (GSK, Eli Lilley, Synthace)

-Financial Sector

Employability

The department places great emphasis on its ability to assist its graduates in taking up exciting careers in the sector. UCL alumni, together with the department’s links with industrial groups, provide an excellent source of leads for graduates. Over 1,000 students have graduated from UCL with graduate qualifications in biochemical engineering at Master’s or doctoral levels. Many have gone on to distinguished and senior positions in the international bioindustry. Others have followed independent academic careers in universities around the world.

Why study this degree at UCL?

UCL was a founding laboratory of the discipline of biochemical engineering, established the first UK department and is the largest international centre for bioprocess teaching and research. Our internationally recognised MSc programme maintains close links with the research activities of the Advanced Centre for Biochemical Engineering which ensure that lecture and case study examples are built around the latest biological discoveries and bioprocessing technologies.

UCL Biochemical Engineering co-ordinates bioprocess research and training collaborations with more than a dozen UCL departments, a similar number of national and international university partners and over 40 international companies. MSc students directly benefit from our close ties with industry through their participation in the Department’s MBI® Training Programme.

The MBI® Training Programme is the largest leading international provider of innovative UCL-accredited short courses in bioprocessing designed primarily for industrialists. Courses are designed and delivered in collaboration with 70 industrial experts to support continued professional and technical development within the industry. Our MSc students have the unique opportunity to sit alongside industrial delegates, to gain deeper insights into the industrial application of taught material and to build a network of contacts to support their future careers.

Visit the Biochemical Engineering Open Days page on the University College London website for more details on opportunities to come and see our facilities and speak to the team!



Read less
This programme responds to the worldwide demand for building services engineers who have a sound knowledge of engineering principles and the ability to apply this knowledge within the building services industry. Read more

About the course

This programme responds to the worldwide demand for building services engineers who have a sound knowledge of engineering principles and the ability to apply this knowledge within the building services industry.

Professional ‘Building Services Engineers’ design all of the systems that are necessary in a building for occupants to carry out their business. These systems include: heating, lighting, air-conditioning and electrical systems. The role is increasingly involved with the provision of sustainable, energy efficient and green building within our society. Services have to be carefully designed and installed so that they are unobtrusive and aesthetically pleasing, and also work in harmony with the architecture of the building. The programme will respond to the worldwide demand for building services engineers who have a sound knowledge engineering principles and the ability to apply this knowledge to the complex situations prevailing within the building services industry.

The course is available either as a full-time, 1-year programme at Brunel or as a 3-to-5 year distance learning programme.

Aims

With the growing complexity of engineering services in modern buildings and the significance of energy conservation and emissions control, the role of the building services engineer is becoming increasingly important.

As an interdisciplinary profession that involves the specification, design, installation and management of all the engineering services associated with the built environment, comfort and function also need to be combined – which calls for engineers with a wide range of knowledge and skills.

This MSc programme is suitable for:

Recent engineering and technology graduates, moving into building services and related disciplines.
Established engineers and technologists, working in building services and faced with the challenge of new areas of responsibility.
Engineers who want to develop technical understanding and expertise across the multi-disciplines of building services engineering.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in building services engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with building services engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.

Course Content

Modes of Study

1 Year Full-Time: The taught element of the course (September to April) includes seven modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

3-5 Years Distance Learning: The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to study yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.

Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Typical Modules

The course comprises four core modules, three technical modules and a dissertation. The taught modules are:

Core Modules:

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Energy Conversion Technologies
Dissertation

Technical Modules:

Building Management and Control Systems
Design of Fluid Services and Heat Transfer Equipment
Building Services Design and Management

Special Features

There are several advantages in choosing the Brunel Building Services programme:

Award-winning courses: Building Services Engineering courses have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: It is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: Emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Collaborative research
Engineering at Brunel benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Additioanlly we are seeking reaccreditation with the Energy Institute.

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of the academic year.
Examinations are normally taken in May. MSc dissertation project normally is carried out over four months (full-time students) or one year (distance learning students) and it is accessed by submission of an MSc dissertation.

Read less
This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility. Read more

About the course

This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility.

It caters to the worldwide demand for building services engineering managers who have a sound knowledge of engineering and management principles – and the ability to apply this knowledge to complex situations.

Management modules cover engineering finance and accounting, people management, business organisation and facilities and contract management.

Aims

Building Service Engineers help buildings to deliver on their potential by working with architects and construction engineers to produce buildings that offer the functionality and comfort we expect, with the minimum impact on our environment. They design the lighting appropriate for the space, the heating, cooling, ventilation and all systems that ensure comfort, health and safety in all types of buildings, residential commercial and industrial.

Building services engineering is an interdisciplinary profession. It involves the specification, design, installation and management of all the engineering services associated with the built environment.

With the growing complexity of engineering services in modern buildings and the significance of energy conservation and pollution control, the role of the building services engineer is becoming increasingly important.

As an interdisciplinary profession that involves the specification, design, installation and management of all the engineering services associated with the built environment, comfort and function also need to be combined – which calls for engineers with a wide range of knowledge and skills.

This MSc programme is for:

Recent engineering and technology graduates, moving into building services and related disciplines.
Established engineers and technologists, working in building services and faced with the challenge of new areas of responsibility.
Engineers who want to develop technical understanding and expertise across the multi-disciplines of building services engineering.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in building services engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with building services engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.

Course Content

Modes of Study
3-5 Years Distance Learning

The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to suit yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.

Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Compulsory Modules

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Engineering Finance and Accounting
Management of People in Engineering Activities
Organisation of Engineering Business
Management of Facilities and Engineering Contracts
Dissertation

Students should choose one of the two themes below:

Theme A - Traditional

Energy Conversion Technologies
This element provides a broad introduction to the principles of energy conversion and thermodynamic machines and demonstrates their application to energy conversion and management in buildings. Emphasis is placed on refrigeration plant, energy conversion plant and energy management.
Refrigeration covers the basic principles and components of vapour compression systems, heat pumps and absorption systems.
Energy Conversion considers power cycles, combined heat and power, combustion processes, boiler plant, thermal energy storage and environmental impacts of plant operation.

Theme B - Renewable

Renewable Energy Technologies
This element includes: energy sources, economics and environmental impact, energy storage technologies, the role of renewables, solar thermal, solar electricity, wind power generation, hydro, tidal and wave power, biofuels, building integrated renewables.

Special Features

There are several advantages in choosing Brunel's Building Services programme:

Award-winning courses: Building Services Engineering courses at Brunel have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: it is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Accreditation

The course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng).

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May.
Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Read less
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program. IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN. Read more
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program.

IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN:
- Skills and know-how in the latest and developing technologies in electrical systems
- Practical guidance and feedback from experts from around the world
- Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college
- Credibility and respect as the local electrical systems expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Electrical Systems)** qualification

The next intake will start on the week of June 27, 2016.

Contact us to find out more and apply (http://www.eit.edu.au/course-enquiry).

** A note regarding recognition of this program in the Australian education system: EIT is the owner of this program. The qualification is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA). EIT delivers this program to students worldwide.

Visit the website http://www.eit.edu.au/master-engineering-electrical-systems

PROFESSIONAL RECOGNITION

This Master Degree (or Graduate Diploma) is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA) in Australia.

It is a professional development program and is not currently an entry-to-practice qualification. Engineers Australia are considering this and other programs for those students desiring professional status (e.g. CPEng). However, the outcome of this review may or may not result in a student gaining chartered professional status if he or she does not already possess this.

Additional Entry Requirements

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6.0) or equivalent as outlined in the EIT Admissions Policy.

Congruent field of practice means one of the following with adequate electrical engineering content (with fields not listed below to be considered by the Dean and the Admissions committee on a case-by-case basis):

• Electrical Engineering

• Electronic and Communication Systems

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechatronic Systems

• Manufacturing and Management Systems

• Industrial Automation

• Production Engineering

Overview

Electrical power is an essential infrastructure of our society. Adequate and uninterrupted supply of electrical power of the required quality is essential for industries, commercial establishments and residences; and almost any type of human activity is impossible without the use of electricity. The ever-increasing cost of fuels required for power generation, restricted availability in many parts of the world, demand for electricity fueled by industrial growth and shortage of skilled engineers to design, operate and maintain power network components are problems felt everywhere today. The Master of Engineering (Electrical Systems) is designed to address the last-mentioned constraint, especially in today’s context where the field of electrical power is not perceived as being ‘cool’ unlike computers and communications and other similar nascent fields experiencing explosive growth. But it is often forgotten that even a highly complex and sophisticated data centre needs huge amounts of power of extremely high reliability, without which it is just so much silicon (and copper).

This program presents the topics at two levels. The first year addresses the design level where the student learns how to design the components of a power system such as generation, transmission and distribution as well as the other systems contributing to the safety of operation. The topics in the first year also cover the automation and control components that contribute to the high level of reliability expected from today’s power systems. Because of the constraints imposed by the fuel for power generation and the environmental degradation that accompanies power generation by fossil fuels, the attention today is focused on renewable energy sources and also more importantly how to make the generation of power more efficient and less polluting so that you get a double benefit of lower fuel usage and lower environmental impact. Even the best designed systems need to be put together efficiently. Setting up power generation and transmission facilities involves appreciable capital input and complex techniques for planning, installation and commissioning. Keeping this in view, a unit covering project management is included in the first year.

The second year of the program focuses on the highly complex theory of power systems. If the power system has to perform with a high degree of reliability and tide over various disturbances that invariably occur due to abnormal events in the power system, it is necessary to use simulation techniques that can accurately model a power system and predict its behavior under various possible disturbance conditions. These aspects are covered in the course units dealing with power system analysis and stability studies for steady-state, dynamic and transient conditions. The aspect of power quality and harmonic flow studies is also included as a separate unit.

The study of power systems has an extensive scope and besides the topics listed above, a student may also like to cover some other related topic of special interest. The ‘Special Topics in Electrical Power Systems’ unit aims to provide students with the opportunity for adding one ‘state-of-the art’ topic from a list of suggested fields. Examples are: Smart grids, Micro-grids and Geographic Information System (GIS) application in utility environment.

The Masters Thesis which spans over two complete semesters is the capstone of the program, requiring a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding units. As a significant research component of the course, this program component will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling the students to critique current professional practice in the electrical power industry.

WHO WOULD BENEFIT

Those seeking to achieve advanced know-how and expertise in industrial automation, including but not limited to:

- Electric Utility engineers

- Electrical Engineers and Electricians

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Consulting Engineers

- Production Managers

Read less
Take advantage of one of our 100 Master’s Scholarships to study Civil Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Civil Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University has an excellent reputation for civil engineering, the department is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

Key Features of MSc in Civil Engineering

The MSc Civil Engineering course aims to provide advanced training in civil engineering analysis and design, particularly in modelling and analysis techniques.

As a student on the MSc Civil Engineering course you will be provided with in-depth knowledge and exposure to conventional and innovative ideas and techniques to enable you to develop sound solutions to civil engineering problems.

Through the MSc Civil Engineering course, you will also be provided with practical computer experience through the use of computational techniques, using modern software, to provide a solution to a range of current practical civil engineering applications. This will enable you to apply the approach with confidence in an industrial context.

Civil Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

As a student on the Master's course in Civil Engineering, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Modules

Modules on the MSc Civil Engineering course typically include:

Water and Wastewater Infrastructure
Finite Element Computational Analysis
Advanced Structural Design
Fluid-Structure Interaction
Entrepreneurship for Engineers
Computational Plasticity
Numerical Methods for Partial Differential Equations
Computational Case Study
Reservoir Modelling and Simulation
Dynamics and Transient Analysis
Coastal Engineering
Coastal Processes and Engineering
Flood Risk Management

Accreditation

The MSc Civil Engineering course at Swansea University is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

See http://www.jbm.org.uk for further information.

This degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

Strong interaction and cooperation is forged with the construction industry and relevant member institutions of the Joint Board of Moderators (JBM), particularly the Institution of Civil Engineers (ICE) and the Institution of Structural Engineers (IStructE).

These companies actively engaged with Civil Engineering at Swansea University: Atkins, Arup, Balfour Beatty Civil Engineering Ltd, Black and Veatch Ltd, City and Council of Swansea, Dean and Dyball, Halcrow UK, Hyder (Cardiff), Interserve Ltd, the Institution of Civil Engineers (ICE), Laing O’Rourke, Mott MacDonald Group Ltd, Veryard Opus.

Career Prospects

The civil engineering sector is one of the largest employers in the UK and demand is strong for civil engineering graduates. Thie MSc Civil Engineering course also equips you with the skills to be involved in other engineering projects and provides an excellent basis for a professional career in structural, municipal and allied engineering fields.

The MSc Civil Engineering is suitable for those who would like to prepare for an active and responsible career in civil engineering design and construction. Practising engineers will have the chance to improve their understanding of civil engineering by attending individual course modules.

Student Quotes

“I decided to study at the College of Engineering as it is a highly reputable engineering department.

My favourite memories of the course are the practical aspects and the lab work. Group projects have given me the opportunity to work in a team to overcome engineering-based problems. Studying at the College of Engineering has given me a good knowledge of engineering principles and has helped me to apply this to real life problems.

As part of my time here, I took part in the IAESTE programme. I worked with the Department of Civil Engineering at the University of Manipal, Southern India, on a development project involving an irrigation system.

My future plan is to get some experience in an engineering firm, and hopefully, this experience will allow me to work abroad for an NGO on further development projects."

Thomas Dunn, MSc Civil Engineering

Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest technologies in mechanical engineering. - Hard hitting know-how in pumps, compressors, piping, seals and machinery safety. Read more
WHAT YOU WILL GAIN:

- Skills and know-how in the latest technologies in mechanical engineering
- Hard hitting know-how in pumps, compressors, piping, seals and machinery safety
- Guidance from experts in the field of mechanical engineering technology
- Networking contacts in the industry
- Improved career prospects and income
- A world recognized EIT Advanced Diploma in Mechanical Engineering Technology

Next intake is scheduled for October 02, 2017. Applications now open; places are limited.

There are limited places in all of our courses to ensure great interaction can be achieved between the presenters and the students.

Contact us now to receive help from experienced Course Advisors!

INTRODUCTION

Whilst there is probably not a serious shortage of theoretically oriented practitioners in mechanical engineering, there is a shortage of highly skilled practically oriented mechanical technologists and engineers in the world today, due to the new technologies only recently becoming a key component of all modern plants, factories and offices. The critical shortage of experts in the area has been accentuated by retirement, restructuring and rapid growth in new industries and technologies. This is regardless of the recession in many countries.

Many businesses throughout the world comment on the difficulty in finding experienced mechanical engineers and technologists despite paying outstanding salaries. For example, about two years ago a need developed for mechanical technologists and engineers in building process plants. The interface from the traditional SCADA and industrial automation system to the web and to mechanical equipment has also created a new need for expertise in these areas. Specialists in these areas are few and far between.

The aim of this 18 month e-learning program is to provide you with core skills in working with mechanical engineering technology and systems and to take advantage of the growing need by industry here.

The five threads running through this program are:

- Fundamentals of Mechanical Engineering Technologies
- Applications of Mechanical Engineering Technologies
- Energy Systems
- Industrial Automation
- Management

WHO SHOULD ATTEND

- Plant operations and maintenance personnel
- Design engineers
- Process technicians, technologists and engineers
- Process control engineers and supervisors
- Mechanical technicians, technologists and engineers
- Mechanical equipment sales engineers
- Pump and mechanical equipment operators
- Contract and asset managers

COURSE STRUCTURE

The course is composed of 21 modules, which cover 5 main threads, to provide you with maximum practical coverage in the field of Mechanical Engineering Technology:

FUNDAMENTALS OF MECHANICAL ENGINEERING

Fundamentals of Mechanical Engineering
Structural Mechanics
Mechanical Drive Systems
A C Electrical Motors and Drives
Rotating Equipment Balancing, Alignment and Condition Monitoring
Hydraulics
Pneumatics
Lubrication Engineering

APPLICATIONS OF MECHANICAL ENGINEERING TECHNOLOGY

Heating, Ventilation and Air-conditioning
Process Plant Layout and Piping Design
Pipeline Systems
Pumps and Compressors
Mechanical Seals
Safe Lifting
Machinery Safety

ENERGY SYSTEMS

Energy Efficiency
Renewable Energy Systems

INDUSTRIAL AUTOMATION

Industrial Automation
Measurement and Control Systems
Management of Hazardous Areas

MANAGEMENT

Project Management

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.

Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest technologies in all aspects of plant engineering. - Guidance from practicing plant engineering experts in the field. Read more
WHAT YOU WILL GAIN:

- Skills and know-how in the latest technologies in all aspects of plant engineering
- Guidance from practicing plant engineering experts in the field
- Knowledge from the extensive experience of instructors, rather than from clinical information gained from books and college
- Improved career prospects and income
- An EIT Advanced Diploma of Plant Engineering

Start Date: September 18, 2017.

INTRODUCTION

This practical course avoids over emphasis on theory. This is rarely needed in the real industrial world where time is short and immediate results are required. Hard-hitting and useful know-how, are needed as minimum requirements. The instructors presenting this advanced diploma are highly experienced engineers from industry who have many years of real-life experience as Plant Engineers. The format of presentation - live, interactive distance learning with the use of remote labs means that you can hit the ground running and be of immediate benefit to your company or future employer.

WHO SHOULD ATTEND?

Anyone who wants to gain solid knowledge of the key elements of Plant Engineering to improve their work skills and to further their job prospects:

- Electrical Engineers who need an overall Plant Engineering appreciation
- Electricians
- Maintenance Engineers and Supervisors
- Automation and Process Engineers
- Design Engineers
- Project Managers
- Consulting Engineers
- Production Managers
- Chemical and Mechanical Engineers
- Instrument and Process Control Technicians

Even those who are highly experienced in Plant Engineering may find it useful to follow some of the topics to gain know-how in a very concentrated but practical format.

COURSE STRUCTURE

The course follows six engineering threads to provide you with maximum practical coverage in the field of Plant Engineering:

- Overview and where the Plant Engineer fits into the 21st century production sphere
- Engineering technologies in detail
- Skills for project, process, environmental and energy management
- Maintenance management
- Safety management; with corresponding legal knowledge
- Other necessary skills to master

The course is composed 19 modules. These modules cover a range of aspects to provide you with maximum practical coverage in the field of Plant Engineering.

The modules are:

- Introduction to Plant Engineering
- Plant Operations and Facility Management
- Electrical Equipment and Technology
- Pressure Vessels and Boilers
- Fundamentals of Professional Engineering
- Mechanical Equipment and Technology
- Fluid Power Systems and Components
- Pumps and Seals
- Thermodynamics, Compressors, Fans and Blowers
- Process Plant Layout and Piping Design
- Heating, Ventilation and Air Conditioning
- Noise and Vibration
- Structural and Civil Engineering Concepts
- Process Management
- Energy Management
- Instrumentation and Control Engineering
- Maintenance Management
- Environmental Engineering
- Safety Management

PRESENTATION FORMAT

The programme features real-world applications and uses a multi-pronged approach involving interactive on-line webinars, simulation software and self-study assignments with a mentor on call. The course consists of 72 topics delivered over a period of 18 months. Presentations and group discussions will be conducted using a live, interactive software system. For each topic you will have an initial reading assignment (which will be delivered to you in electronic format in advance of the online presentations). There will be coursework or problems to be submitted and in some cases there will be practical exercises, using simulation software and remote labs that you can easily do from your home or office. You will have ongoing support from the instructors via phone, fax and e-mail.

LIVE WEBINARS

The webinar schedule is not put together until after registrations close. The reason for this is that the program is promoted globally and we often have participants from several time zones. When you enrol you will receive a questionnaire which will help us determine your availability. When all questionnaires are returned we create a schedule which will endeavour to meet everyone’s requirements. Each webinar runs 2 or 3 times during each presentation day and we try our best to ensure that at least one session falls into your requested time frames. This is not always possible, however, due to the range of locations of both presenters and students. If you are unable to attend the webinars scheduled, we do have some options available. Contact the EIT for more details.

PRACTICAL EXERCISES AND REMOTE LABORATORIES

As part of the groundbreaking new way of teaching, we will be using a series of remote laboratories (labs) and simulation software, to facilitate your learning and to test the knowledge you gain during the course. These involve complete working labs set up at various locations of the world into which you will be able to log and proceed through the various practical sessions. These will be supplemented by simulation software, running either remotely or on your computer, to ensure you gain the requisite handson experience. No one can learn much solely from lectures, the labs and simulation software are designed to increase the absorption of the materials and to give you a practical orientation of the learning experience. All this will give you a solid, practical exposure to the key principles covered in the course and will Practical Exercises and Remote Laboratories ensure that you obtain maximum benefit from the course to succeed in your future career in Industrial Automation.

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.

Read less
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. Read more
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. There is an increased demand for advancements in electrical, electronic, control and communication systems for transport, with a particular focus on themes like higher efficiency and sustainability, safety and driving assistance, position and traffic control for smart transport planning.

Modern electrical, electronic, control and communication systems for intelligent transport require today engineers with a combination of skills and solutions from cross-disciplinary abilities spanning electrical, electronic, control and communications. In this context, the overall aim of this Conversion Masters is to provide you with an enriching learning experience, and to enhance your knowledge and skill-base in the area of modern road vehicle and rail transport systems design.

This conversion course is intended both for engineers in current practice and for fresh honours graduates to facilitate their professional development, mobility and employability.

Course content

This course aims to enhance your knowledge and skills in the area of intelligent and efficient transport systems design. You will develop advanced practical skills that will help you determine system requirements, select and deploy suitable design processes and use the latest specialist tool chains to test and/or prototype a device or algorithm. The programme will help you acquire the cross-disciplinary skills and abilities that today are vital to be able to implement effective solutions for modern electrical, electronic and communication systems applied to intelligent transport. The broad range of disciplines covered by the course will enable you to enter a career that requires a cross-disciplinary approach with a practical skillset.

The subject areas covered within the course offer you an excellent launch pad which will enable you to enter into this ever expanding, fast growing and dominant area within the electrical engineering sector, and particularly in the area of intelligent and efficient transport systems. Furthermore, the course will provide the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-Electric Motors and Control for Transport Systems
-Power Conversion and Drives for Transport Systems
-Project
-Sensor, Data Acquisition and Communication for Transport Systems

Associated careers

The course provides the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs. Graduates can expect to find employment, for example, as Electrical systems design engineers; Control systems engineers, Transport systems engineers; Plant control engineers; Electronic systems design engineer; Communication systems design engineers; Sensor systems engineers; Computer systems engineer. Examples of typical industries of employment can be: Transport; Automobile; Aviation; Electrical systems; Electronic systems; Assembly line manufacturers; Robotics and home help; Toy; Communication systems; Logistics and distribution; Consumer industry; Life-style industry; Security and surveillance; Petro-chemical.

Professional recognition

This course will be seeking accreditation from the IET.

Read less
Energy management using sustainable technologies and implementation of environmental initiatives play a rapidly increasing role in many public organisations and industry. Read more

About the course

Energy management using sustainable technologies and implementation of environmental initiatives play a rapidly increasing role in many public organisations and industry.

There is an urgent need for trained personnel to advise, implement and deliver strategies and management for sustainable practices. This programme empowers graduates with a sound knowledge of sustainable technologies and skills for effective energy management with regard for environmental protection. It will enable them to create new opportunities for their employers by bringing an appreciation for current research into industrial use.

Building Services Engineering courses awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

College Research wins CIBSE Building Performance Award 2013.

Aims

This programme will give graduates the sound knowledge and skills required for effective energy management and environmental protection.

Students will develop themes of expertise facilitated by an MSc project and dissertation, which also provides a useful introduction to students thinking of embarking on a doctoral research degree.

Links with industry are a key element of the programme, including guest speakers from various industry sectors.

Course Content

Compulsory Modules:

Energy Conversion Technologies
Sustainable Built Environment
Renewable Energy Technologies
Sustainable Energy Development
Environmental Legislation: Energy and Environmental Review and Auditing
Environmental Hazard and Risk
Research Methods and Sustainable Engineering
Masters Project and Dissertation

Optional Modules (choose one)

Strategic Management, Innovation and Enterprise
Project Management

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May/June. Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Special Features

Award-winning, accredited courses
Brunel’s Building Services Engineering courses have received the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers. Brunel offers a number of MSc courses in mechanical engineering, all accredited by professional institutes as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Accrediting professional institutes vary by course and include the Institute of Mechanical Engineers (IMechE) and Chartered Institute of Building Services Engineers (CIBSE).

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

World-class research
Teaching in the courses is underpinned by research activities in aerospace engineering, automotive/motorsport engineering, solid and fluid mechanics, and energy & environment. Staff generate numerous publications, conference presentations and patents, and have links with a wide range of institutions both within and outside the UK. The discipline benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

Sustainable Energy : Technologies and Management MSc is accredited by the Institution of Mechanical Engineering (IMechE), and The Chartered Institution of Building Services Engineers (CIBSE). Additionally we are seeking reaccreditation with the Energy Institute as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng).

Read less
Oil and gas remains one of our major energy resources and the recovery of these resources is increasingly important, just as it was in the last century. Read more

Overview

Oil and gas remains one of our major energy resources and the recovery of these resources is increasingly important, just as it was in the last century. What has changed with time is the need to recover more of the reservoir, operating in harsher environments both physically and economically. Equally there are challenges due to changes in knowledge and the relative lack of experience from engineers in the market. Traditionally in the UK, the vast majority of engineers entering the industry do so through two routes; first as facilities or surface engineers - chemical and process, mechanical and electrical engineering working on the processing systems to stabilise fluid from the reservoir. The second route is through the petroleum engineering or sub-surface engineering route which sees engineers develop knowledge and skills necessary to locate, drill and extract oil and gas reserves.

This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-oilandgas-technology/ ) was been designed with the help of the industry to provide a cross over between surface and sub-surface engineering functions with the intent that future oil and gas operations can be better optimised to enhance recovery of the reserves. In order to maximise recovery, surface engineers in an operating company must communicate effectively with the reservoir and production engineers within their own company as well as develop relationships with and assess the work of contractors and vendors when designing and constructing facilities. Therefore, surface engineers need to be competent not only in the areas of process design, pipeline engineering, but also be familiar with reservoir engineering, production technology and a variety of other engineering and management subjects, such as safety and control, management of projects, economics and planning, etc.

The programme contains 8 taught courses covering key topics in surface and sub-surface engineering. Two projects towards the end of the programme provide opportunities for participants to demonstrate their knowledge in the design of a surface facility, and to study a specific topic of interest.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Oil and Gas Technology. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

For the MSc and PGDip degrees, students are required to take eight taught courses. MSc students then complete the programme by undertaking two 30 credit projects.

Find more information on programme content here http://www.postgraduate.hw.ac.uk/prog/msc-oilandgas-technology/

English language requirements

If you are not from a UKBA recognised English speaking country, we will need to see evidence of your English language ability. If your first degree was taught in English a letter from them confirming this will be sufficient. Otherwise the minimum requirement for English language is IELTS 6.5 or equivalent, with a minimum of 5.5 in each skill.

The University offers a range English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)
- 3 weeks English refreshers course (for students who meet the English condition for the MSc but wish to refresh their English skills prior to starting).

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-oilandgas-technology/

Read less
How can you design an electronic toll collection system? How can a production plant minimize production costs without compromising on quality and safety? How can you design a complex consumer product?. Read more
How can you design an electronic toll collection system? How can a production plant minimize production costs without compromising on quality and safety? How can you design a complex consumer product?

These are typical questions that a graduate of the Master's programme Industrial Engineering and Management (IEM) can address. In a progressively technological society, IEM engineers will increasingly become leaders of technological innovation and design.

A Student of the Master's degree programme Industrial Engineering and Management (IEM) learns how to deal with practical problems in businesses. A focus lies on how to find solutions to problems while taking on a technical and scientific design perspective. The general aim of the IEM Master's programme is to train engineers to acquire a thorough overview of all primary and secondary business processes, especially with respect to the design of a technological product or process.

More than its nearest competitors, the IEM Master's degree programme of the University of Groningen focuses on technology. About 65% of the curriculum is dedicated to engineering and technology, and about 35% focuses on management and business. You can choose between two specialisations:

* PTL: Production Technology and Logistics

* PPT: Product and Process Technology

Why in Groningen?

- Integration of technology and management
- Strongly embedded in a specific technology of your choice

Job perspectives

Career opportunities are abundant for Industrial Engineering and Management(IEM)engineers. Career-market analyses consistently show that there is a strong need for professionals with a combined technical and managerial background.

- IEM engineers with a Production Technology and Logistics (PTL) specialization
IEM engineers with a PTL specialization can start a career as a product manager, involved in the development of new innovative products within the tight boundaries of technical, market and product-related constraints.

-Product and Process Technology (PPT) specialized IEM engineers
PPT-specialized IEM engineers can become members of product and process design teams or for example begin a career as a production manager in industrial companies.

Job examples

- Product manager
- Product developer
- Production manager
- Process designer

Read less

Show 10 15 30 per page



Cookie Policy    X