• Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Northampton Featured Masters Courses
London Metropolitan University Featured Masters Courses
Cranfield University Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
Birmingham City University Featured Masters Courses
University of Bath Featured Masters Courses
"engineering" AND "physic…×
0 miles

Masters Degrees (Engineering Physics)

We have 983 Masters Degrees (Engineering Physics)

  • "engineering" AND "physics" ×
  • clear all
Showing 1 to 15 of 983
Order by 
The new Master in Engineering Physics of the Technical University of Barcelona- BarcelonaTech offers a one year intensive program in Engineering Physics. Read more

The new Master in Engineering Physics of the Technical University of Barcelona- BarcelonaTech offers a one year intensive program in Engineering Physics. We cover topics of Physics at the forefront of new technologies ranging from the nanotechnology to the emerging field of quantum technologies. To this end, the Master includes advanced courses on Statistical and Quantum Physics, Physics and Engineering of large facilities such as the synchrotron, and pathways to the physics of complexity in different areas. The Master is addressed to an international audience and thus it is conducted in English. 

Professional opportunities

At the beginning of the XXI century a new kind of engineering is emerging, as the Key Enabling Technologies of the European Union put forward recently. A new kind of professionals starts now to be needed for working in cutting-edge engineering. Our Master in Engineering Physics is intended to provide new generations with enough knowledge on Physics to capacitate them for working in wide areas, ranging from nanoengineering and nanoelectronics to quantum technologies.

Career prospects may include the following:

  • Achieving a doctoral degree in applied physics, materials, quantum many-body systems, numerical simulation, astrophysics, etc.
  • Participating in doctoral programs, R&D and innovation programs in companies, basic or applied research centers and universities.
  • Joining a company as a consultant or engineer on advanced topics which require advanced knowledge of Physics.
  • Working in highly specialized technical positions for controlling services such as the synchrotron, neutron sources, specialized instrumentation, etc.
  • Participating in (and promoting) spin-offs and other small technology-based companies.
  • Joining the education system for high-level training in the field of applied and fundamental physics.

Competencies

Generic competencies

Generic competencies are the skills that graduates acquire regardless of the specific course or field of study. The generic competencies established by the UPC are capacity for innovation and entrepreneurship, sustainability and social commitment, knowledge of a foreign language (preferably English), teamwork and proper use of information resources.

Specific competencies

  • Ability for solving problems in Physics and Engineering using advanced numerical tools, with a proper analysis of stability, accuracy and computational cost.
  • Knowledge of the properties of matter at the nanoscale, the optimal methods for synthesis of nanomaterials and their applications in nanotechnology.
  • To be able of determining the structure of matter and its properties at atomic and molecular level.
  • Knowledge of the main functional and structural applications of materials. Influence of the dimensionality. Ability of selecting the best materials for specific applications in Engineering.
  • Knowledge of complexity in different physical phenomena and at different scales.
  • Knowledge of large facilities in physics such as the synchrotron and neutron sources and their possible ranges of applicability to measure properties of materials.
  • Ability of managing with big sets of data using advance technologies such as machine learning.
  • Capacity of proposing new projects in science/technology and assuming their leadership. 


Read less
The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. Read more

Mission and goals

The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. The physical engineer can approach all sectors in which advanced technological systems are developed: lasers, photonics, materials technology, biomedical optics, etc.

The course has three possible finalizations:
- Nano-optics and Photonics
- Nano and Physical Technologies
- Semiconductor nanotechnologies

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Career opportunities

The graduate in Engineering Physics can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical optics.
The physical engineer can therefore find employment in companies working in the fields of materials engineering and optical technologies; companies which use innovative systems and technologies; public and private research centres; companies operating in the physical, optical and photonic technologies and diagnostics market.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Engineering_Physics.pdf
The objective of this programme is to prepare an engineer able to produce innovation both in the industrial environment as well as in basic research. The graduates will have a broad cultural and scientific foundation and will be provided with the latest knowledge of solid-state and modern physics, optics, lasers, physical technology and instrumentation, nanotechnologies and photonics. Thanks to the experimental laboratory modules, available within different courses, the students face realistic problems throughout their studies. Career opportunities in the Physics Engineering field are extremely wide and varied. In particular, graduates can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical technology.
Moreover, master graduates can work in strategic consultancy companies or can continue their Academic Education with a PhD Program toward a professional career in academic or industrial research. The programme is taught in English.

Subjects

Three tracks available: Photonics and Nanotechnologies; Nanophysics and nanotechnology; Semiconductor nanotechnologies

Subjects common to all the tracks:
Mathematical Methods for Engineering, Solid State Physics, Photonics I, Automatic Controls, Electronics, Computer Science, Management

Other subjects:
- TRACK: PHOTONICS AND NANO OPTICS
Micro and Nano Optics, Photonics II
- TRACK: NANOPHYSICS AND NANOTECHNOLOGY
Physics of Low Dimensional Systems, Electron Microscopy And Spintronics
- TRACK: SEMICONDUCTOR NANOTECHNOLOGIES
Physics of Low Dimensional Systems, Physics of Semiconductor Nanostructures, Graphene and Nanoelectronic Devices

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The M.A.Sc. program requires a minimum of 30 credits, with the thesis counting for 12 credits. The remaining 18 credits must include at least 12 credits from graduate courses in any Science or Applied Science department, and may include up to 6 300- or 400-level credits in undergraduate courses. Read more

Master of Applied Science

Program Requirements

The M.A.Sc. program requires a minimum of 30 credits, with the thesis counting for 12 credits. The remaining 18 credits must include at least 12 credits from graduate courses in any Science or Applied Science department, and may include up to 6 300- or 400-level credits in undergraduate courses. All M.A.Sc. students are required to satisfy the Department's course requirements.

Quick Facts

- Degree: Master of Applied Science
- Specialization: Engineering Physics
- Subject: Engineering
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Science

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Key Features of MSc in Chemical Engineering

The MSc Chemical Engineering course is built upon the wide range of research in chemical engineering at Swansea University. This includes engineering applications of nanotechnology, bioengineering, biomedical engineering, cell and tissue engineering, chemical engineering, colloid science and engineering, desalination, pharmaceutical engineering, polymer engineering, rheology, separation processes, transport processes, and water and wastewater engineering.

The MSc Chemical Engineering research project provides an opportunity to work with a member of academic staff in one of the above, or related, area of research. The project may also involve collaboration with industry.

The taught component of the MSc Chemical Engineering course covers specific areas of advanced chemical engineering as well as the complex regulations that are found in the engineering workplace. It also provides an opportunity for the development of personal and transferable skills such as project planning, communication skills, and entrepreneurship.

As a student on the Master's course in Chemical Engineering, you will advance your technical knowledge, which can lead to further research or a career in chemical engineering.

Modules

Modules on the MSc Chemical Engineering course typically include:

Complex Fluids and Rheology

Entrepreneurship for Engineers

Colloid and Interface Science

Communication Skills for Research Engineers

Water and Wastewater Engineering

Membrane Technology

Environmental Analysis and Legislation

Optimisation

Desalination

Polymers: Properties and Design

Principles of Nanomedicine

Nanoscale Structures and Devices

Pollutant Transport by Groundwater Flows

MSc Research Practice

MSc Dissertation - Chemical Engineering

Accreditation

The MSc Chemical Engineering at Swansea University is accredited by the Institution of Chemical Engineers (IChemE).

The MSc Chemical Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis

Astra Zeneca

Avecia

BP Chemicals

Bulmers

Dow Corning

GlaxoSmithKline

Nestle

Murco

Phillips 66

Unilever

Valero

Swansea staff have research links with local, national, and international companies. An industrial advisory board, consisting of eight industrialists from a range of chemical engineering backgrounds, ensure our courses maintain their industrial relevance.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Careers

The demand for Chemical Engineering graduates remains excellent with the highest starting salaries out of all engineering disciplines.

Chemical engineers find employment in a variety of public and private sector industries, applying the principles of chemical engineering to health, energy, food, the environment, medicine, petrochemicals and pharmaceuticals.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
Are you keen to develop your existing engineering skills and knowledge to master’s level?. The MSc Engineering Management course has been specifically designed to allow you to update, extend and deepen your understanding of engineering and management. Read more
Are you keen to develop your existing engineering skills and knowledge to master’s level?

The MSc Engineering Management course has been specifically designed to allow you to update, extend and deepen your understanding of engineering and management.

You will build on your current knowledge of subjects such as solid modelling and prototyping, computer aided design and engineering data analysis, whilst developing management and entrepreneurial skills that will enhance your career opportunities within engineering and the broader business environment.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Internship

This option offers the opportunity to spend three months working full-time in one of the many companies/industries with which we have close links. You may be able to extend this over more than one semester in cases where it is adjacent to a vacation period. We will endeavour to help those who prefer this option to find and secure a suitable position but ultimately we are in the hands of the employers who are free to decide who they take into their organisation.

Research

If you take this option, you will be assigned to our Engineering, Physics and Materials Research Group. There is every possibility that you may contribute to published research and therefore you may be named as part of the research team, which would be a great start to a research career.

Study Abroad

We have exchange agreements with universities all over the world, including partners in Europe, Asia, the Americas and Oceania. If you take the Study Abroad option you will spend a semester at one of these partners, continuing your studies in English but in a new cultural and learning environment. Please note that this option may require you to obtain a visa for study in the other country.

With the increasing complexity of the engineering sector there is a requirement for engineering managers to be specialised not just in engineering, but also in wider business and management. This course has been specifically designed to meet the demands of today’s employers and provide a solid foundation for you to progress to management level.

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The structure of this course has been designed to focus on engineering issues and processes, and how they apply to those in management positions.

This course incorporates six taught modules: research methods, project, programme and portfolio management; project change, risk and opportunities management; technology entrepreneurship and product development; engineering management data analysis and sustainable development for engineering practitioners.

Throughout the duration of this course you will build core skills in key areas such as management, business, finance and computing, providing you with a strong understanding of the day-to-day processes that underpin the smooth running of a successful organisation.

This course is primarily delivered by lectures and supporting seminars such as guided laboratory workshops or staffed tutorials. Assessments are undertaken in the form of exams, assignments, technical reports, presentations and project work. The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

On completion of all taught modules you will undertake a substantial piece of research around a subject of particular interest to you and your own career aspirations.

Module Overview
Year One
KB7030 - Research Methods (Core, 20 Credits)
KB7031 - Project, Programme and Portfolio Management (Core, 20 Credits)
KB7033 - Project change, risk and opportunities management (Core, 20 Credits)
KB7040 - Sustainable Development for Engineering Practitioners (Core, 20 Credits)
KB7044 - Engineering Management Data Analysis (Core, 20 Credits)
KB7046 - Technology Entrepreneurship & Product Development (Core, 20 Credits)

Year Two
KB7052 - Research Project (Core, 60 Credits)
KF7005 - Engineering and Environment Advanced Practice (Core, 60 Credits)

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by out team of specialist staff who boast a wealth of multi-dimensional expertise. The programme is designed to be research-led, delivering up-do-date teaching that is often based on current research undertaken by our team.

Our teaching team incorporates a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key engineering management practice and research.

You will be encouraged to undertake your own research–based learning, where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in general engineering.

Give Your Career An Edge

With the increasing complexity of the engineering industry there is a requirement for managers to be specialised not just in engineering, but also the general business and management aspects of a company.

This course has been specifically designed to allow you to update, extend and deepen your knowledge to further enhance your career opportunities in both industry and entrepreneurship.

The MSc Engineering Management course will equip you with skills, tools, techniques and methods that are applicable to engineering companies and many other businesses in the UK and abroad.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

On completion of this course you will possess a deep understanding of engineering data analysis, research and project management, programme and portfolio management, project risk management and technology entrepreneurship.

Industry practice and subject benchmarking have strongly influenced the design of this course to ensure you will leave equipped with the skills that are required by today’s employers.

Your Future

The broad range of subjects covered on this course will prepare you for an array of careers within the engineering sector or a general business environment.

You may decide to pursue a career within general engineering, or a more specialised engineering sector.

This course emphasises entrepreneurship and enterprise, developing and enhancing the management and strategic skills that will prepare you for running your own business, should this be your aspiration. These core business skills will also prepare you for management jobs within engineering or another sector.

This course also sets a solid foundation for those wishing to pursue further study or a career within research or teaching.

Read less
This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Read more

This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Students gain an understanding of bioengineering principles and practices that are used in hospitals, industries and research laboratories through lectures, problem-solving sessions, a research project and collaborative work.

About this degree

Students study in detail the engineering and physics principles that underpin modern medicine, and learn to apply their knowledge to established and emerging technologies in medical imaging and patient monitoring. The programme covers the engineering applications across the diagnosis and measurement of the human body and its physiology, as well as the electronic and computational skills needed to apply this theory in practice.

Students undertake modules to the value of 180 credits.

The programme consists of seven core modules (105 credits), one optional module (15 credits), and a research project (60 credits).

A Postgraduate Diploma (120 credits) is offered.

A Postgraduate Certificate (60 credits) is offered.

Core modules

  • Ionising Radiation Physics: Interactions and Dosimetry
  • Imaging with Ionising Radiation
  • MRI and Biomedical Optics
  • Ultrasound in Medicine
  • Medical Electronics and Control
  • Clinical Practice
  • Medical Device Enterprise Scenario

Optional modules

Students choose one of the following:

  • Applications of Biomedical Engineering
  • Materials and Engineering for Orthopaedic Devices
  • Computing in Medicine
  • Programming Foundations for Medical Image Analysis

Dissertation/report

All MSc students undertake an independent research project within the broad area of physics and engineering in medicine which culminates in a written report of 10,000 words, a poster and an oral examination.

Teaching and learning

The programme is delivered through a combination of lectures, demonstrations, practicals, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew's, and the Royal Free Hospital. Assessment is through supervised examination, coursework, the dissertation and an oral examination.

Further information on modules and degree structure is available on the department website: Physics and Engineering in Medicine: Biomedical Engineering and Medical Imaging MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Graduates from the Biomedical Engineering and Medical Imaging stream of the MSc programme have obtained employment with a wide range of employers in health care, industry and academia sectors.

Employability

Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the forefront of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment.

Why study this degree at UCL?

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the UCL Hospitals Trust, as well as undertaking industrial contract research and technology transfer.

Students have access to a wide range of workshop, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is available for research involving nuclear magnetic resonance, optics, acoustics, X-rays, radiation dosimetry, and implant development, as well as new biomedical engineering facilities at the Royal Free Hospital and Royal National Orthopaedic Hospital in Stanmore.



Read less
This MSc aims to equip students with the skills of analysis and design necessary for employment as professional civil engineers, and give them a solid academic background for becoming chartered engineers. Read more

This MSc aims to equip students with the skills of analysis and design necessary for employment as professional civil engineers, and give them a solid academic background for becoming chartered engineers. The programme combines traditional lectures with group projects and an individual research project in the student's chosen specialist field. The Civil Engineering MSc at UCL now offers six additional routes.

About this degree

Students develop advanced knowledge of civil engineering and associated engineering and scientific disciplines (structure dynamics, sustainable building design, transport, fluids, geotechnics, water and drainage, environmental and coastal engineering, planning and construction). They gain awareness of the context in which engineering operates, in terms of design, construction and the environment, alongside transferable skills, which leads to careers in industry and research.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits), and a research project (60 credits).

Core modules

  • Advanced Soil Mechanics
  • Advanced Structures
  • Roads and Underground Infrastructure
  • Project Management (Professional Development Module)

Optional modules

Students choose four from the following:

  • Advance Research Writing
  • Advanced Civil Engineering Materials
  • Advanced Soil Mechanics
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Building Engineering Physics
  • Data analysis
  • Design and Analysis of Structural Systems
  • Engineering & International Development
  • Engineering Study of Rail Systems and Infrastructure
  • Environmental Systems
  • Financial Aspects of Project Engineering and Contracting
  • Finite Element Modelling and Numerical Methods
  • GIS Principles & Technology
  • Infrastructure business case
  • Introduction to Seismic Design of Structures
  • Natural and Environmental Disasters
  • Offshore and Coastal Engineering
  • Planning, Policies & Organization of the Railways within the UK
  • Principles & Practices of Surveying

Please note: combinations of different modules will be determined by timetable constraints.

Dissertation/report

All students undertake an independent research project, which culminates in a dissertation of approximately 12,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The design project includes collective and individual studio work, while the research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering MSc

Careers

There are excellent employment prospects for our graduates. Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Why study this degree at UCL?

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting multidisciplinary department with a tradition of excellence in teaching and research, situated within the heart of London.

This MSc reflects the broad range of expertise available within the department and its strong links with the engineering industry and places emphasis on developing skills within a teamwork environment. The programme provides a clear route to a professional career in civil engineering.

In addition, students wishing to combine the general MSc in Civil Engineering can now apply to one of six specialist pathways in related disciplines (Seismic Design, Environmental Systems, GIS, Surveying, Integrated Design and Infrastructure Planning).

Accreditation

This degree is accredited, as a Technical MSc, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. See http://www.jbm.org.uk for further information.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Your programme of study. If have an engineering, science or mathematics degree and you are considering work in the oil and gas industry worldwide Petroleum Engineering can provide you with a wide range of knowledge and skills within the upstream oil and gas extraction area. Read more

Your programme of study

If have an engineering, science or mathematics degree and you are considering work in the oil and gas industry worldwide Petroleum Engineering can provide you with a wide range of knowledge and skills within the upstream oil and gas extraction area. The programme mainly focuses on the skills you need to extract oil which can be the initial geoscience knowledge through to core analysis and reservoir engineering. Within reservoir and well engineering there are several areas of analysis, testing and development you then specialise in. This ensures you have a very robust approach to offshore production with the type of advanced skills to problem solve and troubleshoot different situations.

The programme also develops your skills in formation evaluation, simulation, and appraisal plus safe production and enhancing the recovery of hydrocarbon oil and gas. This programme is highly regarded in the industry internationally and it is recognised by all major players in the oil and gas industry. Careers can be anything from Drilling, Operations, Piping Specification, Production, Reservoir, Subsurface and Wellhead Engineer. The degree hold accreditation from the Energy Institute and Institute of Mechanical Engineers.

This programme is relevant for any oil and gas professional or professional interested in working in the industry worldwide. It is taught by world renowned international experts from the industry, researching and teaching the skills and knowledge necessary. Aberdeen is seen as the oil and gas European capital of the industry with major FTSE 100 multinationals located in the city.

Courses listed for the programme

Semester 1

  • Fundamentals of Petroleum Geoscience
  • Petrophysics, Core Analysis, and Formation Evaluation
  • Reservoir Engineering
  • Well and Production Engineering

Semester 2

  • Reservoir Simulation
  • Well Test: Analysis and Design
  • Field Development and Petroleum Economics
  • Enhanced Oil Recovery

Semester 3

  • Project in Petroleum Engineering

Find out more detail by visiting the programme web page

for online delivery

Why study at Aberdeen?

  • You get accreditation from the Energy Institute and Institute of Mechanical Engineers
  • The programme is jointly delivered from the department of Geology and Engineering
  • Petroleum Engineering is highly regarded and designed with the industry
  • This programme is also delivered in an online version

Where you study

  • University of Aberdeen
  • 12 Months Full Time or 24 Months Part Time
  • September or January start
  • There is an online programme available from University of Aberdeen to study flexibly (details above)

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs

Other engineering disciplines you may be interested in:



Read less
The Civil Engineering MSc at UCL now offers five additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers five additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of integrated design.

About this degree

The programme provides students with a strong academic background in a broad range of civil engineering topics and advanced skills in problem-solving necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of integrated design and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of one core module, (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, one core module (60 credits), four optional modules (60 credits) is also offered.

Core modules

  • Integrated Design Project

Optional modules

Students choose four from the following:

  • Advance Research Writing
  • Advanced Civil Engineering Materials
  • Advanced Soil Mechanics
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Building Engineering Physics
  • Data analysis
  • Design and Analysis of Structural Systems
  • Engineering & International Development
  • Engineering Study of Rail Systems and Infrastructure
  • Environmental Systems
  • Financial Aspects of Project Engineering and Contracting
  • Finite Element Modelling and Numerical Methods
  • GIS Principles & Technology
  • Infrastructure business case
  • Introduction to Seismic Design of Structures
  • Natural and Environmental Disasters
  • Offshore and Coastal Engineering
  • Planning, Policies & Organization of the Railways within the UK
  • Principles & Practices of Surveying

Please note: combinations of different modules will be determined by timetable constraints.

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The design project includes collective and individual studio work, while the research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Integrated Design) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated at the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design.

This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond.

There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Accreditation

This degree is accredited, as a Technical MSc, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. See http://www.jbm.org.uk for further information.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of seismic design.

About this degree

The programme provides students with a strong academic background in a broad range of civil engineering topics and advanced skills in problem-solving necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of seismic design and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules including three specialist modules and one professional development module (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, four core modules (60 credits), four optional modules (60 credits) is also offered.

Core modules

  • Seismic Design of Structures
  • Structural Dynamics
  • Seismic Loss Mitigation
  • Project Management (Professional Development Module)

Optional modules

Students choose four from the following:

  • Advance Research Writing
  • Advanced Civil Engineering Materials
  • Advanced Soil Mechanics
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Building Engineering Physics
  • Data analysis
  • Design and Analysis of Structural Systems
  • Engineering & International Development
  • Engineering Study of Rail Systems and Infrastructure
  • Environmental Systems
  • Financial Aspects of Project Engineering and Contracting
  • Finite Element Modelling and Numerical Methods
  • GIS Principles & Technology
  • Infrastructure business case
  • Introduction to Seismic Design of Structures
  • Natural and Environmental Disasters
  • Offshore and Coastal Engineering
  • Planning, Policies & Organization of the Railways within the UK
  • Principles & Practices of Surveying

Please note: combinations of different modules will be determined by timetable constraints

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Seismic Design) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated at the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design.

This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond.

There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of surveying.

About this degree

The programme provides students with a strong academic background in a broad range of civil engineering topics and advanced skills in problem-solving necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of surveying and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules including three specialist modules and one professional development module (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, four core modules (60 credits), four optional modules (60 credits) is offered.

Core modules

  • Data Analysis
  • Principles and Practices of Surveying
  • Mapping Science
  • Project Management (Professional Development Module)

Optional modules

Students choose four of the following:

  • Advance Research Writing
  • Advanced Civil Engineering Materials
  • Advanced Soil Mechanics
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Building Engineering Physics
  • Data analysis
  • Design and Analysis of Structural Systems
  • Engineering & International Development
  • Engineering Study of Rail Systems and Infrastructure
  • Environmental Systems
  • Financial Aspects of Project Engineering and Contracting
  • Finite Element Modelling and Numerical Methods
  • GIS Principles & Technology
  • Infrastructure business case
  • Introduction to Seismic Design of Structures
  • Natural and Environmental Disasters
  • Offshore and Coastal Engineering
  • Planning, Policies & Organization of the Railways within the UK
  • Principles & Practices of Surveying

Please note: combinations of different modules will be determined by timetable constraints

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Surveying) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated at the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design.

This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond.

There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Accreditation

This degree is accredited, as a Technical MSc, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. See http://www.jbm.org.uk for further information.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers six additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of infrastructure planning.

About this degree

The programme provides students with a strong academic background in a broad range of civil engineering topics and advanced skills in problem-solving necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of seismic design and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules including three specialist modules and one professional development module (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, four core modules (60 credits), four optional modules (60 credits) is also offered.

Core modules

  • Infrastructure Business Case
  • Risk, Uncertainty & Complexity in Decision-Making
  • Infrastructure Policy, Planning and Consent
  • Project Management

Optional modules

Students choose four from the following:

  • Advance Research Writing
  • Advanced Civil Engineering Materials
  • Advanced Soil Mechanics
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Building Engineering Physics
  • Data analysis
  • Design and Analysis of Structural Systems
  • Engineering & International Development
  • Engineering Study of Rail Systems and Infrastructure
  • Environmental Systems
  • Financial Aspects of Project Engineering and Contracting
  • Finite Element Modelling and Numerical Methods
  • GIS Principles & Technology
  • Infrastructure business case
  • Introduction to Seismic Design of Structures
  • Natural and Environmental Disasters
  • Offshore and Coastal Engineering
  • Planning, Policies & Organization of the Railways within the UK
  • Principles & Practices of Surveying

Please note: combinations of different modules will be determined by timetable constraints

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Infrastructure Planning) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated at the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design.

This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond.

There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Your programme of study. You can study Safety and Reliability Engineering for Oil and Gas flexibly from anywhere in the world as this delivery is online. Read more

Your programme of study

You can study Safety and Reliability Engineering for Oil and Gas flexibly from anywhere in the world as this delivery is online. You can fit this programme around your work and other commitments part time.

Whilst Safety and Reliability Engineering allows you to apply your skills and knowledge to a wider range of industries, this programme is specifically for the oil and gas industry. It provides you with the knowledge to review reliability of engineering facilities, materials and products and legislative framework at the same time. Safety has always been of paramount concern in the oil and gas industry with a lot of learning and knowledge acquired since the oil industry growth of the 1970s. This knowledge has been scrutinised by University of Aberdeen and the industry to provide professional expertise to manage safety and reliability. Future challenges are being met to some extent by the advent of affordable sensors which manage difficult to reach places, but nonetheless require the knowledge and capabilities of professionals working in this discipline to ensure they are fit for purpose.

The MSc Safety Engineering for Oil & Gas programme provides training in safety engineering, reliability engineering, and loss prevention in the offshore, nuclear, transport, aerospace and process industries and more. Fully accredited by the Institution of Mechanical Engineers (IMechE), the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Institute of Highway Engineers (IHE) and the Chartered Institution of Highways & Transportation (CIHT).

Courses listed for the programme

Year 1

  • Fundamental Safety Engineering and Risk Management Concepts
  • Statistics and Probability for Safety, Reliability and Quality
  • Advanced Methods for Risk and Reliability Assessment (Distance Learning)
  • Applied Risk Analysis and Management (Distance Learning)

Year 2

  • Fire and Explosion Engineering
  • Process Design, Layout and Materials (Distance Learning)
  • Human Factors Engineering
  • Offshore Oil and Gas Production Systems (Distance Learning)

Year 3

  • Individual Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • The university is highly regarded within the oil and gas industry for continuous integration with industry needs and knowledge
  • You can study flexibly either part time or online
  • It is supported by the Lloyds Register and Advisory Board which in turn builds on the knowledge within the School of Engineering
  • We are ideally placed to provide this programme of study and support it with strong links to industry

Where you study

  • Online
  • Part Time
  • 5 Months or 27 Months
  • September or January start

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 

Other engineering disciplines you may be interested in:



Read less
This programme pathway is designed for students with a developing interest in radiation physics, both ionising and non-ionising, that underpins many of the imaging and treatment technologies applied in modern medicine. Read more

This programme pathway is designed for students with a developing interest in radiation physics, both ionising and non-ionising, that underpins many of the imaging and treatment technologies applied in modern medicine. Students gain an understanding of scientific principles and practices that are used in hospitals, industries and research laboratories through lectures, problem-solving sessions, a research project and collaborative work.

About this degree

Students study the physics theory and practice that underpins modern medicine, and learn to apply their knowledge to established and emerging technologies in medical science. The programme covers the applications of both ionising and non-ionising radiation to the diagnosis and treatment of human disease and disorder, and includes research project, workplace skills development and computational skills needed to apply this theory into practice. 

Students undertake modules to the value of 180 credits.

The programme consists of seven core modules (105 credits), one optional module (15 credits), and a research project (60 credits).

A Postgraduate Diploma of eight modules (120 credits) is offered.

A Postgraduate Certificate of four modules (60 credits) is offered.

Core modules

  • Ionising Radiation Physics: Interactions and Dosimetry
  • Imaging with Ionising Radiation
  • MRI and Biomedical Optics
  • Ultrasound in Medicine
  • Treatment with Ionising Radiation
  • Clinical Practice
  • MSc Research Project
  • Medical Device Enterprise Scenario

Optional modules

Students choose one of the following:

  • Computing in Medicine
  • Applications of Biomedical Engineering
  • Programming Foundations for Medical Image Analysis

Dissertation/report

All MSc students undertake an independent research project within the broad area of physics and engineering in medicine which culminates in a report of up to 10,000 words, a poster and an oral examination.

Teaching and learning

The programme is delivered through a combination of lectures, demonstrations, tutorials, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew's, and the Royal Free Hospital. Assessment is through supervised examination, coursework and assignments, a research dissertation and an oral examination.

Further information on modules and degree structure is available on the department website: Physics and Engineering in Medicine: Radiation Physics MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

A large percentage of graduates from the MSc continue on to PhD study, often in one of the nine research groups within the department, as a result of the skills and knowledge they acquire on the programme. Other graduates commence or resume training or employment within the healthcare sector in hospitals or industry, both within the UK and abroad. 

Employability

Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the forefront of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment.

Why study this degree at UCL?

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students on this programme receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the University College London Hospitals NHS Foundation Trust, as well as undertaking industrial contract research and technology transfer. The department is also a collaborator in the nearby London Proton Therapy Centre, currently under construction.

Students have access to a wide range of workshop, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is also available for research involving nuclear magnetic resonance, optics, acoustics, X-rays, radiation dosimetry, and implant development. 



Read less
The Department of Physics and Astronomy is a broad-based department with a wide range of research interests covering many key topics in contemporary physics, astronomy, and applied physics. Read more

Program Overview

The Department of Physics and Astronomy is a broad-based department with a wide range of research interests covering many key topics in contemporary physics, astronomy, and applied physics. See elsewhere in the Calendar for graduate program descriptions of Astronomy and Engineering Physics. In addition, an accredited Master of Science program is offered with a sub-specialization in Medical Physics. Departmental research activities are supported by several computing and experimental facilities, and excellent electronics and machine shops. Much of the Department's research is enhanced by local facilities such as the TRIUMF National Laboratory, the Advanced Materials and Process Engineering Laboratory (AMPEL), and the BC Cancer Agency, UBC, and associated teaching hospitals, in addition to many specialized research laboratories housed within the Department. There is a great deal of collaboration and overlap of interests among the various groups, and incoming graduate students are currently attracted to research opportunities in many subfields of physics:
- Applied Physics
- Medical Physics
- Biophysics
- Nuclear and Particle Physics
- Astronomy and Astrophysics
- Atomic, Molecular, and Optical Physics
- Condensed Matter Physics
- Theoretical Physics

Quick Facts

- Degree: Master of Science
- Specialization: Physics
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Science

Read less

Show 10 15 30 per page



Cookie Policy    X