• Goldsmiths, University of London Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Coventry University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
De Montfort University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Ulster University Featured Masters Courses
Northumbria University Featured Masters Courses
"engineering" AND "mechan…×
0 miles

Masters Degrees (Engineering Mechanics)

  • "engineering" AND "mechanics" ×
  • clear all
Showing 1 to 15 of 284
Order by 
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University has been at the forefront of international research in the area of computational engineering. Internationally renowned engineers at Swansea pioneered the development of numerical techniques, such as the finite element method, and associated computational procedures that have enabled the solution of many complex engineering problems. As a student on the Master's course in Computer Modelling and Finite Elements in Engineering Mechanics, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Key Features: Computer Modelling and Finite Elements in Engineering Mechanics

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Using mathematical modelling as the basis, computational methods provide procedures which, with the aid of the computer, allow complex problems to be solved. The techniques play an ever-increasing role in industry and there is further emphasis to apply the methodology to other important areas such as medicine and the life sciences.

This Computer Modelling and Finite Elements in Engineering Mechanics course provides a solid foundation in computer modelling and the finite element method in particular.

The Zienkiewicz Centre for Computational Engineering, within which this course is run, has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

Modules

Modules on the Computer Modelling and Finite Elements in Engineering Mechanics course can vary each year but you could expect to study:

Reservoir Modelling and Simulation
Solid Mechanics
Finite Element Computational Analysis
Advanced Fluid Mechanics
Computational Plasticity
Fluid-Structure Interaction
Nonlinear Continuum Mechanics
Computational Fluid Dynamics
Dynamics and Transient Analysis
Computational Case Study
Communication Skills for Research Engineers
Numerical Methods for Partial Differential Equations

Accreditation

The MSc Computer Modelling and Finite Elements in Engineering Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

The Zienkiewicz Centre for Computational Engineering has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Careers

Employment in a wide range of industries, which require the skills developed during the Computer Modelling and Finite Elements in Engineering Mechanics course, from aerospace to the medical sector. Computational modelling techniques have developed in importance to provide solutions to complex problems and as a graduate of this course in Computer Modelling and Finite Elements in Engineering Mechanics, you will be able to utilise your highly sought-after skills in industry or research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Read less
This fully accredited MSc programme helps graduate engineers to acquire advanced capabilities and in-depth knowledge across a range of civil-engineering disciplines, including bridge engineering, construction management, and geotechnical, structural and water engineering. Read more
This fully accredited MSc programme helps graduate engineers to acquire advanced capabilities and in-depth knowledge across a range of civil-engineering disciplines, including bridge engineering, construction management, and geotechnical, structural and water engineering.

This well-established programme is delivered by experienced University staff, together with practising engineers from consultancies and local authorities.

PROGRAMME OVERVIEW

You can access six study streams on this Masters programme:
-Bridge Engineering
-Construction Management
-Geotechnical Engineering
-Structural Engineering
-Water Engineering and Environmental Engineering
-Infrastructure Engineering and Management

As well as supporting the career development of Civil Engineering graduates, this programme provides the necessary further learning for engineers working in the construction industry who hold related first degrees such as engineering geology or construction management.

It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil-engineering works.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time / distance learning for between two to five academic years. It consists of eight taught modules and a dissertation. This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Deep Foundations and Earth Retaining Structures

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment Optional
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources

Dissertation
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The Civil Engineering programme aims to provide graduate engineers with:
-Advanced capabilities and in-depth knowledge in a range of specialised aspects of civil engineering
-It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil engineering works and to contribute to a personal professional development programme
-A working knowledge of some of the UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer in both a technical or non-technical capacity dependent upon module selection

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-The mathematical principles necessary to underpin their education in civil engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of multi-disciplinary open ended engineering problems
-The properties, behaviour and use of relevant materials
-The management techniques which may be used to achieve civil engineering objectives within that context
-Some of the roles of management techniques and codes of practice in design
-The principles and implementation of some advanced design and management techniques specific to civil engineering
-Mathematical and computer models relevant to civil engineering, and an appreciation of their limitations
-The role of the professional engineer in society, including health, safety, environmental, sustainability, ethical issues and risk assessment within civil engineering
-The wider multidisciplinary engineering context and its underlying principles
-Developing technologies related to civil engineering and the ability to develop an ability to synthesize and critically appraise some of them
-The framework of relevant requirements governing engineering activities, including personnel, health, safety, and risk issues (an awareness of)
-The advanced design processes and methodologies and the ability to adapt them in open ended situations.

Intellectual / cognitive skills
-Analyse and solve problems
-Think strategically
-Synthesis of complex sets of information
-Understand the changing nature of knowledge and practice in the management of culturally diverse construction environments
-Select and transfer knowledge and methods from other sectors to construction-based organisation
-Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
-Dynthesis and critical appraisal of the thoughts of others

Professional practical skills
-Awareness of professional and ethical conduct
-Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools where appropriate
-Evaluate and integrate information and processes in project work
-Present information orally to others
-Show a capability to act decisively in a coordinated way using theory, better practice and harness this to experience
-Use concepts and theories to make engineering judgments in the absence of complete data
-Observe, record and interpret data using appropriate statistical methods and to present results in appropriate forms for the civil engineering industry

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The Masters in Civil Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen civil engineering speciality. Read more
The Masters in Civil Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen civil engineering speciality.

Why this programme

◾Civil engineering at the University of Glasgow is ranked 4th in the UK and 1st in Scotland (Guardian University Guide 2017).
◾With a 93% overall student satisfaction in the National Student Survey 2016, Civil Engineering at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.
◾The University has a long history of research in Civil Engineering. The UK's first Chair of Civil Engineering was established at the University in 1840 and early occupants such as William J. M. Rankine set a research ethos that has endured.
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾If you are a graduate engineer looking to broaden your knowledge of management while also furthering your knowledge of civil engineering, this innovative programme is designed for you.
◾You will gain first-hand experience of managing an engineering project through the integrated systems design project, allowing development of skills in project management, quality management and costing.
◾You will be able to apply management to engineering projects, allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session during which you will work on an individual supervised project and write a dissertation on its outcomes. Students entering the programme in January are restricted to civil engineering (i.e. excluding management) topics only.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen civil engineering subjects.
◾Integrated systems design project.

Optional courses

Select a total of 4 courses from Lists A and B, at least 1 must be from List A:

List A

◾Advanced soil mechanics 5
◾Advanced structural analysis and dynamics 5
◾Computational modelling of non-linear problems 5
◾Introduction to wind engineering
◾Principles of GIS.

List B

◾Geotechnical engineering 3
◾Ground engineering 4
◾Recycling urban land
◾Structural analysis 4
◾Transportation systems engineering 4.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to civil engineering projects, and January entry students have a choice of civil engineering projects.

Projects

There are two semesters of taught material and a summer session during which you will work on an individual supervised project and write a dissertation on its outcomes. Students entering the programme in January are restricted to civil engineering (i.e. excluding management) topics only.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen civil engineering subjects.
◾Integrated systems design project.

Optional courses

Select a total of 4 courses from Lists A and B, at least 1 must be from List A:

List A
◾Advanced soil mechanics 5
◾Advanced structural analysis and dynamics 5
◾Computational modelling of non-linear problems 5
◾Introduction to wind engineering
◾Principles of GIS.

List B
◾Geotechnical engineering 3
◾Ground engineering 4
◾Recycling urban land
◾Structural analysis 4
◾Transportation systems engineering 4.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to civil engineering projects, and January entry students have a choice of civil engineering projects.

Industry links and employability

◾The programme makes use of the combined resources and complementary expertise of the civil engineering and business school staff to deliver a curriculum which is relevant to the needs of industry.
◾You, as a graduate of this programme, will be capable of applying the extremely important aspect of management to engineering projects allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Civil Engineering include: Arup and Mott MacDonald.
◾During the programme students have an opportunity to develop and practice relevant professional and transferable skills, and to meet and learn from employers about working in the civil engineering industry.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Computational Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computational Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University has gained a significant international profile as one of the key international centres for research and training in computational mechanics and engineering. As a student on the Master's course in Erasmus Mundus Computational Mechanics, you will be provided with in-depth, multidisciplinary training in the application of the finite element method and related state-of-the-art numerical and computational techniques to the solution and simulation of highly challenging problems in engineering analysis and design.

Key Features of Erasmus Mundus Computational Mechanics MSc

The Zienkiewicz Centre for Computational Engineering is acknowledged internationally as the leading UK centre for computational engineering research. It represents an interdisciplinary group of researchers who are active in computational or applied mechanics. It is unrivalled concentration of knowledge and expertise in this field. Many numerical techniques currently in use in commercial simulation software have originated from Swansea University.

The Erasmus Mundus MSc Computational Mechanics course is a two-year postgraduate programme run by an international consortium of four leading European Universities, namely Swansea University, Universitat Politècnica de Catalunya (Spain), École Centrale de Nantes (France) and University of Stuttgart (Germany) in cooperation with the International Centre for Numerical Methods in Engineering (CIMNE, Spain).

As a student on the Erasmus Mundus MSc Computational Mechanics course, you will gain a general knowledge of the theory of computational mechanics, including the strengths and weaknesses of the approach, appreciate the worth of undertaking a computational simulation in an industrial context, and be provided with training in the development of new software for the improved simulation of current engineering problems.

In the first year of the Erasmus Mundus MSc Computational Mechanics course, you will follow an agreed common set of core modules leading to common examinations in Swansea or Barcelona. In addition, an industrial placement will take place during this year, where you will have the opportunity to be exposed to the use of computational mechanics within an industrial context. For the second year of the Erasmus Mundus MSc Computational Mechanics, you will move to one of the other Universities, depending upon your preferred specialisation, to complete a series of taught modules and the research thesis. There will be a wide choice of specialisation areas (i.e. fluids, structures, aerospace, biomedical) by incorporating modules from the four Universities. This allows you to experience postgraduate education in more than one European institution.

Modules

Modules on the Erasmus Mundus MSc Computational Mechanics course can vary each year but you could expect to study the following core modules (together with elective modules):

Numerical Methods for Partial Differential Equations
Continuum Mechanics
Advanced Fluid Mechanics
Industrial Project
Finite Element Computational Analysis
Entrepreneurship for Engineers
Finite Element in Fluids
Computational Plasticity
Fluid-Structure Interaction
Nonlinear Continuum Mechanics
Computational Fluid Dynamics
Dynamics and Transient Analysis
Reservoir Modelling and Simulation

Accreditation

The Erasmus Mundus Computational Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

See http://www.jbm.org.uk for further information.

This degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

On the Erasmus Mundus MSc Computational Mechanics course, you will have the opportunity to apply your skills and knowledge in computational mechanics in an industrial context.

As a student on the Erasmus Mundus MSc Computational Mechanics course you will be placed in engineering industries, consultancies or research institutions that have an interest and expertise in computational mechanics. Typically, you will be trained by the relevant industry in the use of their in-house or commercial computational mechanics software.

You will also gain knowledge and expertise on the use of the particular range of commercial software used in the industry where you are placed.

Careers

The next decade will experience an explosive growth in the demand for accurate and reliable numerical simulation and optimisation of engineering systems.

Computational mechanics will become even more multidisciplinary than in the past and many technological tools will be, for instance, integrated to explore biological systems and submicron devices. This will have a major impact in our everyday lives.

Employment can be found in a broad range of engineering industries as this course provides the skills for the modelling, formulation, analysis and implementation of simulation tools for advanced engineering problems.



Student Quotes

“I gained immensely from the high quality coursework, extensive research support, confluence of cultures and unforgettable friendship.”

Prabhu Muthuganeisan, MSc Computational Mechanics

Read less
The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles. Read more

About the course

The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles.

Brunel’s MSc in Water Engineering is unique in providing specialist knowledge on the critical sub-topics of water and wastewater management and engineering, desalination systems, building water services engineering, industrial waste water management, and water in health care.

The programme demonstrates the links between theory and practice by including input from our industrial partners and through site visits. This is a key aspect for establishing a competitive and high added value course that provides adequate links with industry.

Features of the course include:

Students’ skills in gathering and understanding complex information from a variety of sources (including engineering, scientific and socio-economic information) will be developed in an advanced research methods module. 

Issues relating to risk and health and safety will be introduced in the research methods module and built on in specialist modules. 

Generic modules in financial and project management will underpin specialist modules focusing on water engineering topics.

Real problem-solving examples – starting from basic principles, to the identified problem, the solution, the implementation process and was implemented and the end result. 

Real case studies – demonstrating how environmental and economic sustainability is considered within civil engineering, particularly in water resources management.

Aims

Problems associated with water resources, access, distribution and quality are amongst the most important global issues in this century. Water quality and scarcity issues are being exacerbated by rising populations, economic growth and climate change*.

Brunel's programme in Water Engineering aims to develop world class and leading edge experts on water sustainability who are able to tackle the industry’s complex challenges at a senior level. During the programme you will also learn about the development and application of models that estimate the carbon and water footprint within the energy and food sector.

The MSc is delivered by experienced industry professionals who bring significant practical experience to the course – and the University’s complete suite of engineering facilities and world-class research experience are set up for development and engineering of advanced systems, testing a variety of processes, designs and software tools.

*Recent figures indicate that 1.1 billion people worldwide do not have access to clean drinking water, while 2.6 billion do not have adequate sanitation (source: WHO/UNICEF 2005). 

Course Content

The primary aim of this programme is to create master’s degree graduates with qualities and transferable skills for demanding employment in the water engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Specific aims are as follows:

- To provide education at postgraduate level in civil engineering. 
- To develop the versatility and depth to deal with new, complex and unusual challenges across a range of water engineering issues, drawing on an understanding of all aspects of water engineering principles. 
- To develop imagination, initiative and creativity to enable graduates to follow a successful engineering career with national and international companies and organisations. 
- To provide a pathway that will prepare graduates for successful careers including, where appropriate, progression to Chartered Engineer status.

The programme will provide opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas:

Knowledge and understanding of:

- The principles of water engineering, including fluid mechanics, hydrology, and sustainable design. 
- Specialist areas that impact on the successful application of water engineering knowledge projects, e.g. sustainable construction management, financial management and risk analysis. 
- The interplay between engineering and sustainability in complex, real-world situations.

At the cognitive level students will be able to:

- Select, use and evaluate appropriate investigative techniques.
- Assemble and critically analyse relevant primary and secondary data.
- Recognise and assess the problems and critically evaluate solutions to challenges in managing water engineering projects.
- Evaluate the environmental and financial sustainability of current and potential civil engineering activities.

Personal and transferable skills that students develop will allow them to:

- Define and organise a substantial advanced investigation. 
- Select and employ appropriate advanced research methods. 
- Organise technical information into a concise, coherent document.
- Effectively employ a variety of communication styles aimed at different audiences. 
- Plan, manage, evaluate and orally-presented personal projects. 
- Work as part of, and lead, a team.

Typical Modules

Each taught module will count for 15 credits, approximating to 150 learning hours. The Master's programme can be taken full time, over 12 months. The first eight months of the full time course will eight taught modules. For the final four months, students will complete a dissertation counting for 60 credits. Modules cover:

Sustainable Project Management
GIS and Data Analysis
Water Infrastructure Engineering
Risk and Financial Management
Hydrology & Hydraulics
Water Treatment Engineering
Water Process Engineering
Research Methods
Civil Engineering Dissertation

Teaching

Our philosophy is to underpin theoretical aspects of the subject with hands-on experience in applying water engineering techniques. Although you may move on to project management and supervision roles, we feel it important that your knowledge is firmly based on an understanding of how things are done. To this end, industrial partners will provide guest lectures on specialist topics.

In addition to teaching, water engineering staff at Brunel are active researchers. This keeps us at the cutting edge of developments and, we hope, allows us to pass on our enthusiasm for the subject.

How many hours of study are involved?

Contact between students and academic staff is relatively high at around 20 hours per week to assist you in adjusting to university life. As the course progresses the number of contact hours is steadily reduced as you undertake more project-based work.

How will I be taught?

Lectures:
These provide a broad overview of the main concepts and ideas you need to understand and give you a framework on which to expand your knowledge by private study.
Laboratories:
Practicals are generally two- or three-hour sessions in which you can practise your observational and analytical skills, and develop a deeper understanding of theoretical concepts.
Design Studios:
In a studio you will work on individual and group projects with guidance from members of staff. You may be required to produce a design or develop a solution to an engineering problem. These sessions allow you to develop your intellectual ability and practice your teamwork skills.
Site visits:
Learning from real-world examples in an important part of the course. You will visit sites featuring a range of water engineering approaches and asked to evaluate what you see.
One-to-one:
On registration for the course you will be allocated a personal tutor who will be available to provide academic and pastoral support during your time at university. You will get one-to-one supervision on all project work.

Assessment

Several methods of assessment are employed on the course. There are written examinations and coursework. You will undertake projects, assignments, essays, laboratory work and short tests.

Project work is commonplace and is usually completed in groups to imitate the everyday experience in an engineering firm, where specialists must pool their talents to design a solution to a problem.

In this situation you can develop your management and leadership skills and ensure that all members of the group deliver their best. Group members share the mark gained, so it is up to each individual to get the most out of everyone else.

Special Features

Extensive facilities
Students can make the most of laboratory facilities which are extensive, modern and well equipped. We have recently made a major investment in our Joseph Bazalgette Laboratories which includes hydraulic testing laboratory equipment and facilities such as our open channel flow flumes.

Personal tutors
Although we recruit a large number of highly qualified students to our undergraduate, postgraduate and research degrees each year, we don’t forget that you are an individual. From the beginning of your time here, you are allocated a personal tutor who will guide you through academic and pastoral issues.

World-class research
The College is 'research intensive' – most of our academics are actively involved in cutting-edge research. Much of this research is undertaken with collaborators outside the University, including construction companies, water utilities, and other leading industrial firms. We work with universities in China, Poland, Egypt, Turkey, Italy, Denmark and Japan. This research is fed directly into our courses, providing a challenging investigative culture and ensuring that you are exposed to up-to-date and relevant material throughout your time at Brunel.

Strong industry links
We have excellent links with business and industry in the UK and overseas. This means:
Your degree is designed to meet the needs of industry and the marketplace.
The latest developments in the commercial world feed into your course.
You have greater choice and quality of professional placements.
We have more contacts to help you find a job when you graduate.

Visting Professors 
The Royal Academy of Engineering - UK’s national academy for engineering has appointed senior industrial engineers as visiting professors at Brunel University London.
The Visting Professors Scheme provides financial support for experienced industrial engineers to deliver face-to-face teaching and mentoring at a host of institutions. Our engineering undergraduates will benefit from an enhanced understanding of the role of engineering and the way it is practised, along with its challenges and demands. 

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course has been designed in close consultation with the industry and is accredited as a designated 'technical' MSc degree by the Join Board of Moderators (JBM). The JBM is made up of Institution of Highways and Transport and the Institution of Highway Engineeres respectively.

1. This means this course provides Further Learning for a Chartered Engineer who holds a CEng accredited first degree (full JBM listing of accredited degrees).
2. As a designated ‘technical’ MSc, it will also allow suitable holders of an IEng accredited first degree to meet the educational base for a Chartered Engineer.

Read less
The Masters in Mechanical Engineering & Management offers you the opportunity to develop the knowledge and skills needed for modern engineering or technology management. Read more
The Masters in Mechanical Engineering & Management offers you the opportunity to develop the knowledge and skills needed for modern engineering or technology management. The programme content includes design engineering and other mechanical engineering disciplines.

Why this programme

◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾Mechanical Engineering is a core engineering discipline that has a long history in the University of Glasgow, dating back to the 1760’s and includes famous people as James Watt.
◾If you have a mechanical engineering background, but with little management experience and are wanting to develop your knowledge of management while also furthering your knowledge of mechanical engineering, this programme is designed for you.
◾You will learn to understand management principles and practices in an engineering environment, evaluate engineering information, and apply business and management tools. You will combine engineering and management knowledge and skills in projects and problem solving.
◾The programme is split into two semesters and a summer session. One semester will be based in the Business School and is aimed at developing knowledge and skills of management principles and techniques. An applied approach is adopted, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
◾During the other semester there will be a combination of compulsory and optional courses that will combine to provide the required credits in Mechanical Engineering.
◾In the summer session, a project will be undertaken by MSc students. The topic of the project can be either in Management, or Mechanical Engineering, in which case the topic will usually be closely allied with the research interests of the Discipline.
◾This programme has a September and January intake.

Aims of the programme:
◾To understand management principles and practices in an engineering environment.
◾To evaluate engineering information, and subsequent application of business and management.
◾To combine engineering and management knowledge and skills in projects and problem solving.

Programme structure

TThere are two semesters of taught material and a summer session working on a project or dissertation for MSc students. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses
◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen mechanical engineering subjects.

Core course
◾Integrated systems design project.

Optional courses
◾Desalination technology
◾Dynamics
◾Materials engineering
◾Vibration.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to mechanical engineering projects, and January entry students have a choice of mechanical engineering projects.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits. This is an integral part of the MSc programme and many have a technical or business focus.
◾You will gain first-hand experience of managing an engineering project through the integrated systems design project, allowing development of skills in project management, quality management and accountancy.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can either choose a topic from a list of MSc projects in Mechanical Engineering or the Management portion of your degree. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.
◾Students who start in January must choose an engineering focussed project.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾In addition to providing an in-depth area in engineering, the programme aims to give graduate engineers with little or no Management experience, the opportunity to develop the knowledge and skills needed for modern engineering or technology management.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributors, in the area of Mechanical Engineering include: Babcock, Howdens, Doosan & Terex.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in Mechanical Engineering industries.

Career prospects

Career opportunities include positions in project management, engineering design, materials & mechanics, dynamics, control and desalination technology.

Graduates of this programme have gone on to positions such as:
Technology Engineer at Procter and Gamble
Quality Engineer at Worcester Bosch.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Mechanical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Mechanical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Mechanical Engineering at Swansea maintains a high standard of teaching and research, set in a relaxed and sociable atmosphere. As a student on the Master's course in Mechanical Engineering, you will be provided with a high quality overview of the techniques of modern mechanical engineering, presenting examples of use from a wide range of disciplines and industries.

Key Features of MSc in Mechanical Engineering

The MSc Mechanical Engineering course is stimulating and our graduates are rewarded with excellent job prospects. It will equip you with the ability to make informed judgements on the most appropriate approach to a range of mechanical engineering problems.

The MSc Mechanical Engineering course covers the development of mechanical engineering tools, methods and techniques for problem solving, the ability to formulate an adequate representation of sets of experimental data, the use of these tools and techniques for real world applications, the ability to formulate an accurate representation of sets of experimental data, and business and management methods and their application in the field of engineering.

The research project undertaken as part of the MSc Mechanical Engineering course is industrially relevant and the topics of the course are of high industrial relevance.

Mechanical Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

MSc programmes are modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

Modules

Modules on the MSc Mechanical Engineering course can vary each year but you could expect to study:

Strategic Project Planning
Additive Manufacturing
Entrepreneurship for Engineers
Optimisation
Composite Materials
Simulation Based Product Design
Advanced Thermo Fluid Mechanics
Advanced Solid Mechanics
Environmental Analysis and Legislation
Polymer Processing
Systems Monitoring, Control, Reliability, Survivability, Integrity and Maintenance
Process Metallurgy and Optimisation
Power Generation Systems

Accreditation

The MSc Mechanical Engineering course is accredited by the Institution of Mechanical Engineers (IMechE).

The MSc Mechanical Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Mechanical Engineering at Swansea University has extensive laboratory and computing facilities for both teaching and research purposes.

In the mechanical laboratories are two large rotating rigs. One is used to study the dynamics of high speed machinery whilst the other is devoted to the analysis of heat transfer in turbine blade.

Careers

The modules on the MSc Mechanical Engineering course are of high industrial relevance and the benefits to employability are immediate in a wide range of industries.

Links with Industry

Members of staff work closely with a range of industries through knowledge transfer projects, consultancy and strategic research, which informs the practical problems used in our teaching.

Within Wales we have close interaction with large companies such as Tata Steel and Ford, as well as small and medium-sized enterprises (SMEs). Across the UK there is or has been recent work with companies such as Astra-Zeneca, British Aerospace, Qinetiq, GKN and Rolls-Royce whilst further afield there is close working with companies such as SKF (Netherlands), Freeport (USA), One Steel (Australia), Barrick Gold (USA) to name a few.

Careers

The modules on the MSc Mechanical Engineering course are of high industrial relevance and the benefits to employability are immediate in a wide range of industries.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Student Quotes

“Every single day at the College of Engineering has been a learning process for me. The MSc in Mechanical Engineering involves leading world class professors, tutors and academics with whom we were lucky to be associated with. There is also a great peer group too.

I would like to pursue a PhD from Swansea University and become an entrepreneur. The College of Engineering has helped immensely with these ambitions.”

Arnab Dasgupta, MSc Mechanical Engineering

Read less
The Master of Engineering Studies in Geotechnical Engineering programme aims to further educate graduate students in the discipline of geotechnical engineering so as to enhance their contribution to engineering practice. Read more

Invest in your future

The Master of Engineering Studies in Geotechnical Engineering programme aims to further educate graduate students in the discipline of geotechnical engineering so as to enhance their contribution to engineering practice.

Graduates will be able to take leading roles in planning, evaluating, designing, constructing, maintaining, and managing the geotechnical infrastructure.

The programme alsos provide valuable background expertise for those wishing to enter into asset management or to begin to pursue a career in research and development.

The Master of Engineering Studies in Geotechnical Engineering programme aims to build on the geotechnical content of the BE (Civil) degree and develop graduates with enhanced ability to contribute to geotechnical engineering practice.

New Zealand is a stimulating country in which to practise geotechnical engineering with its young and varied geology, seismic activity and diverse rainfall patterns. Many unique problems occur here as a result and these present challenges for innovative and novel solutions.

The programme has been designed with courses relevant to the New Zealand geotechnical environment, to fill the needs of the country.

There is a large demand for geotechnical engineers in the local workplace, as well as a worldwide shortage of geotechnical professionals.

Programme Structure

Taught (120 points)
The Geotechnical Engineering specialisation is offered as a taught masters (eight courses).

Electives

Elective enrolments may depend on your prior study and professional experience, but ultimately, choosing the appropriate courses and topics can allow you to concentrate on and develop strengths in your energy field of choice.

Our broad list of electives include courses in:
• Design of Earthquake Resistant Foundations
• Earthquake Engineering
• Rock Mechanics and Excavation Engineering
• Soil Behaviour
• Geotechnical Earthquake Engineering
• Engineering Geological Mapping
• Geological Hazards
• Advanced Engineering Geology
• Hydrogeology
• Studies in Civil Engineering
• Foundation Engineering
• Slope Engineering
• Engineering Geology
• Ground Improvements and Geosynthetics Engineering
• Geotechnical Modelling
• Advanced Mathematical Modelling
• Surface Water Quality Modelling
• Risk, LCA and Sustainability

Next generation research at the Faculty of Engineering

The Faculty of Engineering is dedicated to providing you with all the facilities, flexibility and support needed for you to develop the skills needed for the workforce. We boast research themes and programmes that provoke interdisciplinary projects, bringing together expertise from our five departments, other faculties, and industry partners and research organisations. Collaborative study is strongly encouraged – postgraduates in particular have the benefit of experiencing cohorts with diverse academic and industry backgrounds.

You will gain access to world-renowned experts who actively demonstrate the positive impacts research have on society. High-performance equipment and labs beyond industry standards are at your fingertips. Our facilities extend beyond study hours – we take pride in our involvement in student events and associations across the University, and are dedicated to providing you with academic, personal and career advice. We encourage you to take advantage of our resources, and use them to expand the possibilities of your research and career path.

Read less
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems. Read more
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems.

As a broad-based Mechanical Engineering degree this programme provides a wide variety of career options in the engineering sector.

Core study areas include experimental mechanics, simulation of advanced materials and processes structural analysis, computer aided engineering, engineering design methods, sustainable development: the engineering context, the innovation process and project management, thermofluids and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Programme modules

- Experimental Mechanics
This module introduces the following elements: experimental techniques for analysis and characterisation of various engineering materials and full-field, non-contact optical methods for deformation and strain measurements. Students will learn to identify the most appropriate experimental techniques for evaluating material response in a specific setting and for different types of materials.

- Simulation of Advanced Materials and Processes
The objective of this module is to introduce students to the concepts in numerical simulation of advanced materials and processes. To enable students to gain theoretical and practical experience in simulating mechanical behaviour of advanced materials and modelling processes related to these materials using finite element modelling techniques.

- Structural Analysis
Students will gain an understanding of modern concepts of structural analysis. They will gain practical experience in analyses of structures using finite-element modelling and understand the need for structural analysis in design.

- Computer Aided Engineering
Students will learn how to evaluate, choose and implement CAE systems. Students will learn to select and apply appropriate computer based methods and systems for modelling engineering products; analysing engineering problems; and assisting in the product design process.

- Engineering Design Methods
The aims of this module are to provide students with a working understanding of some of the main methods which may be employed in the design of products and systems. Students will learn to identify appropriate methods and techniques for use at different times and situations within a project.

- Sustainable Development: The Engineering Context
The objective of this module are to provide students with an understanding of the principles and practices of sustainable development and to provide them with an understanding of how engineers can help manufacturing businesses develop into more sustainable enterprises.

- The Innovation Process and Project Management
This module allows students to gain a clear overview of the innovation process and an understanding of the essential elements within it. Students will learn strategies for planning and carrying out innovative projects in any field.

- Thermofluids
In this module students study the fundamentals of combustion processes and understand key aspects relating to performance and emissions. Students develop knowledge and skills required by engineers entering industries involved in the design and use of combustion equipment.

- Project
In addition to the taught modules, all students undertake an individual major project. Part-time students normally undertake a major project that is based on the needs of their employing company.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling and independent research.

The programme consists of eight, week-long, taught lecture modules plus project work. Each taught module is self-contained and covers a complete target. This programme is available in both full-time and part-time forms. Full-time students commence their studies on the first Monday in October for a period of 12 months. Part-time students may commence their registration at any time between October and the following March, and take 3 years (typical) to complete the programme.

On completion of this programme, students should be able to:
- Plan and monitor multi-disciplinary projects;
- appreciate the central role of design within engineering;
- demonstrate competence in using computer based engineering techniques;
- analyse and understand complex engineering problems; and
- use team working skills and communicate effectively at an advanced technical level.

Facilities

As a student within the School of Mechanical and Manufacturing Engineering you will have access to a range of state-of-the-art equipment. Our computer labs are open 24/7 and use some of the latest industry standard software including STAR-CCM and CAD.

We have high-tech laboratories devoted to:
- Dynamics and control
- Electronics
- Fluid mechanics
- Materials
- Mechatronics
- Metrology
- Optical engineering
- Structural integrity
- Thermodynamics

Careers and further study

The programme will allow students to acquire the technical and transferable skills required to succeed in a career in industry or academic research. Graduates may also study for an MPhil or PhD with the School.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a country outside the European Union. These scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Read less
This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. Read more

Overview

This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. As such it is also an opportunity for candidates from a different Engineering background to develop key Mechanical Engineering knowledge and skills required for their professional development. A key objective of the programme is to be an accredited route to becoming Chartered Engineer.

This programme makes use of masters-level courses in the Energy Sciences and Manufacture & Design complemented with specialist courses from relevant MSc courses offered by the institute. We have seen a growing need for an advanced mechanical engineering programme at the request of applicants, and our industry partners. This programme has been specifically developed to meet this need and to encourage students of this field into further learning.

The Scottish Funding Council has made available 20 scholarships covering fees only to students with Scottish backgrounds. 6 of these places are reserved for applicants to this programme in the first instance. The remaining places are spread over all our Energy based MSc programmes. There is no separate application process for this. If you are eligible, you will be considered automatically. You will be notified through the summer if you have been selected.

Programme content

Semester One - Mandatory
- B81PI Professional and Industrial Studies
This course is specifically designed to meet the master’s level outcome requirements in the areas of professional development and practice for chartered engineering status. This multi-disciplinary course uses industrial speakers and speakers from those in the university involved in bridging the gap between academia and industrial application.

- B51GS Specialist Engineering Technologies 1
The first of the specialist engineering technologies courses is based on computational fluid dynamics and assessed by a group project

Optional (Choose two)
- B51DE Engineering Design
In this course students interact with companies in a real life small R&D project supplied by the industrial partners. Working in teams, the students have to manage the design of a prototype, product or system and interact with the industrial contact putting into practice problem-solving skills from other engineering topics studied elsewhere in the programme.

- B51EK Fluids 1
Fluid mechanics applied to aerodynamics, including ideal flows, boundary layers, and aerofoils and their use for analysis and design purposes.

- B51EM Advanced Mechanics of Materials 1
Advanced classical mechanics including 3D stress and strain with particular application to thin walled vessels. Fatigue analysis and design for fatigue limit.

- B51EO Dynamics 1
To provide students with a thorough understanding of vibration theory and an appreciation of its application in an engineering environment

- B51EQ Thermodynamics 1
Thermodynamic cycles including heat engines and reverse heat engines and means of evaluating best performance.

- G11GA Flame Appraisal
Introduction to the stages required for evaluating an oilfield for production. This covers geological considerations and fluid flow from oil bearing rock.

Semester Two – Mandatory

- B81EZ Critical Analysis and Research Preparation
This course provides research training and addresses literature review skills, project planning, data analysis and presentation with a focus to critically discuss literature, and use data to support an argument.

- B51HB Failure Accident Analysis
To acquaint students with the potential causes of material, structure or component failure; framework under which a failure or forensic engineering investigation should be carried out and give them the opportunity to work case studies through from information-gathering to preparation of reports and an awareness of fire and explosion engineering.

- B51GT Specialist Engineering Technologies 2
To present advanced theory and practice in important or emerging areas of technology including non-linear final element materials to include contact mechanics, design of components subjected to high stress applications.

Optional (Choose one)
- B51EL Fluids 2
To provide a methodology for analysing one-dimensional compressible flow systems.

- B51EN Advanced Mechanics of Materials 2
To provide students with an opportunity to: carry out advanced analyses of mechanics of materials problems; analyse mechanics of materials where time is a significant additional variable; use final element analysis for cases involving viscoelasticity and complex geometry
engage with the findings of recent research in a mechanics of materials topic

- B51EP Dynamics 2
To provide students with a thorough understanding of control theory and an appreciation of the subject of environmental acoustics and passive noise control

- B51ER Thermodynamics 2
Investigation of heat transfer mechanisms with a view to the design of effective heat exchangers for given operating conditions. The study of radiation heat transfer and combustion equilibrium.

- B51DF Engineering Manufacture
To provide the student with a detailed understanding of the importance and integration of advanced manufacturing technology and manufacturing systems within the context of product engineering. On completion, the students should have acquired a detailed understanding of the product development process from initial conception through to product support as well as appreciate the impact of each stage of the process on the business and organisationally with respect to information dependence and manufacturing processes employed.

- G11GD Flame Development
A continuation of Flame Appraisal, this course looks at the well-head arrangement for oil extraction. This is an introduction to drilling engineering and the techniques required for oil extraction.

Semester 3 – Mandatory

- B51MD Masters Dissertation
An individual project led by a research active member of staff on a current research theme with the aim of leading to the production of a journal article.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Advanced Mechanical Engineering. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Read less
Advance your career with a master’s degree in engineering. Our convenient evening classes provide the flexibility your schedule demands. Read more
Advance your career with a master’s degree in engineering. Our convenient evening classes provide the flexibility your schedule demands.

MSOE’s Master of Science in Engineering (MSE) program is an interdisciplinary engineering program with primary emphases in the areas of electrical engineering (EE) and mechanical engineering (ME). A key component of the MSE program is the breadth of engineering background that students gain in areas of systems engineering, EE and ME. Additionally, each student is offered some degree of concentration through the selection of an engineering option and electives.

This interdisciplinary approach is a distinguishing feature of MSOE’s program and students are encouraged to take engineering courses both within and outside of their discipline. Courses cover topics like simulation and modeling, operations research, quality engineering, advanced engineering mathematics, finite element analysis, advanced mechanics, fluid power systems, data communications, control systems and advanced electronic systems.

The MSE program’s major emphasis is on the further development of engineering knowledge and skills in an effort to enhance the productivity of the practicing engineer. The program provides a flexible platform for students to take either an integrated approach or a specialized approach to meet the demands of their career. The course work emphasizes engineering concepts and theory through presentation, and faculty bring extensive industry experience to the classroom.

A nine-credit capstone engineering project option is included as part of the program. A non-project option is also available, which includes two specialty courses and a three-credit engineering paper in the specialty.

Curriculum Format

All classes are offered in the evening, providing convenient scheduling. The program is designed for individuals who hold bachelor degrees in engineering, engineering technology or other closely related areas. Each student works with the program director to plan a course of study tailored to his or her needs. Typically, a total of 45 graduate credits is required to complete the program, but degree requirements may vary depending upon the type of bachelor’s degree.

MSE Program Options

Each student selects either a capstone engineering project or the non-project option.

The engineering project option can either draw from the multiple disciplines studied within the program or focus more on technical areas within the student’s chosen engineering discipline. After consulting with a faculty advisor, each student develops an engineering project proposal and presents it for approval before a committee.

The non-project option requires a two-course sequence in 700- or 800-level EE/ME specialty courses and a final course (GE-791) in which a specialty paper is written. Each student completes an analysis/design of a certain aspect of the chosen specialty and presents it both orally and in writing.

100% Online delivery

Geography is not a constraint for students interested in completing the MSE at a distance. In addition to the face-to-face class format, there is also the option to take courses via 100% online distance delivery. The rich faculty, student interaction that is the hallmark of the MSE is replicated in online classes creating dynamic and flexible learning environments. Students can choose which format best fits their lives, while advancing their learning and professional skills.

Objectives and Outcomes

Program Educational Objectives

- Graduates create new value in a process or product at their workplace through application of advanced engineering skills and knowledge
- Graduates advance in their careers as a direct result of completing the degree

Student Outcomes

Graduates of the MSE program will:
- be able to utilize advanced mathematics, with a primary focus on numerical methods and models, to solve engineering problems involving multivariate differential systems
- have demonstrated an ability to apply advanced engineering principles to complex problems in his or her chosen specialty
- have demonstrated an ability to integrate and analyze information in a chosen specialty in the form of scholarly work, either as an independent specialty paper or as an independent engineering project
- have the ability to effectively present and communicate technical concepts, both orally and in writing

Read less
Could you see yourself designing high performance bikes, working with racing car teams or producing ground breaking medical components? You could follow in the footsteps of some of our graduates and begin shaping your own exciting career in mechanical engineering. Read more
Could you see yourself designing high performance bikes, working with racing car teams or producing ground breaking medical components? You could follow in the footsteps of some of our graduates and begin shaping your own exciting career in mechanical engineering.

You will distinguish yourself professionally with a degree accredited by the Institution of Mechanical Engineers (IMechE) and the Institute of Materials, Minerals and Mining (IoM3) for Chartered Engineer status. You can apply to either of these institutions for membership as a Chartered Engineer.

Key features

-Open the door to a successful future. Our graduates have gone on to work for Ferrari, Honda, British Cycling, Rolls-Royce, Williams Grand Prix Engineering, Activa, Babcock Marine, Princess Yachts and more.
-Primed for your career: 82 per cent of our students are in a professional or managerial job six months after graduation. (Source: unistats)
-Benefit from an optional 48 week paid work placement.
-Distinguish yourself professionally with a degree accredited by the Institution of Mechanical Engineers (IMechE) and the Institute of Materials, Minerals and Mining (IoM3) for Chartered Engineer status. You can apply to either of these institutions for membership as a Chartered Engineer.
-Develop a strong foundation in mechanical engineering principles and materials science.
-Choose from specialist modules in composites engineering, design and manufacture.
-Experience modern laboratory facilities for practical work which is a core part of the degree.
-Benefit from working on industrially relevant problems within composite materials and design of composite structures.

Course details

Year 1
In Year 1, you’ll acquire a sound foundation in design, mechanics, materials, electrical principles, thermo-fluids, mathematics and business, learning by active involvement in real engineering problems. You‘ll undertake a popular hands-on module in manufacturing methods. Modules are shared with the MEng and BEng (Hons) in Mechanical Engineering and the MEng and BEng (Hons) Marine Technology.

Core modules
-MECH120 Skills for Design and Engineering (Mechanical)
-THER104 Introduction to Thermal Principles
-BPIE115 Stage 1 Mechanical Placement Preparation
-MECH117 Mechanics
-MECH118 Basic Electrical Principles
-A5MFT1 Mech BEng 1 MFT Session
-MATH187 Engineering Mathematics
-MATS122 Manufacturing and Materials
-MECH121PP Team Engineering (Engineering Design in Action)

Year 2
In Year 2, you’ll build your knowledge of composite materials in preparation for specialist modules in the final year. The central role of design integrates with other modules like structures and materials. You'll also study modules on thermodynamics, fluid mechanics, business dynamics, mathematics and control and quality management.

Core modules
-BPIE215 Stage 2 Mechanical Placement Preparation
-CONT221 Engineering Mathematics and Control
-HYFM230 Fluid Mechanics 1
-STRC203 Engineering Structures
-MECH232 Engineering Design
-MFRG208 Quality Management l
-MATS234 Materials
-THER207 Applied Thermodynamics
-STO208 Business for Engineers

Optional placement year
In Year 3, you're strongly encouraged to do a year’s work placement to gain valuable paid professional experience. We will support you to find a placement that is right for you. Our students have worked for a variety of companies from BMW Mini, Bentley, Babcock Marine to NASA. A successful placement could lead to sponsorship in your final year, an industrially relevant final year project, and opportunities for future employment.

Optional modules
-BPIE335 Mechanical Engineering Related Placement

Year 4
In Year 4, you’ll specialise in composites design, engineering and manufacture. You’ll undertake an group design project. Additional modules of study include statistics and quality management. You'll also develop your knowledge and skills through an in-depth project on a topic of your choice.

Core modules
-HYFM322 Computational Fluid Dynamics
-MFRG311 Quality Management II
-MATS347 Composites Design and Manufacture
-PRME307 Honours Project
-MATS348 Composites Engineering
-MECH340 Engineering Design

Final year
In your final year, you'll extend your existing skills in engineering design, analysis and control theory. Broaden your knowledge by studying subjects such as entrepreneurship, advanced information technology, robotics and marine renewable energy. You’ll also work in a design team with students from other engineering disciplines working on projects such as design, materials and environmental issues related to bioenergy production, gas/nuclear power stations, energy from the sea and eco villages.

Core modules
-MECH532 Applied Computer Aided Engineering
-MECH533 Robotics and Control
-MECH534 Product Development and Evaluation
-MAR528 Mechanics of MRE Structures
-PRCE513 Interdisciplinary Design
-MECH544 Data Processing, Simulation and Optimisation of Engineering Systems

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling in Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling in Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

This MRes in Computer Modelling in Engineering programme consists of two streams: students may choose to specialise in either structures or fluids. The taught modules provide a good grounding in computer modelling and in the finite element method, in particular.

Key Features of MRes in Computer Modelling in Engineering

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Using mathematical modelling as the basis, computational methods provide procedures which, with the aid of the computer, allow complex problems to be solved. The techniques play an ever-increasing role in industry and there is further emphasis to apply the methodology to other important areas such as medicine and the life sciences.

The Zienkiewicz Centre for Computational Engineering, within which this course is run, has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

This Computer Modelling in Engineering course is suitable for those who are interested in gaining a solid understanding of computer modelling, specialising in either structures or fluids, and taking the skills gained through this course to develop their career in industry or research.

If you would like to qualify as a Chartered Engineer, this course is accredited with providing the additional educational components for the further learning needed to qualify as a Chartered Engineer, as set out by UK and European engineering professional institutions.

Modules

Modules on the Computer Modelling in Engineering programme typically include:

• Finite Element and Computational Analysis
• Numerical Methods for Partial Differential Equations
• Solid Mechanics
• Advanced Fluid Mechanics
• Dynamics and Transient Analysis
• Communication Skills for Research Engineers
• MRes Research Project

Accreditation

The MRes Computer Modelling in Engineering course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

The MRes Computer Modelling in Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The MRes Computer Modelling in Engineering degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

The Civil and Computational Engineering Centre has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Examples of recent collaborators and sponsoring agencies include: ABB, Audi, BAE Systems, British Gas, Cinpress, DERA, Dti, EADS, EPSRC, European Union, HEFCW, HSE, Hyder, Mobil, NASA, Quinshield, Rolls-Royce, South West Water, Sumitomo Shell, Unilever, US Army, WDA.

Student Quotes

“I was attracted to the MRes course at Swansea as the subject matter was just what I was looking for.

I previously worked as a Cardiovascular Research Assistant at the Murdoch Children’s Research Institute in Melbourne. My employer, the Head of the Cardiology Department, encouraged me to develop skills in modelling as this has a lot of potential to help answer some current questions and controversies in the field. I was looking for a Master’s level course that could provide me with computational modelling skills that I could apply to blood flow problems, particularly those arising from congenital heart disease.

The College of Engineering at Swansea is certainly a good choice. In the computational modelling area, it is one of the leading centres in the world (they wrote the textbook, literally). A lot of people I knew in Swansea initially came to study for a couple of years, but then ended up never leaving. I can see how that could happen.”

Jonathan Mynard, MRes Computer Modelling in Engineering, then PhD at the University of Melbourne, currently post-doctoral fellow at the Biomedical Simulation Laboratory, University of Toronto, Canada

Careers

Employment in a wide range of industries, which require the skills developed during the Computer Modelling in Engineering course, from aerospace to the medical sector. Computational modelling techniques have developed in importance to provide solutions to complex problems and as a graduate of this course, you will be able to utilise your highly sought-after skills in industry or research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
This Masters programme provides advanced experience of the central role that manufacture and design take in the integration of mechanical engineering. Read more
This Masters programme provides advanced experience of the central role that manufacture and design take in the integration of mechanical engineering.

Why this programme

◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
◾Mechanical Engineering is a core engineering discipline that has a long history in the University of Glasgow, dating back to the 1760’s and including such famous people as James Watt.
◾This programme is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in any combination of a wide range of Mechanical Engineering areas.
◾This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Engineering Design whilst simultaneously enabling the students to deepen their knowledge of certain engineering disciplines, which have largely been chosen on the basis of the research and design teaching strengths of the Discipline. The choice includes Materials and Mechanics, Dynamics and Control, Desalination Technology and Thermal Science.
◾The compulsory design part deals with innovation aspects of industrial and mechanical design and the integration of design methods and techniques. Not only is design taught in this way, but also practised in its research activities, both explicitly and implicitly. It is practised explicitly through research in, for instance rapid design and manufacture, and implicitly through the design of, for instance, heart assist devices, paraplegic assist devices and mountain bike components together with apparatus for experiments and for demonstration.
◾You will broaden and/or deepen your knowledge of selected engineering disciplines, which have been chosen on the basis of our research strengths, including materials, vibration, control and desalination.
◾This programme has a September and January intake*.

*For suitable qualified candidates

Programme structure

Modes of delivery of the MSc in Mechanical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

You will undertake a project where you will apply your newly learned skills and show to future employers that you have been working on cutting-edge projects relevant to the industry.

Core courses

◾Advanced manufacture
◾Integrated engineering design project.

Optional courses

◾Advanced thermal engineering
◾Control
◾Desalination technology
◾Dynamics
◾Lasers
◾Materials engineering
◾Mechanics of solids and structures
◾Vibration.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Mechanical Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾The MSc in Mechanical Engineering has been developed for students with different training backgrounds or from different educational origins; and it is particularly suitable if you currently work or intend to work in Mechanical Engineering industries.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributors, in the area of Mechanical Engineering include: Babcock, Howdens, Doosan & Terex.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in a wide range of industries.

Career prospects

Career opportunities include positions in engineering design, materials and mechanics, dynamics, control, desalination technology and thermal science.

Graduates of this programme have gone on to positions such as:
Technical Engineer at Bridon International Ltd
Mechanical Engineer in a university
Mechanical Engineer for Oil and Gas at AKER Solutions
Project Engineer in state government.

Accreditation

The MSc Mechanical Engineering is accredited by the Institution of Mechanical Engineering. An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Civil Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Civil Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University has been at the forefront of international research in the area of civil and computational engineering. Internationally renowned engineers at Swansea pioneered the development of numerical techniques, such as the finite element method, and associated computational procedures that have enabled the solution of many complex engineering problems. Swansea University provides an excellent base for your research as a MSc by Research student in Civil Engineering.

Key Features of MSc by Research Civil Engineering

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Civil Engineering students benefit from the Zienkiewicz Centre for Computational Engineering at Swansea University which has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

Research within Engineering at Swansea University is multidisciplinary in nature, incorporating our strengths in research areas across the Engineering disciplines including Civil Engineering.

Computational mechanics forms the basis for the majority of the MSc by Research projects within this civil engineering discipline.

Civil Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

MSc by Research in Civil Engineering typically lasts one year full-time, two to three years part-time. This Civil Engineering research programme is an individual research project written up in a thesis of 30,000 words.

Links with industry

The Zienkiewicz Centre for Computational Engineering has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Civil Engineering Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Research in Civil Engineering

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less

Show 10 15 30 per page



Cookie Policy    X