• Loughborough University London Featured Masters Courses
  • Arden University Featured Masters Courses
  • Queen Mary University of London Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Loughborough University Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Nottingham Trent University Featured Masters Courses
FindA University Ltd Featured Masters Courses
"engineer"×
0 miles

Masters Degrees (Engineer)

  • "engineer" ×
  • clear all
Showing 1 to 15 of 811
Order by 
The goal of structural engineering is to predict the performance of structures under extreme events. This Masters in Structural Engineering provides you with a range of methods to analyse and design structures with quantifiable reliability over their design life. Read more
The goal of structural engineering is to predict the performance of structures under extreme events. This Masters in Structural Engineering provides you with a range of methods to analyse and design structures with quantifiable reliability over their design life.

Why this programme

◾If you intend to pursue a career in this specialist area of civil and structural engineering, in design consultancies and elsewhere, or if you want to transfer from other engineering disciplines, this programme is designed for you.
◾This programme offers a curriculum that is relevant to the needs of industry, designed to provide the advanced education required for the structural engineers of tomorrow.
◾The goal of structural engineering is to predict the performance of structures. This programme empowers future engineers with a range of methods to analyse and design structures with quantifiable reliability over their design life.
◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.

Programme structure

Modes of delivery of the MSc in Structural Engineering include lectures, seminars, tutorials, a group design project and individual projects.

Core courses
◾Advanced structural analysis and dynamics
◾Applied engineering mechanics
◾Computational modelling of nonlinear problems
◾Structural concrete
◾Structural design
◾Advanced soil mechanics
◾Structural engineering preliminary research project
◾Structural engineering review project
◾Structural design project

MSc students undertake an additional individual project.

Industry links and employability

If you intend to pursue a career in this specialist area of civil and structural engineering, in design consultancies and elsewhere, or if you want to transfer from other engineering disciplines, this programme is designed for you. It provides the advanced education required for the structural engineers of tomorrow.

Career prospects

This is a new programme which will be delivered the first time in 2016/17. However, it is a continuation of a former Structural Engineering and Mechanics MSc programme. Graduates from the former Structural Engineering and Mechanics programme have gone on to positions such as:

Graduate Structural Engineer at Wood Group PSN
Research Fellow at Fraunhofer Institute High Speed Dynamics
Graduate Structural Engineer at Wood Group
Graduate Structural Engineer at Design ID
Structure Engineer at Fujian United Benefit Broad Sustainable Building Technology
Structural Engineer-Subsea at a structural engineering company
Real Estate Assistant at Icade
Graduate Structure Engineer at P2ML
Graduate Engineer at Technip
Civil Engineering Technical Engineer at Hongrun Construction Corporation
Subsea Project Engineer at Halliburton
Bid and Building Engineer at Jingzhen Construction and Supervision Co.
Graduate Engineer at Reinertsen.

Read less
Application period/deadline. November 1, 2017 - January 24, 2018. Cutting-edge knowledge in wireless communications both at physical and network layers. Read more

Application period/deadline: November 1, 2017 - January 24, 2018

• Cutting-edge knowledge in wireless communications both at physical and network layers

• Capability to design and implement wireless solutions, e.g., for future 5G networks, Internet-of-Things (IoT) devices and smart energy-efficient wireless sensor applications

• Relevant skills of the latest radio engineering methods, tools, and technologies, and ability to design RF electronics for smart phones and base stations of mobile systems

The International Master’s Degree Programme in Wireless Communications Engineering (WCE) is a two-year programme concentrating on wireless communications network technology. The programme will give you relevant skills and core knowledge of the latest methods, tools and technologies combined with time-tested issues such as:

• Antennas

• Advanced wireless communication systems

• Communication networks

• Computer engineering

• Electronics

• Information theory

• Stochastical and digital signal processing

• Radio channels

• Radio engineering

The two-year programme has two specialisation options:

• Radio Access and Networks

• RF Engineering

Radio Access and Networks concentrates on designing and applying radio access technologies both at physical layer and at network layer for 5G, IoT, and future mobile system generations.

RF Engineering focuses on essential radio system parts and gives the knowledge to design integrated RF and DSP circuits for mobile handsets, base stations, future 5G devices, IoT applications, and smart & energy efficient sensors.

Optional module makes it possible to widen your expertise into:

• Machine vision

• Mobile and social computing

• Signal processors, and

• Video and biomedical signal processing.

The education is organized by the Centre for Wireless Communications which consists of 150 academics from over 20 countries. CWC performs world-class research for the future of 5G and IoT applications, which will give you the possibility to move forward already during your studies. CWC provides a number of jobs as a trainee or a master’s thesis student, with the possibility to continue as a doctoral student, and even as a post-doctoral researcher.

The skills gained in the programme offer you a solid academic training and essential knowledge on the design of wireless communications networks at the system level. After graduation you are capable of designing, implementing and employing 5G and IoT applications and developing future wireless communications technologies.

Possible titles include:

• Chief engineer

• Design engineer

• Development engineer

• Maintenance engineer

• Patent engineer

• Program manager

• Project manager

• Radio network designer

• Research engineer

• RF engineer

• Sales engineer

• System engineer

• Test engineer, and

• University teacher

Students applying for the programme must possess an applicable B.Sc. degree in one of the following fields of study: communications engineering, electronics & electrical engineering, or computer engineering.

For all enquiries, please refer to our enquiry form: http://www.oulu.fi/university/admissions-contact



Read less
On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology. Read more

On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology.

A rewarding career

Engineers apply scientific and technological principles to solve problems in a creative way. It’s a well-paid and rewarding career that is constantly changing with new developments in technology. And with a shortage of mechanical engineers in the UK, your skills will be in demand.

What you study

You can follow your interests to create the right programme of study for you. Initially, you take two modules in engineering principles. Then, with guidance from your course leader, you select from a range of technical modules covering a broad range of topics in mechanical design and analysis.

In addition to your technical modules, you also take an engineering management subject and participate in a multidisciplinary product development project with MSc students from a range of engineering specialisms. You develop an understanding of how engineering projects work and how they relate to the commercial world, as well as becoming part of our engineering community and learning to think like an engineer.

One third of your study will be an individual project and dissertation. You specialise in a technical area of your interest and choosing and carry out your own in-depth investigation into a particular problem. Where possible, this will be an industry-related problem.

Expertise

Many of our academic staff are actively involved in research. Examples of recent projects include • developing materials to improve insulation and temperature control in pipelines and refineries • developing ultra-light solar and electric powered vehicles.

Course structure

Core modules

  • engineering principles
  • mechanical engineering principles
  • project and quality management
  • international product development (group project)

Options

  • equipment engineering and design
  • competitive design for manufacture
  • advanced CAD/CAM
  • industrial applications of finite element methods
  • advanced vibration and acoustics
  • competitive materials technology 

Assessment

Assessments will be a mix of coursework and exam, depending on the specific module studied.

Employability

Mechanical engineering is an area with a high demand for skilled graduates. The government has identified this sector as key for driving growth, and the skills you learn on this course prepares you for a highly paid career.

Our graduates have gone on to roles including • design engineer, Rolls-Royce • engineer, GE Aviation • assistant engineer, Boeing • mechanical engineer, Mott Macdonald • design engineer, Siemens • sub-sea turbine engineer, E.ON.

As a mechanical engineer, you make a major contribution to the built environment, the economy and the quality of life of every member of society. Mechanical engineering is ever-changing and offers diverse career opportunities, with plenty of potential to transfer between career routes.

You can move into various industries including • aerospace • automotive • transport • building services • medical engineering • sport equipment design • power generation • alternative energy • product testing • project management.



Read less
Civil engineering is key to economic and social stability throughout the world. From roads and bridges to skyscrapers and airports, modern civil engineers plan, design, construct and manage the large-scale public works and amenities that underpin our society. Read more

Why take this course?

Civil engineering is key to economic and social stability throughout the world. From roads and bridges to skyscrapers and airports, modern civil engineers plan, design, construct and manage the large-scale public works and amenities that underpin our society.

This course is a dynamic mix of specialist civil engineering knowledge and essential learning of current technical and practical methods.

What will I experience?

On this course you can:

Create your own designs and models in response to industry-relevant civil engineering demands
Apply your skills to real-life practical problems as part of our partnership schemes with local and global organisations
Venture overseas on a European exchange programme or do a paid work placement in industry

What opportunities might it lead to?

This course will lead you to a recognised professional qualification in civil engineering. It is accredited by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT) and the Institute of Highway Engineers (IHE).

It fully satisfies the educational base for a Chartered Engineer (CEng) under the UK Standard for Professional Engineering Competence (UK-SPEC). We maintain excellent links with these professional bodies and regularly update and advise you on matters relating to your progress to professional status.

Here are some routes our graduates have pursued:

Civil engineering
Site engineering
Project management

Module Details

Year one

During your first year you will study fundamental engineering principles and be introduced to the key theories upon which civil engineering practice is based.

Core units include:

Construction Management and Practice
Engineering Analysis
Professional Development 1
Soils and Materials 1
Understanding Structures - Analysis and Design
Water and Environmental Engineering

Year two

In year two you will extend your understanding and ability to analyse complex civil engineering systems.

Core units include:

Behaviour of Structures
Design of Structural Elements
Numerical Skills and Economics
Professional Development 2
Soils and Materials 2

Options to choose from include:

Diving and Underwater Engineering A
Diving and Underwater Engineering B
Fieldwork for Civil Engineers
Heritage Property
Introduction to Project Management Principles
Water Infrastructure

Years three and four*

During your final two years you will build on all the knowledge you have acquired enabling you to analyse, design and manage civil engineering systems in an integrated manner. You will develop practical proposals for complex civil engineering problems in a simulated professional organisation. You will also complete a dissertation on a topic of your choice and a design project, which covers the practical application of knowledge and techniques in the identification, design and management of a simulated major construction project.

Year three

Core units include:

Professional Development 3
MEng Individual Research Project
Project Management for Civil Engineers
Design of Bridges
Soils and Materials 3
Year four

Core units are:

Advanced Engineering Science
Environmental Management
Integrated Design Project

*This course is also available as a 5-year sandwich (work placement)

Programme Assessment

You will be taught through a combination of lectures, seminars, tutorials and group work, and be fully supported throughout your degree. We promote many practical teaching methods by way of lab and fieldwork supplying you with proactive, hands-on learning opportunities.

We guarantee sustained feedback to make sure your studies are on track. Providing you with valuable skills and experience, you will be assessed in a variety of ways, including:

Written exams
Web assessments
Essays and reports
Project presentations
A 10,000-word dissertation

Student Destinations

Working in the construction and engineering sector will make an interesting, challenging and rewarding career. There will be a wide range of roles within the construction industry open to you once you have completed your studies.

This course is an appropriate first degree leading to a recognised professional qualification in civil engineering should you wish to continue your studies. What’s more, it also meets the entry requirements for many of the major graduate engineering programmes.

Overall, you will be a versatile graduate who will have the employable skills to secure work in many areas of the job market.

Roles our graduates have taken on include:

Structural engineer
Construction manager
Design engineer
Highway engineer
Envinronmental and drainage engineer
Site engineer
Traffic engineer
Assistant engineer

Read less
The Systems Engineering Management MSc has been specifically designed for the needs of engineering professionals working in the field of complex systems development. Read more
The Systems Engineering Management MSc has been specifically designed for the needs of engineering professionals working in the field of complex systems development. The programme encompasses not only the technical tools and approaches needed to build success in this area, but also the management dimension of the relevant processes.

Degree information

Students gain an integrated, interdisciplinary view of complex systems and an advanced understanding of the systems engineering process. They gain the ability to apply this process to a variety of real world situations and the management skills necessary to facilitate the development of complex systems on time and within budget.

Students undertake modules to the value of 180 credits.

The programme consists of four core taught modules (60 credits) two optional taught modules (30 credits) and three research modules (90 credits). Modules are generally taught as intensive five-day 'block weeks' to minimise time away from the office.

A Postgraduate Diploma (120 credits, full-time nine months, or flexible study up to five years) is offered. A Postgraduate Certificate (60 credits, full-time 12 weeks, or flexible study up to two years) is offered.

Core modules
-Systems Engineering Management
-Lifecycle Management
-Risk, Reliability, Resilience
-The Business Environment

Optional modules
-Defence Systems
-Environmental Systems*
-Project Management
-Rail Systems
-Spacecraft Systems
-Systems Design
-Systems, Society, Sustainability*

*These modules are delivered by UCL's Department of Civil, Environmental and Geomatic Engineering in ten half-day sessions over the course of a term instead of the usual intensive 'block week' format

Research modules - all MSc students undertake a structured research programme comprising the following mandatory modules:
-Systems Engineering in Practice (15 credits)
-Systems Engineering Project Concept (15 credits)
-Systems Engineering Research Project (60 credits)

Teaching and learning
The programme is delivered through a combination of lectures, discussion sessions, workshop activity, and project work. Each taught course will be separately assessed through a combination of course work and a written examination. The project will be assessed through written dissertation and subsequent oral examination.

Careers

Complex systems are commonplace in many branches of UK industry including rail, aerospace, defence, and manufacturing. The ability to create such systems effectively is crucial to the competitiveness of these industries and has a direct bearing on the wealth of the nation.

Recent graduates of the programme have the following careers:
-London Underground: Head of Railway Systems
-Accenture: Analyst
-Thales Aerospace: Design Authority Manager
-BAE Systems: Systems Design Authority
-Selex Sensors and Airborne Management: Engineering Lead
-Xerox: Engineering Manager
-QinetiQ: Marine Engineer
-BAE Systems: Senior Hardware Engineer
-British Aerospace: Software Engineer
-Orange: Principal Engineer
-Halcrow Group Limited: Design Manager

Top career destinations for this degree:
-Software Engineer, Bank of America Merrill Lynch
-Analyst, Accenture
-Proposals engineer, Invensys PLC
-Engineering Manager, BAE Systems
-Systems Engineer, BIG

Why study this degree at UCL?

This MSc combines academic rigour with the practical expertise exemplified by our collaborators in UK industry and government. The flexible programme enables participants to structure their studies to suit their own career goals, and is accredited by the IET as a programme of further learning for registration as a Chartered Engineer.

Lectures are presented by experts in the field, many of whom have engaged in the practice of systems engineering in industry.

Industry is operating in an environment where technology changes rapidly, and where global competition grows ever more intensive. The challenge to remain competitive means we must make the right thing at the right price. Our MSc equips graduates with the skills to meet this challenge.

Read less
This course will train physicists and engineers in the area of photonics, which is a key enabling technology, underpinning many areas of industry. Read more

Why this course?

This course will train physicists and engineers in the area of photonics, which is a key enabling technology, underpinning many areas of industry.

You'll have the opportunity to undertake a three-month research or development project based with one of our industrial partners such as M Squared Lasers.

We have a long tradition of cutting-edge photonics research, which supports our courses. Much of this work has resulted in significant industrial impact through our spin-out companies and academic-industrial collaborations.

You'll also have the opportunity to develop your entrepreneurial skills by taking courses delivered by the Hunter Centre for Entrepreneurship.

You’ll study

The course is made up of two semesters of taught classes, followed by a three-month research project based with one of our industrial partners. The majority of your classes are delivered by the Department of Physics and cover the following:
-research and grant writing skills, which are valuable in both academic and commercial settings
-project training, including entrepreneurial and innovation skills training and a literature survey preparing for the project in the company
-topics in photonics, covering laser physics, laser optics and non-linear optics
-optical design, where you will learn about advanced geometrical optics and apply this knowledge to the design of optical systems, through the use of modern optical design software
-photonic materials and devices, focusing on semiconductor materials physics and micro/nano-structures
-advanced photonic devices and applications, covering quantum well structures, waveguides and photonic crystals

These classes are complemented by two classes delivered by the Department of Electronic & Electrical Engineering, which look at:
-system engineering and electronic control which forms a key part of modern optical systems
-photonic systems, where fibre optic communications systems and principles of photonic networks are discussed

Work placement

You'll be based with one of our industrial partners for a three-month project placement. This is your opportunity to experience how research and development operate within a commercial environment. It'll also give you a chance to form strong links with industry contacts.

The project is put forward by the company and supervised by both industrial and academic staff. Training on relevant skills and background will be received before and during the project.

Facilities:
Scotland has a world-leading position in optics and photonics industry.Your project will be carried out mainly in the excellent facilities of our Scottish industry partners. Projects elsewhere in the UK and with international companies may also be possible.

Advanced research facilities are also available in:
-the Department of Physics here at Strathclyde
-the Institute of Photonics
-the Fraunhofer Centre for Applied Photonics

Our research is strongly supported in equipment and infrastructure. This includes a newly opened 3-storey wing in the John Anderson Building as part of a £13M investment programme in Physics. Furthermore, the IoP and FCAP have recently relocated into the University's Technology & Innovation Centre (TIC) which at £90 million TIC is Strathclyde’s single-biggest investment in research and technology collaboration capacity. This new centre will accelerate the way in which researchers in academia and industry collaborate and innovate together in a new specifically designed state-of-the-art building in the heart of Glasgow.

Guest lectures

You'll attend the seminar series of the Institute of Photonics and Fraunhofer Centre of Applied Photonics with distinguished guest speakers giving a first-hand overview of the rapid development in applied photonics research.

Learning & teaching

In semesters one and two, the course involves:
-lectures
-tutorials
-various assignments including a literature review
-workshops where you'll gain presentation experience

The courses include compulsory and elective classes from the Department of Electronic & Electrical Engineering.
Over the summer, you'll undertake a three-month project based on practical laboratory work in a partner company. You'll be supervised by the industrial partner and supported by an academic supervisor.

Assessment

Assessment methods are different for each class and include:
-written examinations
-marked homework consisting of problems and/or essay assignments
-presentations

Your practical project is assessed on a combination of a written report, an oral presentation, and a viva in which you're questioned on the project.

How can I fund my course?

Financial support for Scottish and EU students may be available on a case-by-case basis which will be supported by the industrial partners. Selection will be based on an excellent academic record and/or industrial experience and the promise of a successful career in Industrial Photonics.

Please indicate that you apply for such a scholarship in the "Funding" section of the application form. You'll also need to provide a CV and a statement explaining your interests and motivation with your application. This will inform the decision on a possible scholarship.

For more information, just get in touch with the Department of Physics.

Available scholarships:
We currently have a scholarship available for this course.

You must be able to demonstrate academic excellence based on your previous study along with the promise of a successful career in Industrial Photonics. Relevant previous industrial experience will be considered.

Deadline:
The first round of applications closes on 20th May 2016, and a second one will close on the 30th June 2016.

How to apply:
Apply for this scholarship via our scholarship search: https://www.strath.ac.uk/studywithus/scholarships/sciencescholarships/physicsscholarships/physicsindustrialphotonicsscholarships/

Careers

A degree in industrial photonics can set you up to work in a range of jobs in physics and positions in other industries.

Typically, it can lead you to photonic technologies in industrial corporate research and development units, production engineering and applied academic laboratories.

Work experience is key:
Employers want to know you can do the job so work experience is key.

This course has a strong focus on the relationship between academia and industry. It's a great opportunity to enhance your skills and provides a direct transition from university to the work place.

We have an excellent record of graduate employment in the Scottish, national and international optics and photonics industries.

Doctorate study:
If you're interested in practical work with impact but are also interested in a further academic qualification, you can move on to study an EngD or a CASE PhD studentship. These can lead to a doctorate within industry or in close collaboration with industry.

Job roles:
Our Physics graduates from photonics related courses have found employment in a number of different roles including:

-Medical Physicist
-Optical engineer
-Laser engineer
-Optical and laser production engineer
-Research and production engineer
-Senior Engineer
-Systems Engineer
-Software Engineer
-Spacecraft Project Manager
-Defence Scientist
-Oscar winner

Read less
This course develops the combination of technical knowledge and management expertise that are required to successfully deliver multi-million pound engineering projects. Read more
This course develops the combination of technical knowledge and management expertise that are required to successfully deliver multi-million pound engineering projects.

Course overview

This Masters-level course equips you to be the type of person who can lead a technical team to deliver on time and on budget. You will build on your technical background while adding business and management skills. These skills include project control, supply chain management, risk management and quality optimisation.

Our supportive tutors also help you develop the ‘soft’ skills of working with others and leading projects. For example, you will gain expertise in negotiation and collaboration, effective communication, handling conflict and politics, and managing change.

Modules include ‘Engineering Operations Management’, ‘Project Risk and Quality Management’ and ‘Decision Support for Management’. Your Masters project will involve a real-world project that is supported by a sponsor. It will include both a research and a practical element, and it is an opportunity to impress not only your academic assessors but also potential employers.

Sunderland has long-standing expertise in engineering management and strong links with employers. We host the Institute for Automotive & Manufacturing Advanced Practice (AMAP) which provides problem-solving solutions to manufacturers of all capabilities. We are a leading research group in automotive, manufacturing and maintenance engineering. This research informs our teaching and facilitates your own research as part of your Masters project.

Course content

The course mixes taught elements with independent research and supportive supervision. At MA level, responsibility for learning lies as much with you as with your tutor.

Modules on this course include:
-Research Skills and Academic Literacy (15 Credits)
-Project Management and Control (30 Credits)
-Engineering Operations Management (15 Credits)
-Decision Support for Management (15 Credits)
-Managing People and Project Leadership (15 Credits)
-Project Risk and Quality Management (15 Credits)
-Advanced Maintenance Practice (15 Credits)
-Masters Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, group work, research, discussion groups, seminars, tutorials and practical laboratory sessions.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include individual written reports and research papers, practical assignments and the Masters project.

Facilities & location

The University of Sunderland has excellent facilities with specialist laboratories and modelling software.

Engineering facilities
Our specialist facilities include laboratories for electronics and electrical power, and robotics and programmable logic controllers. We also have advanced modelling software that is the latest industry standard. In addition, the University is the home of the Institute for Automotive and Manufacturing Advanced Practice (AMAP), which builds on Sunderland’s role as a centre of excellence in the manufacturing and assembly of cars.

University Library Services
We’ve got thousands of books and e-books on engineering topics, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles.
Some of the most important sources for engineers include:
-British Standards Online which offers more than 35,000 documents covering specifications for products, dimensions, performance and codes of practice
-Abstracts from the Institute of Electrical and Electronics Engineers and Institution of Engineering and Technology. These include journals, conference proceedings, technical reports and dissertations. A limited number of articles are full-text
-Science Direct, which offers more than 18,000 full-text Elsevier journals
-Archives of publications from Emerald, including over 35,000 full-text articles dating back to 1994 that span engineering and management subjects

IT provision
When it comes to IT provision you can take your pick from hundreds of PCs as well as Apple Macs in the David Goldman Informatics Centre and St Peter’s Library. There are also free WiFi zones throughout the campus. If you have any problems, just ask the friendly helpdesk team.

Location
The course is based at our Sir Tom Cowie Campus at St Peter’s. The Campus is on the banks of the River Wear and is less than a mile from the seaside. It’s a vibrant learning environment with strong links to manufacturers and commercial organisations and there is a constant exchange of ideas and people.

Employment & careers

This course equips you for a wide range of engineering management roles throughout the engineering and manufacturing sector. Employers recognise the value of qualifications from Sunderland, which has been training engineers and technicians for over 100 years.

As part of the course, you will undertake a project that tackles a real-world problem. These projects are often sponsored by external clients and we encourage and support you to find your own client and sponsor. This relevant work experience will enhance your skills, build up a valuable network of contacts and further boost your employability.

Potential management roles include:
-Project manager
-Design engineer
-Manufacturing engineer
-Mechanical engineer
-Electrical engineer
-Product engineer
-Maintenance engineer

Engineering management provides good career prospects with salaries ranging from £30,000 up to around £80,000. A Masters degree will also enhance opportunities in academic roles or further study towards a PhD.

Read less
This course is designed to respond to a growing shortage of workforce in mechanical engineering sectors. It intends to equip our students with relevant and up-to-date knowledge and skills for their engineering competencies and careers. Read more

Why take this course?

This course is designed to respond to a growing shortage of workforce in mechanical engineering sectors. It intends to equip our students with relevant and up-to-date knowledge and skills for their engineering competencies and careers. Students have a chance to broaden and deepen their knowledge in wide range of mechanical engineering subjects. This enables our students to undertake an advanced treatment of core mechanical engineering disciplines such as design and critical evaluation of structural integrity, computation fluid dynamics, advanced materials, energy and control systems.

What will I experience?

On this course you can:

Use simulation and modelling application software for virtual design and manufacturing
Utilise our strong links with companies and investigate real industrial problems to enhance your understanding of the profession
Tie in the topic of your individual project with one of our research groups and benefit from the expertise of our actively researching academics

What opportunities might it lead to?

This course has been accredited by the Institution of Mechanical Engineers (IMechE) and Institution of Engineering and Technology (IET), meeting the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Design
Research and development
Product manufacture
Project management

Module Details

You will study several key topics that will help equip you to work as a mechanical engineer in a broad spectrum of mechanical engineering business activity management, research, design and development roles. You will also complete a four-month individual project tailored to your individual interests that can take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

Structural Integrity: Contemporary approaches are applied to the evaluation of mixed mode fracture and fatigue failure. Dynamic plastic responses of structures and the performance of composite structures are evaluated.

Industrial Control Systems: This unit covers mathematical representation of control system models is developed principally using Laplace transforms. System behaviour and simulation is analysed with practical case studies, leading to control system specifications.

Advanced Materials: This unit is designed to deal with a wide range of advanced materials for engineering applications. Teaching will address analytical and numerical methods to assess the strength, stiffness, toughness, non-linearity behaviours, vibration and failures of engineering materials for component and structure design.

Energy Systems: This unit is designed to study the principles and techniques of operation of thermodynamics and combustion systems, as well as the provision and management of energy. The current and future requirements and trends in energy production and consumption are addressed.

Structural Application of Finite Elements: The use of finite element analysis techniques and software applied to structural problems is developed. Modelling with both isotropic and orthotropic materials is investigated, as well as such topics as cracking in dissimilar materials and composite laminates.

Computational Fluid Dynamics: A practical case study analysis approach is used for model formulation and CFD simulation. Fundamental principles are used to appraise the results of CFD analysis of problems with industrial applications.

Individual Project: A strong feature of the course is the individual project, which comprises a third of the course. We encourage students to undertake projects in industrial companies, but we can also use our extensive resources and staff skills to undertake projects within the University.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis with a significant amount of your time spent our laboratories. We pride ourselves on working at the leading-edge of technology and learning practices.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

The demand for more highly skilled mechanical engineers is always present and it is generally accepted that there is a current shortage of engineers.

When you graduate from this course you could find employment in a wide range of mechanical engineering-based careers, such as design, research and development and manufacturing. You could work for a large company, in the Armed Forces or in one of the many small companies within this sector. You could even start your own specialist company.

Roles our graduates have taken on include:

Mechanical engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in the field… Read more
Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in the field, this MSc programme aims to provide a broad understanding of the basic principles of space technology and satellite communications together with specialised training in research methods and transferable skills, directly applicable to a career in the public and private space sectors.

Degree information

The Space Technology pathway is focussed on the application of space technology in industrial settings, and therefore has as its main objective to provide a sound knowledge of the underlying principles which form a thorough basis for careers in space technology, satellite communications and related fields. Students develop a thorough understanding of the fundamentals of:
-Spacecraft, satellite communications, the space environment, space operations and space project management.
-The electromagnetics of optical and microwave transmission, and of communication systems modelling.
-A range of subjects relating to spacecraft technology and satellite communications.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), four optional modules (60 credits), a Group Project (15 credits) and an Individual research Project (60 credits).

Core modules
-Space Science, Environment and Satellite Missions
-Space Systems Engineering
-Communications Systems Modelling Type
-Group Project

Optional modules - at least one module from the following:
-Spacecraft Design – Electronic Sub-systems
-Mechanical Design of Spacecraft
-Antennas and Propagation
-Radar Systems
-Space-based Communication Systems

At least one module from:
-Space Instrumentation and Applications
-Space Plasma and Magnetospheric Physics
-Principles and Practice of Remote Sensing
-Global Monitoring and Security
-Space Data Systems and Processing

Dissertation/report
All MSc students undertake an Individual research Project, which normally involves attachment to a research group, and culminates in a report of 10,000–12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, coursework problem tasks, team-based coursework exercises, presentations and tutorials. Student performance is assessed through unseen written examinations, coursework, and the individual and group projects.

Careers

The programme aims to prepare students for careers in space research or the space industry, or further research degrees.

First destinations of recent graduates include:
-ONERA: Research Engineer
-Hispassat: Telecommunications Engineer
-Detica: Engineer
-Equinox Consulting: Financial Consultant
-Murex: Financial Consultant
-Risk Management Solutions: Risk Analyst
-Defence Science and Technology Laboratory: Analyst
-School of Electronics & Computer Science IT-Innovation: Research Engineer
-EADS Astrium Ltd: Engineer
-Thales Space: Engineer

Why study this degree at UCL?

UCL Space & Climate Physics, located at the Mullard Space Science Laboratory, is a world-leading research organisation and is the largest university space science group in the UK.

It offers a unique environment at the forefront of space science research, where scientists and research students work alongside top engineers building and testing instruments for space as well as studying the data from these and other spaceborne and ground-based instruments.

The close contact that the laboratory enjoys with space agencies such as ESA and NASA and with industrial research teams encourages the development of transferable skills which enhance job prospects in industrial and research centres in the public and private space sectors.

Read less
If your aim is to become a chartered building services engineer we will give you the experience and knowledge - subject to accreditation approval from the Chartered Institution of Building Services Engineers - to achieve your goal. Read more
If your aim is to become a chartered building services engineer we will give you the experience and knowledge - subject to accreditation approval from the Chartered Institution of Building Services Engineers - to achieve your goal. Whether you've graduated from our BSc (Hons) course, or already work in industry as an associate engineer, we will equip you with the ability to play a leading role in the design, installation and management of building services.

The digital age has revolutionised how engineers operate - gone are the days when you could work with calculators, paper and design chart. To meet the demands of this changing industry we've invested heavily in industry standard software to which you'll have access to develop your expertise.

Sustainability and the carbon reduction of buildings is a key issue internationally. We will teach you how to implement this outlook in your work, from energy usage on site, emissions control, and your knowledge of environmental science, to the latest systems and innovation in energy conservation.

We'll improve your technical engineering capabilities so that you can take responsibility for building services and mechanical installations. You'll also focus on areas such as project leadership and management, lighting design, heating, thermal comfort, air conditioning, cooling systems, acoustic comfort and electrical services.

- Research Excellence Framework 2014: our University's results for the Architecture, Built Environment and Planning unit, which it entered for the first time, were impressive with 37% of its research being rated world leading or internationally excellent.

Visit the website http://courses.leedsbeckett.ac.uk/buildingengineering_msc

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

The global outlook of our course content will help you impress many UK companies, who will expect their employees to work for clients around the world. Subject to your accreditation as a chartered engineer - you will be qualified to take responsibility for making key decisions in the industry. We are seeking accreditation from the Chartered Institution of Building Services Engineers from 2015.

- Mechanical Design Engineer
- Building Services Engineer
- Facilities Manager
- Sustainability Engineer

Careers advice:
Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

By 2016 public sector projects over the value of £5,000,000 have to be BIM (Building Information Management) enabled and can no longer comprise of a paper based design - our course gives you the chance to keep pace with an evolving industry.

You'll have the opportunity to use building information modelling that includes packages such as Revit, Tekla and Vico, with a strong emphasis in design that meets environmental constraints.

You'll be taught by staff who are practicing engineers and who will give you a global stance on building services engineering, drawing international comparisons with systems and operational solutions from around the world.

Modules

Masters Final Project / Dissertation & Research Skills (60 Credits)
This is an opportunity to engage in research or advanced scholarship in a subject area that is appropriate to the course and of particular interest to you.

Project Management (20 Credits)
Examine the role of a project manager in the co-ordination of a range of professional skills required in the development and implementation of complex projects to satisfy client objectives.

Sustainable Buildings (20 Credits)
Extend and deepen your knowledge of building and system performance in resolution of carbon reduction and achieving long term sustainability. This focus relates to both the design of the building fabric, the operation of the building and its usage.

BIM & MEP (20 Credits)

WBL - Developing Engineering Portfolios & Study Methods (20 Credits)
Based upon the Engineering Gateways work based tool kit you will be introduced to the requirements for an engineering pathway and uses work based tools and skills as a means of developing that approach.

BEM & Intelligent Buildings (20 Credits)

Sustainable Systems Design (20 Credits)
Review current trends in building services systems design, focusing upon design approaches, sustainability considerations, electrical systems and lighting design.

Professor Mohammad Dastbaz

Dean, Faculty of Arts, Environment and Technology

"We aim to provide innovation in curriculum, engagement with current industry practices and standards, and to give our students the experience of working with staff whose research has national and international reputation."

Mohammad is responsible for the strategic leadership of the Faculty of Arts, Environment and Technology,having joined our University in June 2011 from the University of East London. A well published researcher, with over 50 refereed conference and Journal publications, his research profile includes many funded research programmes including JISC and EU FP7 projects. Mohammad’s first degree was in Electrical and Electronic Engineering. He then went on to complete a PhD in the 'Design, Development and Evaluation of Multimedia Based Learning Systems' at Kingston University. In 1989 he set up one of the UK's first multimedia PC companies, 'Systems 2000'.

Facilities

- Library
Our Library is one of the only university libraries in the UK open 24/7 every day of the year. However you like to study, our Library has you covered with group study, silent study, extensive e-learning resources and PC suites.

- Broadcasting Place
Broadcasting Place provides students with creative and contemporary learning environments, is packed with the latest technology and is a focal point for new and innovative thinking in the city.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
This course is based at our quality-assured partners around the world. This course will broaden the knowledge and experience of graduate and practicing engineers in engineering, technology and management. Read more
This course is based at our quality-assured partners around the world.

Course overview

This course will broaden the knowledge and experience of graduate and practicing engineers in engineering, technology and management. The successful integration and application of these elements will allow you to operate effectively in a wide range of engineering management roles and successfully deliver multi-million pound engineering projects.

The full potential of technological advances can only be fully realised if they are efficiently managed, using proven principles and methodologies. The focus of the programme is on equipping you to do this, within the context of today's engineering and manufacturing environment.

Supportive tutors will help you develop the ‘soft’ skills of working with others and leading projects. Examples include negotiation and collaboration, effective communication, handling conflict and politics and managing change.

Modules include ‘Engineering Operations Management’, ‘Project Risk and Quality Management’ and ‘Decision Support for Management’. Your Masters project will involve a real-world project that is supported by a sponsor. It will include both a research and a practical element and is an opportunity to impress not only your academic assessors but also potential employers.

Course content

The content of the course reflects the real-world needs of employers. It is structured to increase opportunities for gaining practical experience.

Modules on this course include:
-Research Skills and Academic Literacy
-Project Management and Control
-Engineering Operations Management
-Decision Support for Management
-Managing People and Project Leadership
-Project Risk and Quality Management
-Advanced Maintenance Practice
-Masters Project

Teaching and assessment

Teaching is provided by a combination of lectures, seminars and tutorials, with the emphasis being on student-centred learning. Assessment methods include individual and group assignments, examinations, presentations and a viva.

Facilities & location

This course is available at partner Universities worldwide.

Employment & careers

This course equips you for a wide range of engineering management roles throughout the engineering and manufacturing sector. Employers recognise the value of qualifications from Sunderland, which has been training engineers and technicians for over 100 years.

As part of the course, you will undertake a project that tackles a real-world problem. These projects are often sponsored by external clients and we encourage and support you to find your own client and sponsor. This relevant work experience will enhance your skills, build up a valuable network of contacts and further boost your employability.

Potential management roles include:
-Project Manager
-Design Engineer
-Manufacturing Engineer
-Mechanical Engineer
-Electrical Engineer
-Product Engineer
-Maintenance Engineer

Engineering management provides good career prospects with salaries ranging from £30,000 up to around £80,000. A Masters degree will also enhance opportunities in academic roles or further study towards a PhD.

Read less
This course is designed to respond to a growing shortage of workforce in manufacturing sector. Read more

Why take this course?

This course is designed to respond to a growing shortage of workforce in manufacturing sector. It intends to equip our students with relevant and up-to-date knowledge and skills of advanced design tools, materials, manufacturing processes and systems in conjunction with developing efficient operation and effective management skills. Integrating these will ensure our students to develop the technological and practical ability to meet manufacturing demand for product, company and market needs.

What will I experience?

On this course you can:

Use simulation and modelling application software for virtual design and manufacturing
Utilise our strong links with companies and investigate real industrial problems to enhance your understanding of the profession
Tie in the topic of your individual project with one of our research groups and benefit from the expertise of our actively researching academics

What opportunities might it lead to?

This course has been accredited by the Institution of Mechanical Engineers (IMechE) meeting the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Design
Research and development
Product manufacture
Project management

Module Details

This course aims to provide you with the inter-disciplinary knowledge, attributes and skills necessary to apply the principles of advanced manufacturing systems within the manufacturing industry. You will study several key topics and also complete a four-month individual project tailored to your individual interests that can take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

Integrated Manufacturing Systems: Systems concepts and techniques are developed in logistics and manufacturing areas with a strong emphasis on simulation techniques and practical case study analysis.

Operations and Quality Management: A strategic approach is used with modern inventory and supply chain management and logistics tools and techniques. Management strategies are developed for quality, including quality systems and quality control.

Advanced Materials: This unit is designed to deal with a wide range of advanced materials for engineering applications. Teaching will address analytical and numerical methods to assess the strength, stiffness, toughness, non-linearity behaviours, vibration and failures of engineering materials for component and structure design.

Supply Chain Management: Supply chain management involves the coordination of production, inventory, location and transportation, among participants in a supply chain. This unit considers the principles and tools of supply chain management, with an emphasis on lean six sigma methods.

Virtual Systems Design and Simulation for Production: This unit is particularly designed to enhance students’ analytical knowledge and practical skills focusing on a sustainable development of systematic approaches and lean production methods to support manufacturing systems analysis, design and performance evaluation with an aid of using advanced computer design and modelling simulation tools.

CAD/CAM Systems: An integrated approach is used towards CAD and CAM. Significant practical hands-on experience is given with commercial level software. Emphasis is placed on case study analysis and system selection and evaluation.

Individual Project: A strong feature that comprises a third of the course. You will be encouraged to undertake projects where possible in industrial companies. However, we also use our extensive resources and staff skills to undertake them within the University.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis with a significant amount of your time spent our laboratories. We pride ourselves on working at the leading-edge of technology and learning practices.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

The demand for more highly skilled manufacturing engineers is always present and it is generally accepted that there is a current shortage of engineers.

This course has a record of almost 100 per cent of our graduates gaining employment in relevant areas such as manufacturing and logistics management, systems engineering, production engineering, design engineering and project management. You could work for a large company, in the Armed Forces or in one of the many small companies within this sector. You could even start your own specialist company.

Roles our graduates have taken on include:

Manufacturing engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
Electronic engineering is a discipline at the forefront of advances for modern-day living and continues to push forward technological frontiers. Read more

Why take this course?

Electronic engineering is a discipline at the forefront of advances for modern-day living and continues to push forward technological frontiers.

This course provides relevant, up-to-date skills that will enhance your engineering competencies. You will broaden your knowledge of electronic engineering and strengthen your ability to apply new technologies in the design and implementation of modern systems.

What will I experience?

On this course you can:

Focus on the practical application and design aspects of electronic systems rather than intensive analytical detail
Experiment with our range of control applications including helicopter development kits and walking robots
Access a wide range of powerful and modern multimedia computational facilities, with the latest industry software installed

What opportunities might it lead to?

This course has been accredited by the Institution of Engineering and Technology (IET) and meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Professional electronics
Design
Research and development
Product manufacture
Project management

Module Details

You will study several key topics and complete a four-month individual project in which you apply your knowledge to a significant, in-depth piece of analysis or design. Projects are tailored to your individual interests and may take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

VHDL and Digital Systems Design: This unit covers the use of a hardware description language (VHDL) to capture and model the design requirement - whilst programmable logic devices enable an implementation to be explored and tested prior to moving into manufacture. The learning will have a practical bias such that experience as well as theory is gained in completing this unit.

Advanced DSP Techniques: This unit aims to introduce you to the fundamentals of statistical signal processing, with particular emphasis upon classical and modern estimation theory, parametric and nonparametric modelling, time series analysis, least squares methods, and basics of adaptive signal processing.

Mixed Signal Processors: This unit focuses on both control and signal processing hardware, how it works, how to interface to it, and software - how to design it and debug it.

Sensors and Measurement Systems: This unit proposes to introduce you to the technologies underpinning measurements including sensors both in terms of hardware and software. It also aims to provide you with an opportunity to apply classroom knowledge in a practical setting and gain an appreciation of modern day requirements in terms of measurement.

Microwave and Wireless Technology: The unit combines team working via a project based learning activity relating to a significant circuit simulation and design problem with lectures aimed at analysing and applying the characteristics of a range of devices used in the microwave and wireless industries.

Communication System Analysis: This unit focuses on basic principles in the analysis and design of modern communication systems, the workhorses behind the information age. It puts emphasis on the treatment of analogue communications as the necessary background for understanding digital communications.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis and you will spend a significant amount of time in our electronic, communications and computer laboratories.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

This course is designed to respond to a growing skills shortage of people with core knowledge in advanced electronic engineering. It is an excellent preparation for a successful career in this ever expanding and dynamic field of modern electronics.

On successful completion of the course, you will have gained the skills and knowledge that will make you attractive to a wide variety of employers with interests ranging from overall system design to the more detailed development of subsystems.

Roles our graduates have taken on include:

Electronics engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
Engineering is constantly changing, and graduates often need to deepen their technical skills and understanding. This course is especially relevant for mechanical and manufacturing engineers and technicians wishing to broaden their industrial and managerial skills. Read more

Engineering is constantly changing, and graduates often need to deepen their technical skills and understanding.

This course is especially relevant for mechanical and manufacturing engineers and technicians wishing to broaden their industrial and managerial skills. It is ideal for continuing professional development and updating technical skills.

You study eight taught modules drawn from a wide choice of technical and management modules. This gives you advanced tuition in areas of engineering tailored to your career needs such as design, manufacturing, materials, networking or electronics and telecommunications.

We emphasise applying knowledge to relevant workplace skills in areas such as

  • design, manufacture, electronics, telecommunications and information technology, networking and materials
  • core management disciplines of quality, finance and marketing and others

The international product development module involves working in multidisciplinary teams to design and develop a product in the global market.

This flexible course helps you to develop your career based your needs, and helps you on your path towards Chartered Engineer status.

Professional recognition

This course is accredited by the Institute of Materials, Minerals and Mining (IOM3), on behalf of the Engineering Council, for the purposes of partly meeting the academic requirement for registration as a Chartered Engineer; graduates who have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the further learning requirement for CEng accreditation.

This course is also accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council and will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng (Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration. It should be noted that graduates from an accredited MSc programme, who do not also have an appropriately accredited Honours degree, will not be regarded as having the exemplifying qualifications for professional registration as a Chartered Engineer with the Engineering Council; and will need to have their first qualification individually assessed through the Individual Case Procedure if they wish to progress to CEng.

This programme is CEng accredited by the Institution of Engineering and Technology (IET) and fulfils the educational requirements for registration as a Chartered Engineer when presented with an CEng accredited Bachelors programme.

Course structure

You choose a combination of management, technical and optional modules from a choice of 36. Your choice must total eight 15-credit modules and be agreed with your course leader. At least four must be technical modules.

Optional management modules

  • finance and marketing
  • project and quality management
  • management of strategy, change and innovation
  • lean operations and six sigma
  • manufacturing systems

Optional technical modules

• group project - international product development • competitive materials technology • advanced CAD/CAM • competitive design for manufacture • advanced manufacturing technology • advanced metallic materials • sustainability, energy and environmental management • computer networks • communication media • network applications • communication engineering • digital signal processing • applicable artificial intelligence • microprocessor engineering • software engineering • operating systems • object oriented methods • digital electronic system design • VLSI design • industrial applications of finite element methods • industrial automation • robotics • machine vision • equipment engineering and design • control of linear systems • advanced investigatory techniques for materials engineers • advanced control methods • advanced vibration and acoustics

MSc

  • project and dissertation (60 credits)

Assessment

By final examination, coursework and project reports    

Employability

Graduates in technical subjects can broaden their experience in mechanical manufacturing, electronics and information technology, networking, materials and management areas.

The flexible choice of modules allows you to tailor the course to your particular needs and this can enhance career prospects in the engineering industry, research, teaching and public service.

   



Read less
Industrial Combustion Engineering is a significant market sector which functions between the electrical and mechanical disciplines. Read more
Industrial Combustion Engineering is a significant market sector which functions between the electrical and mechanical disciplines. A competent engineer needs to have a knowledge and understanding of thermodynamics, fluid dynamics, and the chemistry of combustion and process engineering.

A formal training and qualification route for industrial combustion engineers does not currently exist. The result of this is a world-wide shortage of skilled competent combustion engineers.

This course has been designed to meet this shortage, and is suitable for graduates and professional engineers who wish to gain specialist knowledge and skills in the field of commercial and industrial combustion engineering, or who wish to formalise and progress in their current profession.

Key benefits:

• A specialist qualification that is recognised by industry experts
• Taught by distance e-learning so you can fit in study around your work
• The first course in the UK to specialise in combustion engineering at a commercial level.

Visit the website: http://www.salford.ac.uk/pgt-courses/industrial-and-commercial-combustion-engineering

Suitable for

This programme is for experienced practitioners in the field of commercial combustion engineering who wish to formalise their training or for engineers from other similar backgrounds who wish to enter the commercial combustion engineering field.

If you do not hold a first degree but have appropriate experience, you will be required to produce a portfolio of relevant work experience within the field of engineering as part of the application process.

Programme details

This course aims:

• To provide engineers and industrial practitioners with specialist skills and advanced knowledge to work within industrial and commercial combustion engineering processes.
• To develop engineers and scientists with a systematic and a critical awareness of burner technology and its utilisation within industrial and commercial processes (oil and gas).
• To provide comprehensive knowledge and a critical understanding of gas safety standards and its application to industrial/commercial combustion processes.
• To develop the student professionally to make informed decisions on the design, development, installation and commissioning of industrial and commercial combustion systems.

There are three qualifications available, each taking a total of one year. To attain the competent engineer certification you will need to complete a PgDip.

Format

Teaching is delivered online by e-learning.

You will required to attend the University of Salford for a two week period for laboratory teaching and assessment.

Modules

• Combustion Theory and Burner Design (30 credits)
• Burner Utilisation and Process Control (30 credits)
• Industrial Gas Safety and Regulations (30 credits)
• Industrial Burner Commissioning and Optimisation (30 credits)
• Dissertation (60 credits)

Assessment

You will be assessed through:

• Coursework 40%
• Examinations 60%

Plus dissertation

Career potential

You will be able to enter or progress in careers in the designing, commissioning, servicing and maintaining of industrial or commercial combustion equipment.

Examples of jobs you could apply for with this qualification might be Service Engineer, Commissioning Engineer, Design Engineer.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less

Show 10 15 30 per page



Cookie Policy    X