• University of Southampton Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Cranfield University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Leeds Featured Masters Courses
"eng"×
0 miles

Masters Degrees (Eng)

We have 261 Masters Degrees (Eng)

  • "eng" ×
  • clear all
Showing 1 to 15 of 261
Order by 
With the ever increasing environmental challenges, there is strong demand for civil and structural engineers who are practically-skilled in efficient design, green construction and sustainable development and who can play a central role in achieving sustainable adaptation to and mitigation of these challenges. Read more
With the ever increasing environmental challenges, there is strong demand for civil and structural engineers who are practically-skilled in efficient design, green construction and sustainable development and who can play a central role in achieving sustainable adaptation to and mitigation of these challenges.

The Sustainable Civil and Structural Engineering MSc (Eng) programme provides a specialist, technical Masters-level education in civil and structural engineering.

The programme is designed to embed the knowledge, skills and understanding required to critically assess the function, use and impacts of concrete, steel and alternative construction materials in structural designs and to participate in the design, implementation and evaluation of engineering projects which are truly sustainable, bringing social, economic and environmental benefits to current future generations.

The Sustainable Civil and Structural Engineering MSc (Eng) provides an opportunity for you to develop advanced specialist knowledge in structural engineering, understand how to address the increasing challenges for the industry and develop your skills for the working environment.

The programme is pending accreditation by the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highway Engineers. This programme can also be studied part-time over two years. The same modules are followed and the same total credits are achieved, but these are spread over four semesters at 30 credits per semester. The independent research project (module ENGG660) is chosen in the first year, but the completion deadline is not until the end of the second year, allowing flexibility in timing and distribution of effort over the full duration of the course.

This 12-month programme consists of taught modules over two semesters and a major project starting in semester 2 and continuing through the summer. Assessment is by examinations, coursework and an individual dissertation. Places on the programme are limited to between 15 and 20.

Projects

Project work, based on a topic of industrial or scientific relevance, contributes 60 credits and is carried out in laboratories in the University or at an approved placement in industry. The project is examined by dissertation, and award of the MSc (Eng) degree will require evidence of in-depth understanding, mastery of research techniques, ability to analyse assembled data, and assessment of outcomes.

Read less
Study the dynamic field of efficient information transfer around the globe. We teach this course jointly with the Department of Computer Science so you get up-to-date knowledge and understanding. Read more

About the course

Study the dynamic field of efficient information transfer around the globe. We teach this course jointly with the Department of Computer Science so you get up-to-date knowledge and understanding.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

Network and Inter-Network Architectures; Network Performance Analysis; Data Coding Techniques for Communications and Storage; Advanced Communication Principles; Mobile Networks and Physical Layer Protocols; (either) Foundations of Object-Orientated Programming (or) Object-Orientated Programming and Software Design; Major Research Project.

Examples of optional modules

Computer Security and Forensics; 3D Computer Graphics; Software Development for Mobile Devices; Cloud Computing; Advanced Signal Processing; Antennas, Propagation and Satellite Systems; Optical Communication Devices and Systems; Computer Vision; Broadband Wireless Techniques; Wireless Packet Data Networks and Protocols; System Design.

Teaching and assessment

We deliver research-led teaching from our department and Computer Science with individual support for your research project and dissertation. Assessment is by examinations, coursework and a project dissertation with poster presentation.

Read less
This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications. Read more

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

Semiconductor Materials; Principles of Semiconductor Device Technology; Packaging and Reliability of Microsystems; Nanoscale Electronic Devices; Energy Efficient Semiconductor Devices; Optical Communication Devices and Systems; Compound Semiconductor Device Manufacture; Major Research Project.

Teaching and assessment

Research-led teaching, lectures, laboratories, seminars and tutorials. A large practical module covers the design, manufacture and characterisation of a semiconductor component, such as a laser or light emitting diode. This involves background tutorials and hands-on practical work in the UK’s national III-V semiconductor facility. Assessment is by examinations, coursework or reports, and a dissertation with poster presentation.

Read less
This course has been created to help construction professionals develop and enhance the project management skills required in the construction industry. Read more

This course has been created to help construction professionals develop and enhance the project management skills required in the construction industry.

You’ll prepare for the challenges of the changing and increasingly global construction industry with a focus on the financial, planning and management aspects of a project life cycle. You’ll explore construction processes from inception and feasibility, design, contact and construction through to commissioning, maintenance, renewal and decommissioning. The philosophy of the course is to develop a “whole life” understanding of constructed facilities and infrastructure.

A choice of optional modules will allow you to strengthen existing technical and engineering skills, or gain an understanding of a new topic. You’ll benefit from the expertise of our Institute for Resilient Infrastructure, the Institute for Public Health and Environmental Engineering and the active research groups across the Faculty of Engineering.

Our specialist facilities will also support your studies, such as bench-top testing facilities to look at the fundamental behaviour of material soils and testing rigs for full-scale structures. We have all the specialist software you’ll need for your programme, and you’ll have access to a dedicated study suite for Masters students.

The programme also offers you the opportunity to undertake projects in a multi-disciplinary environment, with access to the expertise in both the Institute for Resilient Infrastructure and the Institute for Public Health and Environmental Engineering.

Accreditation

This degree is accredited by the Joint Board of Moderators as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

This course is also accredited by EUR-ACE, the European quality label for engineering degree programmes at Bachelor and Master level.

Course content

Throughout the programme you’ll gain an understanding of the different aspects of project management within the construction industry. You’ll learn about common project management tools and techniques, then put this into the “whole project” context and consider when and how to use them.

At the same time, you’ll consider risk management and its role during the project lifecycle. Whole Life Asset Management examines the “whole life management” of infrastructure, with additional focus on operations, maintenance, renewal and decommissioning.

The Applied Construction Management module explores the management process during the execution phase of projects. Another core module will introduce you to a variety of procurement strategies to keep projects running effectively. You’ll also choose from a range of optional modules to focus on topics that suit your interests and career plans.

Over the summer months you’ll work with your supervisor to complete your independent research project – a chance to demonstrate the knowledge and skills you’ve gained and perhaps specialise in an area that relates to your career ambitions.

Want to find out more about your modules?

Take a look at the International Construction Management and Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • International Construction Management and Engineering/ Engineering Project Management Dissertation 60 credits
  • Project Management 15 credits
  • Advanced Project Management 15 credits
  • Risk Management 15 credits
  • Management of Human Resources and Communications in Projects (MSc) 15 credits
  • Procurement Management 15 credits
  • Whole Life Asset Management 15 credits

Optional modules

  • Strategic Management in Construction 15 credits
  • Funding for Projects 15 credits
  • Value Management 30 credits
  • Deterioration and Maintenance of Pavements 15 credits

For more information on typical modules, read International Construction Management and Engineering MSc(Eng) Full Time in the course catalogue

For more information on typical modules, read International Construction Management and Engineering MSc(Eng) Part Time in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The dissertation project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Most projects are experimentally based and linked with companies within the oil and gas industry to ensure the topic of research is relevant to the field whilst also addressing a real-world problem.

Recent projects for MSc International Construction Management and Engineering students have included:

  • International trends in infrastructure asset management
  • Integrated project delivery and the BIM environment
  • Risk in megaprojects
  • Social Return on Investment in Infrastructure projects
  • Trends in the concepts of value and value management
  • Future-proofing and infrastructure resilience.

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Upon graduation you may expect to find employment in a range of roles across the construction industry, as a construction manager, planning engineer or project manager among many others. Opportunities also exist with multidisciplinary consulting organisations, while many of our graduates return to work for government agencies and other large client organisations.

Our graduates have gone on to develop careers with organisations worldwide including Ministry of Prisons KSA, Ove Arup and Partners Hong Kong, African Development Bank, Ghana Highways Authority, TATA Steel, Network Rail, Turner & Townsend, Mace Group, M+W Shanghai Co., Damac Properties, China State Railways and Keller Ground Engineering.



Read less
This programme offers a broad range of advanced subjects across the mechanical engineering disciplines. It’s aimed at graduate engineers who wish to pursue a career in industry using advanced engineering techniques, or those who want to gain in-depth knowledge for a career in research in industry or academia. Read more

This programme offers a broad range of advanced subjects across the mechanical engineering disciplines. It’s aimed at graduate engineers who wish to pursue a career in industry using advanced engineering techniques, or those who want to gain in-depth knowledge for a career in research in industry or academia.

We emphasise the application of computational methods and packages in mechanical engineering analysis design and manufacture to solve complex engineering problems, but you’ll choose from a wide variety of options that allow you to tailor your studies to suit your own interests or career ambitions. You could gain specialist knowledge in mechatronics and robotics, automotive engineering, tribology, aerospace engineering and many more.

You’ll be taught in world-class facilities by researchers who are making breakthroughs in their fields. It’s an excellent opportunity to gain a wide range of knowledge and skills that will prepare you for an exciting and challenging career.

Specialist facilities

We have an impressive range of world-class facilities to support your studies. In addition to our advanced CAD facilities for design work, we have the latest industry-standard software for computational fluid dynamics and finite element modelling of material stress analysis.

There’s also a well-equipped workshop with CNC machinery, 3D printing facilities and wire EDM for building parts and extensive lab facilities for solid and fluid dynamics, erosion, corrosion, tribology, combustion, control and dynamics, robotics and optical measurement.

Accreditation

This course is accredited by the Institute of Mechanical Engineers (IMechE) under licence from the UK regulator, the Engineering Council

Course content

In Semester 1 you’ll take a core module that introduces you to the fundamentals of computational and experimental methods, laying the groundwork for the rest of your studies. Beyond this, you’ll be able to choose modules in areas that suit your interests and career aspirations such as Combustion in Engines, fluid dynamics analysis, biomaterials or aspects of automotive and aerospace engineering.

Throughout the programme you’ll complete your Professional Project – an independent piece of research on a topic within mechanical engineering that allows you to demonstrate your knowledge and skills. In the two taught semesters you’ll review the literature around your topic and plan the project, before completing the design, analysis, computation, experimentation and writing up in the summer months.

If you choose to study part-time, you’ll extend your studies over a longer period so you can take fewer modules in each year.

Want to find out more about your modules?

Take a look at the Advanced Mechanical Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Engineering Computational Methods 15 credits
  • Professional Project 75 credits

Optional modules

  • Finite Element Methods of Analysis 20 credits
  • Mechatronics and Robotics Applications 15 credits
  • Automotive Chassis Engineering 15 credits
  • Automotive Driveline Engineering 15 credits
  • Energy Systems, Policy and Economics for Engineers 15 credits
  • Surface Engineering 15 credits
  • Biomaterials (Short Course) 15 credits
  • Functional Joint Replacement Technology (Short Course) 15 credits
  • Introduction to Tribology 15 credits
  • Aerospace Structures 15 credits
  • Rotary Wing Aircraft 15 credits
  • Vehicle and Product Systems Design 15 credits
  • Computational Fluid Dynamics Analysis 15 credits

For more information on typical modules, read Advanced Mechanical Engineering MSc(Eng) Full Time in the course catalogue

For more information on typical modules, read Advanced Mechanical Engineering MSc(Eng) Part Time in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Career opportunities

After graduating from this course, you will be in a good position to seek employment with many leading organisations such as Airbus, Bentley Motors, Bombardier Transportation, Crompton Technology Group, Cummins UK, DePuy International, EAS Engineering, E-ON UK, Faraday Packaging Partnership, Ford Motor Company, Jaguar Land Rover, Nissan Motor Company, Prodrive, Ricardo UK and Siemens.

Careers support

You’ll have access to the wide range of engineering andcomputing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
Study the key design aspects of a modern wireless communication system, in particular cellular mobile radio systems. There is a current shortage of communications engineers with a comprehensive appreciation of wireless system design from RF through baseband to packet protocols. Read more

About the course

Study the key design aspects of a modern wireless communication system, in particular cellular mobile radio systems. There is a current shortage of communications engineers with a comprehensive appreciation of wireless system design from RF through baseband to packet protocols.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

First-class facilities

Semiconductor Materials and Devices
LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

Advanced Signal Processing; Advanced Communication Principles; Antennas, Propagation and Satellite Systems; Mobile Networks and Physical Layer Protocols; Broadband Wireless Techniques; Wireless Packet Data Networks and Protocols; Major Research Project.

Examples of optional modules

Data Coding Techniques for Communication and Storage; Optical Communication Devices and Systems; Computer Vision; Electronic Communication Technologies; Data Coding Techniques for Communication and Storage.

Teaching and assessment

Research-led teaching and an individual research project. Assessment is by examinations, coursework and a project dissertation with poster presentation.

Read less
Electronic and Electrical Engineering is a broad and rapidly-expanding set of disciplines. Read more

About the course

Electronic and Electrical Engineering is a broad and rapidly-expanding set of disciplines. Building on core teaching in electrical machines, electronic materials, and the way that electronic circuits interact, this course will allow you to choose from a wide range of optional modules from all our active research areas to tailor your learning in a way that meets with your requirements.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

Major Research Project.

Examples of optional modules

AC Machines; Advanced Control of Electric Devices; Energy Storage Management; Motion Control and Servo Drives; Permanent Magnet Machines and Actuators; Power Electronic Converters; Power Semiconductor Devices; Advanced Computer Systems; Advanced Integrated Electronics; Advanced Signal Processing; Semiconductor Materials; Principles of Semiconductor Device Technology; Packaging and Reliability of Microsystems; Nanoscale Electronic Devices; Energy Efficient Semiconductor Devices; Optical Communication Devices and Systems; Computer Vision; Electronic Communication Technologies; Data Coding Techniques for Communications and Storage; Principles of Communications; Antennas, Propagation and Satellite Systems; Mobile Networks and Physical Layer Protocols; System Design; Broadband Wireless Techniques; Wireless Packet Data Networks and Protocols.

Teaching and assessment

We deliver research-led teaching with individual support for your research project and dissertation. Assessment is by examinations, coursework and a project dissertation with poster presentation.

Read less
If you are an ambitious engineering graduate – from a civil, mechanical, computing or electronic engineering background – this course is a smart route to a career in the expanding field of transport consultancy and public policy. Read more

If you are an ambitious engineering graduate – from a civil, mechanical, computing or electronic engineering background – this course is a smart route to a career in the expanding field of transport consultancy and public policy.

97% of our graduates find employment in a professional or managerial role, or continue with further studies.*

Learn to develop solutions to engineering problems that fit the broader aims of transport and planning policy, from academics with an international reputation whose research sets industry standards. This includes studying the principles of transport engineering and data collection and analysis. Other options include:

  • Traffic management
  • Road geometry and infrastructure
  • System dynamics
  • Road safety management
  • Public transport planning.

Develop an early understanding of four-stage modelling before gaining hands-on experience of SATURN and other Leeds-built models so that you become fluent in their use in live environments.

Deepen your knowledge of:

  • Engineering design principles
  • Integrated transport networks - road, rail, and aviation
  • Refining models to fit local contexts.

And experience what it is like to be part of a project team working across disciplinary boundaries within the transport sector. Through this, gain insights into how engineering, planning, economics, environmental science and modelling can work together to develop sustainable solutions to global challenges. This industry-inspired approach will enable you to apply your knowledge to real-world issues in the field.

Your colleagues will be among the best and brightest from Latin America to the Far East, from Africa to Europe and the UK. Together you will learn engineering techniques that will help you develop transport networks that are founded on fundamental principles, robust evidence, sustainable and equitable principles, state-of-the-art modelling, accurate data analysis, and an understanding of human psychology.

This course provides you with a clear pathway to the Transport Planning Professional (TPP) qualification and is accredited by the major professional bodies in the transport sector, including Chartered Institute of Logistics and Transport (CILT UK) and Chartered Institution of Highways and Transport (CIHT).

ITS – the global institute teaching the transport leaders of tomorrow.

*Higher Education Statistics Agency (HESA), Destinations of Leavers from Higher Education (DLHE) 2015, http://www.hesa.ac.uk

We have redesigned our suites of courses following close consultation with Industry and academia.

With a strong focus on industry needs, our degrees will prepare you for employment in your chosen field. They will also address the multi-disciplinary nature of transport – enabling you to make effective decisions for clients, employers and society.

And to experience what it’s really like to work in the transport sector, collaborate with a project team of students from our other degrees through our new Transport Integrated Project module.

Research environment

The Institute for Transport Studies (ITS) was established as the UK’s first multi-disciplinary transport department, and we continue to lead the field with our research.

Our reputation allows us to invest in world-class facilities, such as the University of Leeds Driving Simulator – one of the most sophisticated in any university in the world, allowing us to research driver behaviour in controlled lab conditions. We also have access to a variety of specialist software tools including those we’ve developed in-house such as SATURN, PLUTO, DRACULA, MARS and KonSULT.

Other Study Options

This programme is available part time, allowing you to combine study with other commitments. You can work to fund your studies, or gain a new qualification without giving up an existing job. We aim to be flexible in helping you to put together a part-time course structure that meets your academic goals while recognising the constraints on your study time.

You can also study this subject at Postgraduate Diploma level, part time or full time, or at Postgraduate Certificate level with our PGCert in Transport Studies.

Accreditation

This programme is recognised by the major professional bodies in the transport sector. It fulfils the educational requirements for membership of the Chartered Institute of Logistics and Transport (CILT UK) and the Chartered Institution of Highways and Transportation (CIHT) and provides a pathway towards the Transport Planning Professional (TPP) qualification.

It is also accredited as meeting the requirements for technical Further Learning for Chartered Engineer (CEng) status for candidates who have already acquired a CEng accredited BEng (Hons). Please see the Joint Board of Moderators website for further information.

Course structure

Compulsory modules

  • Shaping Future Transport Systems 15 credits
  • Principles of Transport Modelling 15 credits
  • Transport Data Collection and Analysis 15 credits
  • Principles of Transport Engineering 15 credits
  • Transport Dissertation 60 credits
  • Transport Integrated Project 15 credits

Optional modules

  • Public Transport Planning and Management 15 credits
  • System Dynamics: Modelling Policy 15 credits
  • Traffic Management 15 credits
  • Road Geometry and Infrastructure 15 credits
  • Traffic Network Modelling 15 credits
  • Deterioration and Maintenance of Pavements 15 credits

For more information on typical modules, read Transport Planning and Engineering MSc(Eng) Full Time in the course catalogue

For more information on typical modules, read Transport Planning and Engineering MSc(Eng) Part Time in the course catalogue

Learning and teaching

Postgraduate study involves a range of teaching methods, supported by independent learning. In addition to the traditional lecture and seminar formats, you’ll experience a blend of workshops, computer exercises, practical sessions, directed reading, reflective journal, student-led discussions, fieldwork and tutorials.

Assessment

Assessment is equally varied and can include coursework essays, case-study reports, group assignments, posters, presentations and exams.

Career opportunities

Links with industry

ITS has close working relationships with a number of organisations and many employers visit ITS each year to interview our students for graduate schemes and other vacancies. ITS also regularly circulates specific job vacancies to students.

Our students are highly sought after and have a good reputation with transport consultants, and may receive a job offer before or shortly after graduation.



Read less
This part-time, distance learning Masters course aims to develop the next generation of senior construction professionals working in concrete production, construction and design. Read more

This part-time, distance learning Masters course aims to develop the next generation of senior construction professionals working in concrete production, construction and design. It’s designed to provide you with advanced, in-depth knowledge of both the theory and practical application of concrete technology to prepare you for a variety of senior roles.

You’ll gain academic and industrial expertise using a range of online resources that give you the flexibility to study around your work and personal lives. From health and safety and quality control to mixture proportioning, repair and maintenance and life cycle analysis, you’ll develop an understanding of a wide range of issues that affect professionals in the concrete industry today.

If you complete the MSc, you’ll also have the chance to conduct your own research project – a chance to focus on a single topic and demonstrate valuable skills when you present your findings in a comprehensive technical report.

Approved prior learning

Students who have approved prior learning meeting our requirements may complete just the research project over 12 months part-time to graduate with an MSc at a cost of £5,000.

This programme is also available to study part-time over 36 months. You can also study for a PGDip qualification over 24 months, which means you’ll study the same content without completing a research project.

Institute for Resilient Infrastructure

The programme also has close links with our interdisciplinary Institute for Resilient Infrastructure, which collaborates with industry to focus on key challenges facing the construction sector. It broad scope incorporates the impacts of the engineering, environmental, economic, social and political domains on the whole life performance of infrastructure

Accreditation

The course is accredited by the Institute of Concrete Technology.

Course content

At the start of the programme you’ll attend an induction event over two or three days at the University of Leeds, giving you the chance to meet fellow students and talk to tutors about course content, learning and assessment methods and what’s expected of you as a part-time student.

From there you’ll study four modules spread over the next two years covering different aspects of concrete technology such the constituent materials of concrete, thermal movements, strength development, fire resistance, life cycle costing, formwork and sustainability. You’ll work on a series of group and individual projects online to apply your knowledge and develop your skills.

If you undertake the MSc, you will have an opportunity to carry out independent research on a contemporary topic that is relevant to the construction industry in Year 3. This will enable you to use the scientific knowledge gained during the taught modules, apply it to a more contextual situation and present the outcome of the research in a comprehensive technical report.

Want to find out more about your modules?

Take a look at our Advanced Concrete Technology module descriptions for more detail on what you will study.

Course structure

Year 1 Compulsory modules

  • Constituent Materials of Concrete 30 credits
  • Cement and Concrete Properties 30 credits

Year 2 Compulsory modules

  • Testing, Quality Assurance, Repair and Maintenance of Concrete Structures 30 credits
  • Concrete Production, Processes, Applications and Construction Practice 30 credits

Year 3 Compulsory modules

  • Independent Research Project 60 credits

For more information on typical modules, read Advanced Concrete Technology MSc(Eng) in the course catalogue

Learning and teaching

The four taught modules each run over a semester period and are taught using a range of online distance learning methods. Short pre-recorded lectures will introduce each topic, and you’ll then learn through group assignments conducted online. You’ll also have access to the reference books and other consultation documents you need through the programme portal and our library’s online resources.

Assessment

Each module contains a mixture of group and individual assessment; with two compulsory, formative pieces of coursework and two summative, individual assignments completed at different stages of the module. These will evaluate your problem-solving skills as well as the breadth and depth of your understanding of the topics covered.

Research Project

You’ll undertake a research project in Year 3, or Year 1 if you are studying based on approved prior learning.

This is an excellent opportunity to apply the knowledge and skills you’ve gained to explore a topic that interests you, or relates to your own career plans or professional context, and present your findings in a comprehensive technical report.

You’ll have an external supervisor close to your place of work, where you can complete your research, as well as an internal University of Leeds supervisor appointed by the programme leader. They’ll review the three progress reports you submit during the project and offer feedback to help you shape and refine your work.

A three-day induction event at the University of Leeds will help you to prepare for conducting your own research, with the chance to review the taught modules and study the research methods and statistical tools used in experimental research. 

Career opportunities

It is expected that the majority of students on the course will already be working within the concrete industry and looking to progress their career within their chosen field.

If you have no industrial experience, this course will provide an excellent route to a career within the concrete industry as you learn industrial practices through group projects involving participants from industry.

During your course you will have the opportunity to get to know people from the concrete industry through their association with tutors from the industry who will be part of the course delivery team.



Read less
The majority of new buildings in the UK have steel structures, the use of steel in construction is growing in many other parts of the world. Read more

About the course

The majority of new buildings in the UK have steel structures, the use of steel in construction is growing in many other parts of the world.

This specialist course aims to prepare structural engineers for careers in the global construction industry by providing advanced knowledge of the properties and applications of steel.

There is an active steel structures group within the department whose research feeds directly into our MSc (Eng) in Steel Construction.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Linear Systems and Structural Analysis
Structural Dynamics (Earthquakes and Vibration)
Computational Structural Analysis and Research Skills
Structural Design
Structural Design and Fire Resistance

Examples of optional modules

Innovations in Structural Concrete
Advanced Simulation of High Strain Rate Dynamics
Blast and Impact Effects on Structures
Design of Earthquake Resistant Structures
Geotechnical Design

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
Accredited by the Energy Institute and the Institution of Chemical Engineers. Tailor the course to suit you by blending core and optional modules. Read more

About the course

Accredited by the Energy Institute and the Institution of Chemical Engineers

Tailor the course to suit you by blending core and optional modules. This practical degree has been developed with the Institution of Chemical Engineers and the Energy Institute to equip you with the skills and expertise needed for work in sectors including industry, education, public administration and commerce.

Take advantage of our expertise

Our teaching is grounded in specialist research expertise. Our reputation for innovation secures funding from industry,
UK research councils, the government and the EU. Industry partners, large and small, benefit from our groundbreaking work addressing global challenges.

You’ll have access to top facilities, including modern social spaces, purpose-built labs, the Harpur Hill Research Station for large-scale work, extensive computing facilities and a modern applied science library. There are high-quality research facilities for sustainable energy processes, safety and risk engineering, carbon capture and utilisation, and biological processes and biomanufacturing.

Studentships

Contact us for current information on available scholarships.

Course content

Diploma: five core and three optional modules. MSc(Eng): five core modules, major research or design project, and three optional modules.

Core modules

Introduction to Fuel and Energy
Applied Energy Engineering
Environment: Gaseous Emissions
Environment: Particulate Emissions
Environment: Liquid Effluents
Research Project

Examples of optional modules

Computational Fluid Dynamics
Fires and Explosion Dynamics
Energy from Biomass and Waste
Low Carbon Energy and Technology (Renewables)
Environmental Impacts and Protection
Nuclear Reactor Engineering
Oil and Gas Origins and Usage

Teaching and assessment

We use lectures, tutorials and project work. All your tutors are actively involved in research and consultancy in their field. Assessment is by formal examinations and a research or design project dissertation. Continuous assessment of some modules.

Read less
This course provides consultants, operators, regulators and managers with the professional skills and training to contribute to the provision of environmentally sound and economically sustainable systems in the fields of clean water supply, wastewater treatment, and the management of solid waste, including wastes from the oil industry. Read more

This course provides consultants, operators, regulators and managers with the professional skills and training to contribute to the provision of environmentally sound and economically sustainable systems in the fields of clean water supply, wastewater treatment, and the management of solid waste, including wastes from the oil industry.

It is intended for those who find themselves in management positions with little experience of the techniques necessary to manage the range of projects for which they have responsibilities, or people with a background in management who feel they lack up-to-date technical knowledge in the rapidly changing field of environmental engineering.

You’ll build your knowledge of key issues such as water resource, solid waste or health management. Taught by experts in a research-intensive environment, you’ll gain an insight into the latest developments in this exciting field and prepare to meet the challenges they bring.

You’ll study a broad programme informed by an employers’ group and our Industrial Advisory Board, ensuring that we equip you with the skills you need in the modern engineering industry.

You’ll also benefit from using our specialist facilities, such as our public health labs with separate areas for solid waste, water and wastewater, and a class II microbiology lab and clean room. We have all the specialist software you’ll need for your programme, and you’ll have access to a dedicated study suite for Masters students.

Accreditation

This degree is accredited by the Joint Board of Moderators as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

This course is also accredited by EUR-ACE, the European quality label for engineering degree programmes at Bachelor and Master level.

Course content

A series of core modules that run throughout the year will develop your knowledge of a wide range of topics.

You’ll explore the diversion of organic wastes from landfill and how energy is recovered from them, as well as water supply systems, the challenges of water resource management and the different landfill, mechanical-biological and thermal treatment options available for solid waste.

You’ll also consider wastewater treatment, solid waste management and issues such as controlling emissions. The ways in which legislation is used to protect the environment and the role of public health engineers are also among the topics you’ll cover.

Over the summer months you’ll also research a topic of your choice in environmental engineering and project management – this independent research project will demonstrate your skills, and could even lay the groundwork for your future career specialism.

Want to find out more about your modules?

Take a look at the Environmental Engineering and Project Management module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Water Resource Management 15 credits
  • Indoor and Urban Air Quality 15 credits
  • Advanced Wastewater Management 15 credits
  • Solid Waste Management 15 credits
  • Groundwater Pollution and Contaminated Land 15 credits
  • Environmental Engineering and Project Management Dissertation 60 credits
  • Environmental Microbiology 15 credits
  • Circular Economy and Resource Recovery from Waste 15 credits
  • Project and Asset Management 15 credits

For more information on typical modules, read Environmental Engineering and Project Management MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The dissertation project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Project by students in MSc Environmental Engineering and Project Management have included:

  • Potential impacts of climate change for wastewater treatment
  • Membrane bioreactors for industrial applications
  • The use of recycled glass in wastewater treatment
  • Settlement of activated sludge and the influence of ballasted settlement aids

A proportion of projects are formally linked to industry, and may include spending time at the collaborator’s site over the summer.

Career opportunities

This programme will equip you with a variety of knowledge and skills that are in demand from a number of professions.

Graduates are likely to work for consulting and contracting engineers, water companies, utility companies and regulators as well as other environment-related companies. Previous graduates have gone to work in a range of roles for companies such as Veolia Water, Lilongwe Water Board, Enviro Care India Pvt. Ltd and a range of national and governmental bodies in countries worldwide.



Read less
Commercial products today combine many technologies, and industry is increasingly interdisciplinary. This course is designed to meet this demand, giving you an interdisciplinary knowledge base in modern electronics including power, communications, control and embedded processors. Read more

Commercial products today combine many technologies, and industry is increasingly interdisciplinary. This course is designed to meet this demand, giving you an interdisciplinary knowledge base in modern electronics including power, communications, control and embedded processors.

You’ll develop a broad grasp of a range of interlocking disciplines, combining core modules developing your practical lab skills and industry awareness with a range of optional modules that allow you to focus on topics that suit your interests or career plans. Next-generation silicon technologies, electric drives and generating electric power from renewable sources are among the topics you could study.

This course will appeal to people with a broad interest in electronics and communications, as well as those who are interested in modern communications techniques, radio propagation, cellular mobile systems, control systems, power and drives, and modern system on-chip technology.

Specialist facilities

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities. These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives.

Depending on your choice of project, you may have use of our Terahertz photonics lab, ultrasound and bioelectronics labs, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds.

The School also contains facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility. The Faculty is also home to the £4.3 million EPSRC National Facility for Innovative Robotic Systems, set to make us a world leader in robot design and construction.

Accreditation

This course is accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Course content

Throughout the course you’ll choose from a range of optional modules that allow you to pursue topics across electronic and electrical engineering as they relate to your interests or career plans. You could focus on FPGA design for system-on-chip, wireless communications systems nano-electromechanical systems among many others to gain a broad and deep understanding a range of subjects.

A set of core modules will support your learning. You’ll take part in a range of experiments linked to your subject on our lab module, and you’ll develop your skills in programming. If you have no experience of C programming you’ll take the Programming module, or you can take Software Development if you already have those skills.

To build your understanding of the global electronics industry, you’ll also complete a dissertation. This could take the form of a business, manufacturing or outsourcing plan, a proposal for research funding or an essay on a specific aspect of the industry.

Over the summer months you’ll also work on your research project. This may give you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Electronic and Electrical Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Industry Dissertation 15 credits
  • Mini Projects and Laboratory 15 credits
  • Main Project 45 credits

Optional modules

  • Wireless Communications Systems Design 15 credits
  • Micro- and Nano-Electromechanical Systems 15 credits
  • Power Electronics and Drives 15 credits
  • Electric Power Generation by Renewable Sources 15 credits
  • Electric Drives 15 credits
  • FPGA Design for System-on-Chip 15 credits
  • Control Systems Design 15 credits
  • Embedded Microprocessor System Design 15 credits
  • Medical Electronics and E-Health 15 credits
  • Programming 15 credits
  • Software Development 15 credits

For more information on typical modules, read Electronic and Electrical Engineering MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects by students in the School of Electronic and Electrical Engineering have included:

  • Wireless sensor networks, the internet of things and bicycle traffic in the city.
  • Device to Monitor Activity of Ageing People
  • Wind turbine strain gauge system
  • Wind turbine teaching demonstrator
  • Virtual Machines Placement in Core Networks with Renewable Energy
  • Design and Analysis of High-Performance Internet Routers
  • Spatial Modulation for Massive MIMO System
  • Fuel cell for energy storage
  • Low cost design and fabrication of 3D MEMS components
  • Ultrasonic Wind Speed Detection
  • Core Quantum Networks
  • Microwave Low Noise Amplifier

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Graduates of this course can expect to find jobs where industry needs a breadth of knowledge matched by a depth in certain areas.

You’ll be well equipped to integrate and co-ordinate the strands of a cross-disciplinary project and manage the interfaces between specialities. With these skills, you’ll be in a good position to progress to project management roles in companies working at the cutting edge of modern multi-faceted systems.

General Electric, AECOM, Deep Sea Electronics, Hyperdrive Innovation, Descon Engineering, Broadcom, Pakistan Oilfields Ltd., Wabtec Rail UK and many others are among the organisations where graduates from our School have found employment.



Read less
Renewable energy and cutting carbon emissions now top the global environmental agenda. This programme addresses the fundamentals of renewable energy and shows how solar, wind and other such energy sources can be efficiently integrated into practical power systems. Read more

Renewable energy and cutting carbon emissions now top the global environmental agenda. This programme addresses the fundamentals of renewable energy and shows how solar, wind and other such energy sources can be efficiently integrated into practical power systems.

You’ll study core power engineering topics such as power electronic converters, machines and control alongside modules specific to renewable energy sources, on topics like power system modelling, analysis and power converters.

At the same time, you’ll study a unique set of modules on the efficient generation of electricity from solar and wind power, as well as integrating renewable generators into micro-grids, with stability analysis and active power management. Power electronics design is covered in depth, including conventional and emerging converter topologies and advances in semiconductor power devices.

You’ll be prepared to meet the renewable energy challenges of the 21st century in a wide range of careers.

School of Electronic and Electrical Engineering

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities. These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives.

Depending on your choice of research project, you may also have access to our labs in ultrasound and bioelectronics or our Terahertz photonics lab, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds. We have facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility.

Accreditation

This course is accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Course content

Core modules that run throughout the year will allow you to take part in different lab-based projects and explore different forms of renewable energy as well as how they can be integrated into electricity systems. You’ll also consider how renewable source-powered generations can be integrated into the grid and analysis and design of control systems.

To build your understanding of the global electronics industry, you’ll also complete a dissertation. This could take the form of a business, manufacturing or outsourcing plan, a proposal for research funding or an essay on a specific aspect of the industry.

You’ll complete your studies with three optional modules, selecting one from each of three pairs that cover different topics. If you have no experience of c-programming you’ll take a module that develops those skills, or another focusing on software development. You’ll choose between Power Electronics and Drives and Electric Drives and take another module from Energy Management and Conservation and Energy in Buildings.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in power electronics, power engineering and control and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Electrical Engineering and Renewable Energy Systems module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Industry Dissertation 15 credits
  • Mini Projects and Laboratory 15 credits
  • Grid-Connected Microgeneration Systems 15 credits
  • Micro-grid Laboratory 15 credits
  • Electric Power Generation by Renewable Sources 15 credits
  • Control Systems Design 15 credits
  • Main Project 45 credits

Optional modules

  • Energy Management and Conservation 15 credits
  • Micro- and Nano-Electromechanical Systems 15 credits
  • Power Electronics and Drives 15 credits
  • Electric Drives 15 credits
  • Programming 15 credits
  • Software Development 15 credits

For more information on typical modules, read Electrical Engineering and Renewable Energy Systems MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings. Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects by students on this programme have included:

  • Power Flow Control of a Distribution Network using FACTS Devices
  • Module Integrated Converters for Photovoltaic Energy Systems
  • Modelling and Control of Parallel Connected Inverters
  • Power Regulation in the Power System using an Energy Storage Device
  • Application of Current Source Converters to Power Flow Control in a Power System
  • Control of a Renewable Energy System based Microgrid having an Energy Storage System as Backup
  • Control of a Grid Connected Wind Energy System under Abnormal Operating Conditions
  • DC-AC Inverter for grid-side connection of an induction generator
  • Modelling and control of a DC motor simulating a wind turbine

Career opportunities

Renewable energy and efficient power conversion systems are of immense importance worldwide and graduates of this course can expect to find jobs in a wide variety of industries including the electronics, automotive, transport, construction, industrial automation, power utility, energy, oil and environmental sectors.

You’ll be well-placed to develop practical solutions to the problem of integrating renewable energy systems into established electricity distribution networks. You should be able to contribute to strategic planning, systems implementation and operation of sustainable power generation systems.

This programme is also excellent preparation for PhD study. 



Read less
The world demand for energy, in particular electricity, will increase significantly over the next decade and beyond. There are many challenges to be addressed in order to meet this ever-increasing demand, electrical and electronic engineers will provide key solutions to these problems. Read more
The world demand for energy, in particular electricity, will increase significantly over the next decade and beyond. There are many challenges to be addressed in order to meet this ever-increasing demand, electrical and electronic engineers will provide key solutions to these problems.

There are tremendous opportunities for us to make a significant impact that will shape the future, and this programme has been carefully designed and developed for this.

Our degree programmes are developed with industry partners to provide you with a career focused degree.

This programme provides you with an in-depth knowledge of the electrical power generation, transmission, distribution and networks. The operating principles, monitoring, optimisation and control of modern power systems are discussed in detail.

The environmental challenges, renewable energy generation, smart grid, high voltage power engineering and research and management skills are also addressed in this one-year programme. In addition, site visit and practical sessions are included. The programme has been carefully developed for graduates with electrical/electronic or related backgrounds to meet the increasing demand from the energy and power industry.

Projects

Project work contributes 60 credits, which will be based on a topic of industrial or scientific relevance, and will be carried out in laboratories in the University or at an approved placement in industry. The project is examined by oral presentation and dissertation, and award of the MSc (Eng) degree will require evidence of in-depth understanding, mastery of research techniques, ability to analyse assembled data, and assessment of outcomes.

Why Electrical Engineering and Electronics?

World-class facilities, including top industry standard laboratories

We have specialist facilities for processing semiconductor devices, optical imaging spectroscopy and sensing, technological plasmas, equipment for testing switch gear, specialist robot laboratories, clean room laboratories, e-automation, RF Engineering, bio-nano engineering labs and excellent mechanical and electrical workshops.

A leading centre for electrical and electronic engineering expertise

We are closely involved with over 50 prominent companies and research organisations worldwide, many of which not only fund and collaborate with us but also make a vital contribution to developing our students.

Career prospects

Our postgraduate students get to be a part of the cutting edge research projects being undertaken by our academic staff.

Here are some of the areas these projects cover:-

Molecular and semiconductor integrated circuit electronics
Technological plasmas
Communications
Digital signal processing
Optoelectronics
Nanotechnology
Robotics
Free electron lasers
Power electronics
Energy efficient systems
E-Automation
Intelligence engineering.

You'll get plenty of industry exposure too. Our industrial partners include ARM Holdings Plc, a top 200 UK company that specialises in microprocessor design and development.

As a result our postgraduates have an impressive record of securing employment after graduation in a wide range of careers not limited to engineering.

Read less

Show 10 15 30 per page



Cookie Policy    X