• Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Coventry University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Imperial College London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"energy" AND "system"×
0 miles

Masters Degrees (Energy System)

We have 290 Masters Degrees (Energy System)

  • "energy" AND "system" ×
  • clear all
Showing 1 to 15 of 290
Order by 
Study a European Master's in Sustainable Energy System Management in the Netherlands. Acquire a solid foundation in sustainable energy system management. Read more

Study a European Master's in Sustainable Energy System Management in the Netherlands

Acquire a solid foundation in sustainable energy system management. Topics include modelling, technologies, markets & innovation, scientific framework (law, policy, societal acceptance, nvironmental aspects). Work on real life projects, and follow the specialisation semester at a partner institute or at Hanze UAS. The specialisations you can choose are system integration and optimisation or sustainable energy management. This programme is for students with a background in economics, managerial engineering or equivalent.



Read less
Discover the real-world career opportunities in the energy sector with this MSc in Energy and Environmental Technology and Economics. Read more
Discover the real-world career opportunities in the energy sector with this MSc in Energy and Environmental Technology and Economics.

Who is it for?

Wherever you are, energy has an implication. This course is for students who want to engage with different types of settings to research and establish the energy, environmental and technological implications that exist within them. Energy and Environmental Technology and Economics students will care for the environment as a sustainable system and ultimately have a desire to improve conditions for the wider population.

Students come from a range of backgrounds including engineering, finance and economics – and from within the energy industry itself.

Objectives

This Masters degree has been designed to give you a wide perspective when it comes to analysing and forecasting the future for energy, environmental technology and economics. We engage with the industry so you gain a real-world understanding of the problems that exist, and we consider our own ethical responsibilities in relation to energy use.

Imagine a Grade 1-listed building such as the Guildhall in London. As an energy consultant your task is to analyse the site to make it more efficient. But there is a caveat: you cannot make any structural changes to the walls or the windows. The MSc Energy and Environmental Technology and Economics course gives you the tools to examine and address these kinds of challenges.

The MSc Energy and Environmental Technology and Economics course is not about learning academic theories. Instead we focus on the breadth of the subject in the real world. By engaging with practising businesses and trade associations we identify a range of perspectives, and look at the influence of a myriad of other forces at play, from regulation and government funding, to behavioural psychology and emerging technologies. Here are some of the questions the course poses:
-Does this new form of technology operate as it should?
-How does the UK relate to other European countries when it comes to energy efficiency?
-How does organisational psychology affect energy use within a company?
-How do you decide which energy contract to choose?
-What is the impact of a consumer society on personal energy use?

Placements

There is no formal requirement to do an industry-based placement as part of the programme. However, some students arrange to undertake their dissertation research within a company or within their part of the world. A recent student investigated the future of coal-fired generation in Turkey, and another student is combining a work placement at The World Energy Council with their dissertation.

Academic facilities

As part of the University of London you can become a member of Senate House Library for free with your student ID card.

Teaching and learning

Teaching is organised into modules comprising four consecutive day courses taken at a rate of one a month or so. This format makes the programme accessible for students who want to study part time while working.

Full-time students are also welcome. Whether you choose to take the course as a part-time or full-time student, we will offer a great deal of support when it comes to helping you prepare for the modules and project work. You will be expected to devote a significant part of your non-taught hours to project work as well as private study.

Our course is led by an exceptional group of experts in energy, supply, demand management and policies. As an example, one of our module leaders leads the UK contribution to writing international energy management standards and informing policy through the European Sector Forum for Energy Management. This forum looks at methodologies across the continent. There is also input to global standards development through the International Standards Organisation (ISO). At City we bring on board people with well-established academic careers as well as leaders from the energy industry. The programme has strong links with industry and commerce and involves many visiting lecturers who hold senior positions in their fields.

The Energy and Environmental Technology and Economics MSc gives you the opportunity to consider the role of International Energy Management Standards. You will explore the opportunities these standards provide for global service users and providers in relation to reducing energy costs and the environmental impact of energy use.

You will discover the range of current European and International Standards, explore why they are needed and how they are developed, and examine the benefits they deliver through case studies.

The UK has had a leading role in developing these standards in terms of both their writing and implementation. For example the Energy Audit standard, which forms part of the EU Energy Efficiency Directive, Article 8, mandates audits for private sector, non-SME organisations. In the UK this has been implemented as the Energy Savings Opportunities Scheme (ESOS).

Modules

Each course module is taught over four consecutive days of teaching with one module each month. Alongside the teaching you will have coursework to complete for each module. The modules run from October to April, and in the remaining time, you will concentrate on your dissertation, which forms a significant part of the programme.

The dissertation gives you the opportunity to create your own questions and to decide on your own area of interest. It should be a detailed investigation into a subject on energy supply and/or demand, with your own analysis and conclusions outlining the way forward. You may see the focus of your dissertation as a future career path, but whatever your area of study, these final few months of the degree should embody your vision of the future.

You will take four core modules and have six elective modules from which you can choose four topics from diverse subjects relating to energy supply and demand. These include energy in industry and the built environment, renewables, energy markets from the purchaser’s perspective and water supply and management. The latter has close parallels, and directly engages, with energy. You start the course with an introduction to energy and environmental issues and energy policies and economic dimensions in the first term, but you do not need to follow the course in any particular order from this point onwards.

If you are interested in sustainability, you have the option of taking up to two elective modules from the MSc in Environmental Strategy offered by the University of Surrey.

Completing eight modules and four examinations and four modular assessments will lead to a Postgraduate Diploma. Completing four core and four elective modules and a dissertation will lead to a Masters degree. If you are interested in this course may also be interested in the MSc Renewable Energy and Power Systems Management.

Core modules
-Introduction to energy and environmental issues (15 credits)
-Energy policies and economic dimensions (15 credits)
-The energy market from the purchaser's perspective (15 credits)
-Corporate energy management (15 credits)

Elective modules
-Energy, consumer goods and the home (15 credits)
-Transport energy and emissions (15 credits)
-Energy in industry and the built environment (15 credits)
-Renewable energy and sustainability (15 credits)
-Risk management (15 credits)
-Water supply and management (15 credits)

Career prospects

The story of energy is now part of public debate and climate change drives the international agenda. In the UK, there are additional energy supply issues, through the decline of existing nuclear capacity, growing imports of fossil fuels and challenging medium-term targets for renewables and low carbon supply.

Our priority is to make you employable in a range of sectors in which effective energy supply and demand side management has become an important consideration.

You will graduate with economic and market-based skills relevant to complying with relevant legislation and technical and engineering skills related to energy generation and management.

With strong industry links and working level experience from our exceptional team of expert lecturers, as well as the diverse modules on offer, you will be equipped to become a leader and entrepreneur in your chosen area of specialisation within the realm of energy management, supply or policy making.

Our graduates have gone on to hold high-ranking positions as energy consultants, data analysts and directors of corporate sustainability working within organisations including:
-AK Home Energy
-Enelco Environmental Technology
-Energy Institute
-Equinoxe Services Ltd
-Log Tech Consultancy
-Ofgem
-Peckham Power
-RWE NPower Renewables
-SCFG

Read less
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Read more

Mission and goals

Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc.
The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Professional opportunities

Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_MI.pdf
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are
systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc. The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.
Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas. The programme is taught in English.

Subjects

- Five tracks available: Power Production; Heating, Ventilation and Air-Conditioning; Oil and Gas Engineering; Energy Engineering for an Environmentally Sustainable World (offered on Piacenza campus, see separate leaflet); Energy for Development.

- Subjects and courses common to all the tracks: Heat and Mass Transfer; Fundamentals of Chemical Processes; Advanced Energy Engineering and Thermoeconomics;; Combustion and Safety; Energy Conversion or Refrigeration, Heat Pumps and Thermal Power Systems and Components; Energy Economics or Project Management or Management Control Systems; Graduation Thesis.

- Optional subjects according to the selected track: Development Economy; Engineering and Cooperation for Development; Power Production from Renewable Sources; Engineering of Solar Thermal Processes; Petroleum Reservoir Engineering; Petroleum Technology and Biofuel; Transport Phenomena in the Reservoirs; CFD for Energy Engineering Analysis; System and Electrical Machines; Advanced Energy Systems; Dynamic Behavior and Diagnostics of Machines; Materials for Energy; Turbomachinery; Internal Combustion Engines; Air Conditioning and Room Pollutant-Controlling Plants, Energy Savings and Renewable Energies in Buildings; Applied Acoustics and Lighting; Design of Thermal Systems; Energy Systems and Low-Carbon Technologies; Air Pollutions and Control Engineering; Operation and Control of Machines for Power Generation; Bio-energy and Waste-to-Energy Technologies; Smart Grids and Regulation for Renewable Energy Sources.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Overview. This is a 12 month full-time Masters degree (See http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/ ) course taught at our Orkney Campus. Read more

Overview

This is a 12 month full-time Masters degree (See http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/ ) course taught at our Orkney Campus. It involves studying 8 taught courses and completing a research dissertation equivalent to 4 taught courses. If you can demonstrate that you have already mastered the subject, you may apply for an exemption from one of the taught courses and undertake a Design Project instead.

For more information visit http://www.hw.ac.uk/schools/life-sciences/research/icit.htm

Distance learning

The Renewable Energy Development MSc/Diploma is also available for independent distance learning. For distance learners, the main difference is that you will undertake the Development Project alone rather than as part of a group. You can still obtain the full MSc in Renewable Energy Development, or you can opt to study fewer courses, depending on your needs.

Programme content

- Energy in the 21st Century

This course is designed to give you a broad understanding of the environmental, political and socio-economic context for current developments in renewable energy. The course examines the extent of current energy resources and how energy markets function. It covers some energy basics you will need for the rest of the programme (e.g. thermodynamics, efficiency conversions) as well as environmental issues associated with energy use, climate change and the political and policy challenges involved in managing energy supply and achieving energy security.

- Economics of renewable energy

This course gives an understanding of the economic principles and mechanisms which affect energy markets today. It covers price mechanisms, the economics of extracting energy and the cost-efficiency of renewable energy technologies. You will learn about economic instruments used by policy-makers to address environment and energy issues, economic incentives to stimulate renewable energy development and about environmental valuation.

- Environmental Policy & Risk

This course explores the legal and policy context in which renewable energy is being exploited. You will gain an understanding of international law, particularly the Law of the Sea, property rights and how these relate to different energy resources. The course also looks at regulatory issues at the international, European and UK level, which affect how energy developments are taken forward, as well as risk assessment and management in the context of renewable energy developments.

- Environmental Processes

Particularly for those without a natural science background, this course provides a broad overview of the environmental processes which are fundamental to an understanding of renewable energy resources and their exploitation. You will study energy flows in the environment, environmental disturbance associated with energy use, and an introduction to the science of climate change. You will also learn about ecosystems and ecological processes including population dynamics and how ecosystems affect and interact with energy generation.

- Renewable Technology I: Generation

This course explores how energy is extracted from natural resources: solar, biomass, hydro, wind, wave and tide. It examines how to assess and measure the resources, and the engineering solutions which have been developed to extract energy from them. You will develop an understanding of the technical challenges and current issues affecting the future development of the renewable energy sector.

- Renewable Technology II: Integration

This course explores the technical aspects of generating renewable energy and integrating it into distribution networks. You will learn about the electricity grid and how electrical power and distribution systems work. You will find out about different renewable fuel sources and end uses, and the challenges of energy storage.

- Development Appraisal

Looking at what happens when renewable energy technologies are deployed, this course examines development constraints and opportunities: policy and regulatory issues (including strategic environmental assessment, environmental impact assessment, landscape assessment, capacity issues and the planning system). It also looks at the financial aspects (valuation of capital assets, financing projects and the costs of generating electricity) and at project management.

- Development Project

This is a team project, where students have the opportunity to apply what they have learned through the other courses in relation to a hypothetical project. You have to look at a range of issues including resource assessment, site selection, development layout, consents, planning and economic appraisal, applying the knowledge and tools you have studied.

- Optional design project

For students who can demonstrate existing knowledge covered by one of the courses, there is the option of understanding a design project supervised by one of our engineers.

- Dissertation

This research project (equivalent in assessment to 4 taught courses) allows you to focus on a specific area of interest, with opportunities to collaborate with businesses and other stakeholders. You choose your dissertation subject, in discussion with your supervisor.

- Additional information

If you study at our Orkney Campus, you will also benefit from a number of activities including guest lectures and practical sessions, which help to develop your skills and knowledge in your field of study, and offer opportunities to meet developers and others involved in the renewable energy industry.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Renewable Energy Development (RED) MSc. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses to help you meet the English language requirement prior to starting your masters programme:

- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);

- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);

- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Distance learning students

Please note that independent distance learning students who access their studies online will be expected to have access to a PC/laptop and internet.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/



Read less
The. Master in Global Energy Transition and Governance. aims to give a. deep understanding of the complexity of the current energy transformations in Europe and worldwide. Read more

The Master in Global Energy Transition and Governance aims to give a deep understanding of the complexity of the current energy transformations in Europe and worldwide. The programme offers a unique, multidisciplinary approach which distinguishes it from other Master courses in the field of energy studies: It analyses the links between the different levels of energy governance, from an international to a local level, offering problem-focused learning at the crossroads of theory and practice. The one-year Master programme stretches over three terms and takes place in two study locations: Nice and Berlin. Working language is English.

Overview of the year

Nice

The first term in Nice encompasses classes on the basics of the four energy modules (International energy governance, Economic energy governance, the EU energy governance and Energy and territories). Each module is complemented by seminars dealing with current energy issues. An academic or professional expert is invited for each event.

Berlin

For their second term students move on to Berlin where teaching in the four modules continues in the form of workshops. Each module organises a half-ay workshop with an expert. Students prepare the workshops in group work delivering papers on themes linked to the topic of the seminar (climate negotiations, energy stock exchange, the role of the EU interconnections in the European energy market, the EU funds and the territorial energy policy). To better understand the local energy challenges in the framework of the German Energy Transition Field, visits will also be organised in co-peration with local institutions and companies. Another focus of this term will be put on the methodology classes, one dedicated to the research work and the Master'sthesis, the second one to project management.

Nice

In April students return to Nice. The third term aims at deepening their knowledge on the four energy modules. A special focus is also given to the methodological support for the students' work on their  thesis including individual meetings with the academic supervisors. In the two simulations the participants will forge their negotiation techniques with regard to the construction of wind farms at local level and work out of a strategy for an international energy cooperation. Written and oral exams in June will conclude this term.

During this term students will finalise their work on their thesis in close contact with their academic supervisors. The thesis will be delivered in mid-June and defended at the end of June.

Curriculum

International energy governance

This module delivers the theoretical knowledge on the main international energy related issues and conflicts (resource curse, neoinstitutionalism, developmentalism, weak/strong States etc.).

It also provides the participants with concrete examples of the emergence and regulation of energy conflicts worldwide in order to analyse better how they exert pressure on the security and diversification of the energy supply.

Economic energy governance

Economic and market fundamentals are applied to the energy sector in order to understand the current multiple national, regional, and local low carbon energy pathways in the world.

The module examines how the different markets are regulated and how they influence the transitions from fossil fuels to renewable energies. The economic perspective will highlight the role of liberalisation, privatisation and regulation of the sector.

European energy governance

The aim of this module is to highlight the EU priorities and its decision-making process regarding clean energy transition in Europe, thus helping to understand political economy factors that both inhibit and accelerate it.

While focusing on how the different EU policies challenge institutional architectures and multilevel governance schemes, the module provides an insight into issues currently facing European policy makers such as social acceptance, sustainability of renewable energies as well as rapid advancement in clean energy technologies.

Energy and territories

Participants will examine how EU regions and cities and more generally territories develop their own low carbon strategy at the crossroads of many policies (housing, waste management, transport, fuel poverty, environment and energy) and in the framework of a multilevel governance system.

Concrete examples of local and regional strategies will be delivered in order to analyse the levers and obstacles for more decentralisation.

Methodology modules

Students will acquire skills in research methodology, energy project management and the elaboration of energy strategies. They will concretely experiment different methodological tools: first of all through the research work for their thesis, second thanks to the methodological tools of project management. Students will be involved in a simulation game in which they will have to decide on the construction of a wind park in a territory. In a negotiation game, participants will have to elaborate a common strategy in the perspective of international energy cooperation.

Thesis

For their thesis participants will carry out a profound research work on an energy issue, chosen and elaborated in regular coordination with their supervisor.

The thesis will require the application of the methodological tools which the students have acquired during the programme.

The academic work will involve in-depth desk research, possible interviews with external partners and the writing of a thesis of approximately 17,000 words. Candidates will defend their thesis in an oral exam.

Applications and Scholarships

Candidates can submit their application dossier by using the form available on the Institute'swebsite. They should also include all the relevant documents, or send them by post or email. An academic committee meets regularly in order to review complete applications.

A limited number of scholarship funds can be awarded to particularly qualified candidates to cover some of the costs related to studies or accommodation. The deadline for applications is 1 July 2018.



Read less
This is a 12 month full-time MSc degree course (See http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview ) taught at our Orkney Campus. Read more

Overview

This is a 12 month full-time MSc degree course (See http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview ) taught at our Orkney Campus. It involves studying 8 taught courses. If you can demonstrate that you have already mastered the subject, you may apply for an exemption from one of the taught courses and undertake a Design Project instead. The MSc programme is completed with a research dissertation equivalent to 4 taught courses.

For more information visit http://www.hw.ac.uk/schools/life-sciences/research/icit.htm

Distance Learning

The Marine Renewable Energy MSc/Diploma is also available for independent distance learning. For distance learners, the main difference is that you will undertake the Development Project alone rather than as part of a group. You can still obtain the full MSc in Marine Renewable Energy, or you can opt to study fewer courses, depending on your needs.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Marine Renewable Energy. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

The Diploma and MSc degree course involves studying the 8 taught courses outlined below. If a student can demonstrate that they have already mastered the subject, they may undertake a Development Project instead of one of these courses.

- Energy in the 21st Century
This course is designed to give you a broad understanding of the environmental, political and socio-economic context for current developments in renewable energy. The course examines the extent of current energy resources and how energy markets function. It covers some energy basics you will need for the rest of the programme (e.g. thermodynamics, efficiency conversions) as well as environmental issues associated with energy use, climate change and the political and policy challenges involved in managing energy supply and achieving energy security.

- Economics of renewable energy
This course gives an understanding of the economic principles and mechanisms which affect energy markets today. It covers price mechanisms, the economics of extracting energy and the cost-efficiency of renewable energy technologies. You will learn about economic instruments used by policy-makers to address environment and energy issues, economic incentives to stimulate renewable energy development and about environmental valuation.

- Environmental Policy & Risk
This course explores the legal and policy context in which renewable energy is being exploited. You will gain an understanding of international law, particularly the Law of the Sea, property rights and how these relate to different energy resources. The course also looks at regulatory issues at the international, European and UK level, which affect how energy developments are taken forward, as well as risk assessment and management in the context of renewable energy developments.

- Oceanography & Marine Biology
This course is designed to give you an understanding of the science of waves and tides, and how this affects efforts to exploit energy from these resources. You will also learn about marine ecosystems and how these may be impacted by energy extraction and about the challenges and impacts associated with carrying out engineering operations in the marine environment.

- Marine Renewable Technologies
You will gain an understanding of renewable energy technologies which exploit wind, wave and tidal resources. The focus is on technical design issues which developers face operating in the marine environment, as well as the logistics of installation, operations and maintenance of marine energy converters.

- Renewable Technology: Integration
This course explores the technical aspects of generating renewable energy and integrating it into distribution networks. You will learn about the electricity grid and how electrical power and distribution systems work. You will find out about different renewable fuel sources and end uses, and the challenges of energy storage.

- Development Appraisal
Looking at what happens when renewable energy technologies are deployed, this course examines development constraints and opportunities: policy and regulatory issues (including strategic environmental assessment, environmental impact assessment, landscape assessment, capacity issues and the planning system). It also looks at the financial aspects (valuation of capital asses, financing projects and the costs of generating electricity) and at project management.

- Development Project
This is a team project, where students have the opportunity to apply what they have learned through the other courses in relation to a hypothetical project. You have to look at a range of issues including resource assessment, site selection, development layout, consents, planning and economic appraisal, applying the knowledge and tools you have studied.

- Dissertation
This research project (equivalent in assessment to 4 taught courses) allows you to focus on a specific area of interest, with opportunities to collaborate with businesses and other stakeholders. You choose your dissertation subject, in discussion with your supervisor.

- Additional information
If you study at our Orkney Campus, you will also benefit from a number of activities including guest lectures and practical sessions which help to develop your skills and knowledge in your field of study, and offer opportunities to meet developers and other involved in the renewable energy industry.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Distance learning students

Please note that independent distance learning students who access their studies online will be expected to have access to a PC/laptop and internet.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview

Visit the Marine Renewable Energy MSc/Diploma page on the Heriot-Watt University web site for more details!

Read less
A unique programme. Gain an in-depth understanding of global energy management issues and the tools to design more effective energy programmes with the Master of Engineering Studies (Energy Management). Read more

A unique programme

Gain an in-depth understanding of global energy management issues and the tools to design more effective energy programmes with the Master of Engineering Studies (Energy Management).

Find out more about the Master of Engineering Studies parent structure.

In the energy management major of the Master of Engineering Studies, you will gain an detailed understanding of energy efficiency, looking at detail of energy use in industry and commercial settings, as well as tools for energy systems analysis and efficient building design.

A unique qualification

It is a unique postgraduate programme in New Zealand. Taught in conjunction with world-renowned Murdoch University in Australia, it is the only fully-focussed energy management postgraduate programme in New Zealand. The programme has been running for over fifteen years.

Learning in a global context

Your learning will be set in the context of global renewable energy systems and tools. You will learn the detail of contemporary renewable energy issues including greenhouse science, global energy systems, policy, economics and management. This will specifically cover renewable energy devices, resources and system design.

Setting the global agenda

Let our experts help you develop your own expertise. We bring a solid base of experience to your learning from our Centre for Energy Research, established at Massey in 1997 following over 25 years of teaching and research work undertaken in the areas of renewable energy, energy efficiency and energy management. We also bring the most relevant and recent research to your learning. You will learn the theory and practice behind energy management, renewable energy and climate change from lecturers who have been working internationally, contributing to research and policy through panels that are setting the global agenda.

Flexibility

You can study towards the Master of Engineering Studies on campus, or study via our distance learning. This gives you the flexibility to remain in full-time employment while studying. Massey University has been offering distance education for over 50 years and you will be able to take advantage of our well-developed systems for teaching and learning. Part of your study will be a real-life energy management case study.

Dig deeper

The renewable energy systems major includes an optional research project, where you can either investigate a topic you are interested in, or work with us to develop an industry-relevant piece of work.

Real-world learning

You will gain an in-depth understanding of the theory of renewable energy systems, but also focus on practical information that can be applied to real-world situations. This could be through using the international Long Range Energy Alternatives Planning System (LEAP) model to assess climate change mitigation options for a country, city or community. You will also learn how to measure renewable energy resources, and understanding the challenges of providing energy efficiency or renewable energy systems in developing countries as part of sustainable development.

The programme also covers the social issues to change human behaviour regarding the deployment of renewable energy systems and related greenhouse gas emission reductions.

Specialise

This qualification is suitable if you either have an undergraduate engineering degree and wish to specialise in energy management, or you have found yourself working in a energy management-related role and need to upskill. You do not have to have an engineering degree to enrol.

A year full time

The Master of Engineering Studies is a 120 credit qualification able to be completed in one year full-time, or part-time between 2.5 and five years..

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Engineering Studies will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. Our experts are there to guide but if you have come directly from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning and undertaking research.



Read less
The Master of Science programme in Energy Engineering for an Environmentally Sustainable World (EEE-SW) is taught in English and offers a broad overview of the various technical issues related to energy and the environment. Read more

Mission and Goals

The Master of Science programme in Energy Engineering for an Environmentally Sustainable World (EEE-SW) is taught in English and offers a broad overview of the various technical issues related to energy and the environment. This special programme aims to prepare technicians capable of following and actively directing technological advances, operating effectively in a competitive and multi-disciplinary industrial context.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

Career Opportunities

Graduates find employment in numerous industrial sectors, including industries producing and distributing energy, thermal, thermal-electric, air-conditioning and refrigeration plant design and management companies, energy management in companies or bodies with production objectives which may be far-removed energy. A Master of Science Engineer has openings in research and development as well as in activities related to the feasibility study and design of large-scale plant, innovative processes and development of technologically advanced machines and components.

For the academic year 2014-2015 prospective students with a university qualification obtained abroad can apply only for the 1st semester. This study course does not accept applications for the 2nd semester.
Applicants are required to take the GRE test (Graduate Record Examination) through ETS DI code 6939 in due time to have test scores sent to Welcome Desk Piacenza (welcome.piacenza(at)polimi.it) within the last day of the application period.

Recommended minimum GRE scores to be achieved for admission:
Verbal Reasoning: 155
Quantitative Reasoning: 155
Analytical Writing: 4.0

Only students with a Degree earned at an Italian University can apply without taking GRE test and they can also apply for admission at the 2nd semester.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_01.pdf
The programme provides a mix of design, operational and management skills, with particular emphasis on system and process engineering related to the production of basic energy carriers (electricity, heat and fuels) under tight environmental constraints. Students will learn how to evaluate and solve engineering issues (thermal, environmental, mechanical, chemical, electrical) raised by energy conversion systems, as well as analyze and assess operational and maintenance issues. Particular attention will be devoted to renewable energy sources, non-conventional energy technologies, emission control, electric systems with distributed power generation, etc. Teaching is organized around 3 core aspects: modeling and simulation tools; interdisciplinary vision; problem-solving approach. The programme is taught in English.

Subjects*

1st year – 1st semester
- Advanced Mathematical methods for energy engineering
- Advanced Thermodynamics and Heat Transfer
- Fundamentals of chemical processes for energy and the environment
1st year – 2nd semester
- Turbomachinery and internal combustion engines
- Energy and environmental technologies for building systems
- Electric conversion of renewable energy sources
- Materials and manufacturing process for energy

2nd year – 1st semester
- Energy systems and low-carbon technologies
- Air pollution and control engineering
- Operation and control of machines for power generation
2nd year – 2nd semester
- Bio-energy and waste-to-energy technologies
- Smart grids and regulation for renewable energy sources
- Major independent project work

* The list and titles of the courses to be followed is undergoing a revision aimed at enhancing the focus of the programme on the connection between Energy and the Environment. This will entail a reduction of the credits devoted to manufacturing, operation and control of machines and an increase of the credits devoted to optimization methods, renewable energy, industrial ecology. The final list of courses to be taken for the Academic Year 2016-17 will be available in January 2016.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The world faces major challenges in meeting the current and future demand for sustainable and secure energy supply and use. Read more
The world faces major challenges in meeting the current and future demand for sustainable and secure energy supply and use. The one-year MPhil programme in Energy Technologies is designed for graduates who want to help tackle these problems by developing practical engineering solutions, and who want to learn more about the fundamental science and the technologies involved in energy utilization, electricity generation, energy efficiency, and alternative energy.

Energy is a huge topic, of very significant current scientific, technological, environmental, political and financial interest. The complexity and rapid change associated with energy technologies necessitates engineers with a very good grasp of the fundamentals, with exposure and good understanding of all main energy sources and technologies, but also with specialization in a few areas. This is the prevailing philosophy behind this MPhil, fully consistent with the prevailing philosophy and structure of the University of Cambridge Engineering Department as a whole.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/egegmpmet

Course detail

The educational target of the MPhil in Energy Technologies is to communicate the breadth of energy technologies and the underpinning science. The objectives of the course are:

1. To teach the fundamental sciences behind technologies involved in energy utilization, electricity generation, energy efficiency, and alternative energy.

2. To develop graduates with an overall view of energy engineering, while offering specialization in a selected area through a research project.

3. To prepare students for potential future PhD research.

Learning Outcomes

Students will be expected to have developed fundamental knwoledge on primary and secondary energy sources, on energy transformation, and on energy utilisation technologies. They will also have developed proficiencies in project management, in research skills, in team work, and in advanced calculation methods concerning energy technologies.

Graduates from this MPhil will be excellent candidates for doctoral study (at Cambridge and elsewhere) and for employment in a wide variety of jobs (for example: in industrial Research and Development departments; in policy-making bodies; in the utilities industry; in the manufacturing sector; in energy equipment manufacturing).

Format

The course is centred around taught courses in core areas, covering basic revision and skills needed (such as Communication and Organisational Skills, Mathematical and Computational Skills, Review of Basic Energy Concepts, and Research Topics), various energy technologies (such as Clean Fossil Fuels, Solar, Biofuels, Wind etc), and energy efficiency and systems level approaches.

Elective courses may be chosen from a broad range, which includes topics such as Turbulence, Acoustics, Turbomachinery, Nuclear Power Engineering, Solar Panels, and Energy Efficiency in Buildings. Elective courses are delivered mainly by the Department of Engineering with input from the Department of Chemical Engineering and other departments in Cambridge.

Research projects are chosen from a list offered by members of staff and are linked to the principal areas of energy research in the respective departments.

Students can expect to receive reports at least termly on the Cambridge Graduate Supervision Reporting System. They will receive comments on items of coursework, and will have access to a University supervisor for their dissertation. All students will also have personal access to the Course Director and the other staff delivering the course.

Assessment

Students taking 12 elective modules will write a short thesis (up to 10,000 words). Students taking 10 elective modules will write a long thesis (up to 20,000 words). In both cases, 10% of the marks will be assigned through a pre-submission presentation, and 10% of the marks will be assigned through a post-submission presentation.

Students will take 5 core modules, and then either 5 elective modules (and a long thesis) or 7 elective modules (and a short thesis). All core modules are examined purely by coursework. Some of the elective modules are also examined wholly or partly by coursework.

Some of the elective modules are examined wholly or partly by written examination.

At the discretion of the Examiners, candidates may be required to take an additional oral examination on the work submitted during the course, and on the general field of knowledge within which it falls.

Continuing

Students wishing to apply for continuation to the PhD would normally be expected to attain an overall mark of 70%.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
What's the Master of Engineering. Energy all about? . The programme addresses every . multidisciplinary aspect of energy. Read more

What's the Master of Engineering: Energy all about? 

The programme addresses every multidisciplinary aspect of energy. There is extensive coverage of the possibilities and limitations of the various energy technologies, but also of the environmental consequences and economic aspects.

The multidisciplinary master prepares you for jobs related to research and development, policy and management, and industrial applications. The master is supported by EnergyVille, an association of the Flemish research institutes KU Leuven, VITO and imec in the field of sustainable energy and intelligent energy systems.

Both industry and research are increasingly looking for multidisciplinary engineers. The Master of Science in Engineering: Energy provides sound training in energy engineering. It addresses the main issues of mechanical and electrical engineering in a balanced and integrated manner, together with socio-economic preconditions that have an impact on the engineer’s sphere of action.

This programme teaches you to focus on technological possibilities without losing sight of the environmental and socio-economicaspects of your chosen field. The programme has an international scope and collaborates with partner universities excelling in the energy domain.

Structure

The first year consists of electrical and mechanical engineering courses, as well as more general socio-economic, energy-related subjects and integrated problem solving and projects.

In the second year, you continue your specialisation by, among other things, writing a master's thesis on a subject related to electrical energy, thermomechanical energy, or more general technicaleconomic aspects. You can also participate in an international exchange or do an internship.

Three options

  • Thermomechanical energy: emphasis on the mechanical aspects of energy supply and ‘energy machines and systems’
  • Electrical energy: emphasis on the electrical aspects of energy supply and energy converter
  • General techno-economic energy: a broader specialisation, with a focus on non-technical aspects (economy, legal framework, environment)

 Three corresponding specialisation options

  • thermomechanical energy
  • electrical energy
  • techno-economic energy knowledge

 This is an initial Master's programme and can be followed on a full-time or part-time basis.

International Experience

At the Faculty of Engineering Science, students are given the opportunity to complete one or two semesters of their degree within the Erasmus+ programme at an European university, or an university outside Europe. 

Students are also encouraged to carry out industrial and research internships abroad under supervision of the departmental Internship Coordinator. These internships take place between the third Bachelor’s year and the first Master’s year, or between the two Master’s years.

Other study abroad opportunities are short summer courses organised by the Board of European Students of Technology (BEST) network or by universities all over the world. 

The Faculty of Engineering Science is also member of the international networks CESAER, CLUSTER and ATHENS, offering international opportunities as well.

 More info can be found at http://eng.kuleuven.be/english/education/internationalisation

Career perspectives

Thanks to the broad education, both nationally and internationally, the energy engineer has plenty of job opportunities in researchpolicyindustry and services, in all sectors where energy plays an important role, and that is everywhere increasingly.

Junior engineers have predominantly technical functions, including design and development, exploitation, improvement and optimisation of energy systems, system integration, logistic and techno-commercial functions and consultancy. Senior engineers generally grow towards management functions in industry and policy, or expert leaders in engineering and consultancy.



Read less
The Masters in Sustainable Energy is an interdisciplinary programme that will equip you for employment within the international energy sector. Read more
The Masters in Sustainable Energy is an interdisciplinary programme that will equip you for employment within the international energy sector. This programme addresses all the key aspects of sustainable energy, from the most advanced technologies through to ethical and economic considerations.

Why this programme

◾This programme provides an in-depth knowledge of the social and economic drivers of the current UK and international energy industry, and insights in the behavioural, business and technical aspects concerned with energy production and distribution.
◾Students will learn a range of technical knowledge in the science and engineering of energy production and use, with emphases towards chemical, electrical and mechanical engineering, dependent on the students’ preferences and past experience.
◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾Students will graduate from this programme with a complete scientific knowledge and appreciation of the relevance of traditional and emerging energy technologies.
◾Learning will be underpinned with regular industrial lectures and commentary so that the context is maintained and highlighted throughout the year.

Programme structure

Modes of delivery of the MSc in Sustainable Energy include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

You will take a combination of core and optional courses, and a project which you will select from a list of standard projects or you can suggest a project of your own choosing.

Core courses
◾Energy and environment
◾Energy conversion systems
◾Energy from waste
◾Integrated system design project
◾Renewable energy
◾MSc project.

Optional courses
◾Electrical energy systems
◾Environmental biotechnology
◾Environmental ethics and behavioural change
◾Impacts of climate change
◾Introduction to wind engineering
◾Nuclear power reactors
◾Power electronics
◾Project planning, appraisal and implementation
◾Theory and principles of sustainability.

Projects

-◾To complete the MSc degree you must undertake a project worth 60 credits, which will integrate subject knowledge and skills that you acquire during the MSc programme
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Sustainable Energy. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾You will be taught by academic staff with expertise from across a range of disciplines within the Colleges of Science & Engineering and Social Sciences. This interdisciplinary approach will provide you with high quality teaching of contemporary, industrially relevant courses which will together provide an excellent background in sustainable energy.
◾You will benefit from significant input from industry to our teaching programme, including teaching on some courses, guest lectures and seminars. There are also informal opportunities to meet people from industry at open events and visits to company offices. Projects may be carried out in conjunction with industry.
◾Many of the courses within the programme will be backed up by specific project work and much of this will be linked in to research activities across the University.

Career prospects

The degree is designed to develop future leaders and decision makers in the growing international energy business. Graduates may expect to forge careers in established energy generation and transmission companies (for instance in the UK, National Grid, Scottish and Southern Energy, etc.), energy consultancy businesses, traditional oil, gas and construction companies who are moving rapidly into renewables, or fresh new companies in the wind, marine, solar or biomass sectors. Scotland, in particular, has seen great expansion in sustainable energy businesses in the last decade, with some of the best worldwide potential for wind, wave and tidal generation.

Graduates of this programme have gone on to positions such as:
Research Assistant at a university
Geothermal Energy Engineer at Town Rock Energy
Hydropower Engineer at Renewables First
Research Analyst at Cognolink
Research and Development Consultant.

Accreditation

The MSc Sustainable Energy is accredited by the Institution of Mechanical Engineering. An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less
This programme is appropriate for you if are seeking to develop the skills and confidence to address the critical global challenges of energy and diminishing natural resources. Read more
This programme is appropriate for you if are seeking to develop the skills and confidence to address the critical global challenges of energy and diminishing natural resources. Clean energy, optimal use of resources and the economics of climate change are the key issues facing society, and form the fundamental themes of this programme.

Course details

You explore the world’s dependency on hydrocarbon-based resources, together with strategies and technologies to decarbonise national economies. The course examines global best practice, government policies, industrial symbiosis and emerging risk management techniques. You also address the environmental, economic and sociological (risk and acceptability) impacts of renewable energy provision and waste exploitation as central elements.

The programme develops the problem-solvers and innovators needed to face the enormous challenges of the 21st century - those who can play key roles in driving energy and environmental policies, and in formulating forward-looking strategies on energy use and environmental sustainability at corporate, national and global scales.

What you study

For the PgDip award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete the 120 credits of taught modules and a 60-credit master's research project.

Energy, environment, risk managing projects, sustainability and integrated waste management are the main foci of the programme, but you also explore the financial aspects of energy and environmental management. Economics is integral to the development of policies and is often a key influencing factor.

This programme aims to develop a comprehensive knowledge and understanding of the role and place of energy in the 21st century and the way the environment impinges on the types of energy used and production methods. It also aims to investigate the environment as it is perceived, and contextualise its actual importance to mankind. Specific objectives for this course are to establish the financial validity for the pursuit of alternative energy forms and management of the environment.

You are encouraged to take up opportunities of voluntary placements with local industries to conduct real-world research projects. These placements are assessed in line with the assessment criteria and learning outcomes of the Project module.

Examples of past MSc research projects:
-The taxonomy of facilitated industrial symbioses
-Assessment of the climate change impacts of the Tees Valley
-Exploring the links between carbon disclosure and carbon performance
-Hydrothermal carbonisation of waste biomass
-Quantifying the impact of biochar on soil microbial ecology
-Potential for biochar utilisation in developing rural economies
-Carbon trading opportunities for renewable energy projects in developing countries
-Exploring the potential for wind energy in Libya
-Demand and supply potential of solar panel installations
-A feasibility study of the application of zero-carbon retrofit technologies in building communal areas
-Energy recovery from abandoned oil wells through geothermal processes

Core modules
-Concepts of Sustainability
-Economics of Climate Change
-Energy and Global Climate Change
-Global Energy Policy
-Integrated Waste Management and Exploitation
-Project
-Research Methods and Proposal

Modules offered may vary.

Teaching

The course provides a number of contact teaching and assessment hours (through lectures, tutorials, projects, assignments), but you are also expected to spend time on your own, called 'self-study' time, to review lecture notes, prepare course work assignments, work on projects and revise for assessments. For example, each 20-credit module typically has around 200 hours of learning time.

In most cases, around 60 hours are spent in lectures, tutorials and in practical exercises. The remaining learning time is for you to gain a deeper understanding of the subject. Each year of full-time study consists of modules totalling 180 credits; hence, during one year of full-time study a student can expect to have 1,800 hours of learning and assessment.

Modules are assessed by a variety of methods including examination and in-course assessment with some utilising other approaches such as group-work or verbal/poster presentations.

Employability

There may be short-term placement opportunities for some students, particularly during the project phase of the course. This University is also in the process of seeking accreditation for the Waste Management module from the Chartered Institution of Wastes Management.

Successful graduates from this course are well placed to find employment. As an energy and environmental manager, you might find yourself in a role responsible for overseeing the energy and environmental performance of private, public and voluntary sector organisations, as well as in a wide range of engineering industries.

Energy and environmental managers examine corporate activities to establish where improvements can be made and ensure compliance with environmental legislation across the organisation. You might be responsible for reviewing the whole operation, carrying out energy and environmental audits and assessments, identifying and resolving energy and environmental problems and acting as agents of change. Your role could include the training of the workforce to develop the ability to recognise their own contributions to improved energy and environmental performance.

Your role may also include the development, implementation and monitoring of energy and environmental strategies, policies and programmes that promote sustainable development at corporate, national or global levels.

Read less
Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies. Read more

Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies.

It is designed to build your competence and confidence in the R&D and engineering tasks that are demanded of scientific engineers in the renewable and sustainable-development sector.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and academic support

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

Career prospects

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

Educational aims of the programme

This programme investigates both renewable energy and systems technologies in order to produce scientific researchers and engineers who are competent in the R&D and engineering tasks applicable to the renewable energy and sustainable development sectors.

Its primary aims lie in developing a global understanding of the major types of renewable energy technologies, in-depth knowledge of the technology for biomass-based renewable energy, and knowledge and skills in systems modelling and optimisation.

A balanced curriculum will be provided with a core of renewable energy and systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

Programme learning outcomes

Knowledge and understanding

The programme aims to develop the knowledge and understanding in both renewable energy and systems engineering. The key learning outcomes include:

  • State-of- the-art knowledge in renewable energy technologies, in terms of: the sources, technologies, systems, performance, and applications of all the major types of renewable energy; approaches to the assessment of renewable energy technologies; the processes, equipment, products, and integration opportunities of biomass-based manufacturing
  • State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems; mathematical optimization and decision making; process systems design
  • Advanced level of understanding in technical topics of preference, in one or more of the following aspects: process and energy integration, economics of the energy sector, sustainable development, supply chain management

Intellectual / cognitive skills

The programme aims to strengthen cognitive skills of the students, particularly in the aspects of problem definition, knowledge and information acquiring, synthesis, and creativity, as collectively demonstrable through the successful completion of the research dissertation. The key learning outcomes include the abilities to:

  • Select, define and focus upon an issue at an appropriate level
  • Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
  • Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills

The programme primarily aims to develop skills for applying appropriate methods to analyze, develop, and assess renewable technologies and systems. The key learning outcomes include the abilities to:

  • Assess the available renewable energy systems
  • Design and select appropriate collection and storage, and optimise and evaluate system design
  • Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of renewable energy technologies and systems

Key / transferable skills

The programme aims to strengthen a range of transferable skills which are relevant to the needs of existing and future professionals in knowledge intensive industries irrespective of their sector of operation. The key learning outcomes include the further development of the skills in the following areas:

  • Preparation and delivery of communication and presentation
  • Report and essay writing
  • Use of general and professional computing tools
  • Collaborative working with team members
  • Organizing and planning of work
  • Research into new areas, particularly in the aspect of literature review and skills acquisition

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability. Read more
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability.

By the time you graduate, you will have a thorough understanding of sustainability standards, various renewable energies, smart grid and power electronics for renewable energy and energy use management in buildings, urban design and other areas. Research on sustainable energy technology has opened up many job opportunities in industry, government institutions and research centres.

What are benefits of the programme?

• studying at international university recognised throughout the world
• close cooperation with world-famous universities and research centres to solve major technical challenges including energy crises and environmental pollution
• excellent research opportunities, using advanced experimental equipment including a network analyser, power analyser, Dspace controller, wind turbine and PV testing system
• continuous development of core modules to meet the requirement of industrial innovation
• cutting-edge research in the intelligent and efficient utilisation of solar, wind energy and other renewable energy sources

Lab Facilities

Power electronics laboratory equipped with advanced experimental equipment
• Sustainable energy laboratory equipped with advanced experimental equipment including a 600W wind turbine, two 270W solar modules, batteries, an inverter with sinusoidal output and main controller
• Electric machine and power system laboratory

Modules

• Sustainable Energy and Environment
• Nuclear Energy Technology
• Power System Network and Smart Grid
• Integration of Energy Strategies in the Design of Buildings
• Photovoltaic Energy Technology
• Renewable Kinetic Energy Technologies
• Power Electronics and Applications for Renewable Energy
• Sustainable Urban Planning Strategies
• Msc Project

What are my career prospects?

Graduates of this programme will typically work on professional tasks including the implementation of sustainable energy technologies within existing or new systems, and modelling and evaluation of the impact on ecosystems, economics and society. Graduates may be employed as electric power system engineers, electric power system consultants, sustainable technology consultants, electric power projects managers, sustainable cities and building design consultants, managers and team leaders in government.

Read less
Gain the theoretical and practical skills to explore the growing field of renewable energy technologies. Renewable energy technologies have become an important part of energy production. Read more
Gain the theoretical and practical skills to explore the growing field of renewable energy technologies.

Renewable energy technologies have become an important part of energy production. Strong initiatives and investments from the public and private sectors have made this a rapidly growing field and created further career opportunities in the sector.

This is one of the few courses offered at Masters level which not only encompasses renewable energy technologies but also complements with the essential related elements of renewable energy finance and environmental law.

These elements touch on financial analytical tools, project structuring, finance and management in renewable energy, while the law element will consider legal framework impacting upon renewable energy provision.

See the website http://www.napier.ac.uk/en/Courses/MSc-Renewable-Energy-Postgraduate-FullTime

What you'll learn

The course will extend your skills into various renewable energy technologies such as wind, solar, hydro, biomass, wave etc.

Study renewable energy capture, energy storage, energy audit and life-cycle analysis, as well as learning the concept of the system, design, development and applications.

The course is accredited by the Energy Institute, UK. Combined with a suitable accredited undergraduate degree, the MSc degree would then satisfy the academic requirements of the UK Engineering Council for Chartered Engineer (CEng) status.

Modules

• Sustainable energy technologies
• Solar energy: technology, modelling and analysis
• Renewable energy finance and environmental law
• Research skills and project management
• Distributed generation systems
• MSc Project module

Module choice of
• Control engineering
• Energy materials
• Mechatronic systems
• Sustainable urban property development

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Career opportunities

• Consultancies
• Renewable energy industries
• Renewable energy technology/design
• Building services
• Research & development

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less

Show 10 15 30 per page



Cookie Policy    X