• Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
University of Reading Featured Masters Courses
University of Cambridge Featured Masters Courses
FindA University Ltd Featured Masters Courses
Swansea University Featured Masters Courses
"energy" AND "storage"×
0 miles

Masters Degrees (Energy Storage)

We have 99 Masters Degrees (Energy Storage)

  • "energy" AND "storage" ×
  • clear all
Showing 1 to 15 of 99
Order by 
Programme description. This MSc is aimed at students who wish to pursue a geosciences-related career in the future energy sector, as it transitions from fossil fuels to a low carbon economy. Read more

Programme description

This MSc is aimed at students who wish to pursue a geosciences-related career in the future energy sector, as it transitions from fossil fuels to a low carbon economy. The aim is to offer a programme that uses subsurface (geological) knowledge opening a diverse range of career pathways in lower carbon geoenergy technologies; the disposal of energy-related wastes and the hydrocarbon industry.

This MSc programme builds on the strength and reputation of the research groups operating in the School of GeoSciences on uses of the subsurface: carbon capture and storage (CCS); radioactive waste disposal; energy storage and extraction; unconventional and conventional hydrocarbons; wet and dry geothermal heat; and subsurface fluid tracing using noble gases and stable isotopes.

Programme structure

Compulsory courses (for students who have accredited prior learning, elective courses are taken in lieu) – 90 credits

  • Future Geoenergy Resources
  • Applied Hydrogeology and Near surface Geophysics
  • Hydrogeology 2
  • Environmental Geochemistry
  • Project Design and Literature Analysis
  • Carbon Storage and Monitoring

Compulsory Courses – for those with Geoscience background – 20 credits

  • Subsurface Reservoir Quality

Compulsory Courses – for those without Geoscience background – 20 credits

  • Geology for Earth Resources
  • Hydrocarbons

Optional courses: choice of 10 credits from following

  • Ore Mineralogy, Petrology & Geochemistry
  • Seismic Reflection Interpretation
  • Carbon Capture and Transport
  • Helmsdale MSc Field Excursion
  • Environmental Problems and Issues
  • Nuclear Waste Management: Principles, Policies & Practice

Compulsory Dissertation

  • Dissertation in Applied Geoscience (Geoenergy)

Career opportunities

This programme will train students in the use of subsurface geological knowledge opening a diverse range of career pathways in lower carbon geoenergy technologies and the disposal of energy-related wastes. These include radioactive waste disposal; carbon capture and storage; geothermal energy and subsurface energy storage including compressed air energy storage.

Other pathways include working in environmental and regulatory aspects of energy storage involving potential pollution; tracking subsurface fluids in the event of leakage from subsurface facilities and ground water resources.



Read less
Your programme of study. Read more

Your programme of study

Are you interested in where we source our future energy and how we protect what we have now and in the future? Do you have environmental concerns about how energy is extracted and what regulation is in place to prevent damage to the environment?  This programme focuses on two main interlinked areas within energy management of politics and law.  Within the political setting you understand regulation as you do in the legal setting but you look at policies, regulation and interdependencies and relationships globally to understand how risk, security and future policy may alter and how this then translates in law. There is a heightened senses of awareness now within energy and climate and an increased sense of urgency about pollution controls and concerns about energy reserves.  This is set within a volatile political and social environment in many countries some of whom supply energy globally. You look at historical oil crisis, security, and politics and you connect this to environmental regulation systems, and the different legal systems and approaches in law.

This programme gives you a wide breadth of skills and knowledge in an essential area of the energy industry, both upstream and downstream, commercial and domestic globally. You are taught in the energy capital of Europe in Aberdeen city, home to a multitude of FTSE 100 companies from the energy industry and you learn from both its learning's and that of academics who follow it closely at Aberdeen. There is a lot of historic case law and knowledge gained from the energy industry which has influenced energy law over time and much of it has related to the tightening of mechanisms and regulation to prevent environmental damage from occurring. There are also economic influences on the energy industry which can rapidly alter the economics of countries when suppliers change prices, lower or raise production or change group agreements. Even within the domestic market energy suppliers continue to influence the prices we pay for our domestic energy which can in turn affect domestic economics within countries.

You can work as a lawyer or regulator across the supply chain from source to domestic energy or you can work as a consultant or advisor within policy. Within the energy industry itself you can be a vital part of project initiation in understanding policy, guidance, risks and laws to support growth alongside social and legal responsibility to ensure integrity in all areas of energy extraction.

Courses listed for the programme

Compulsory

  • Energy Politics
  • Introduction to Energy Economics

Optional

  • Low Carbon Energy Transition: Renewable Energy Law
  • Oil and Gas Law

Semester 2

Compulsory

  • International Energy Security

Optional

  • Low Carbon Energy Transition: Nuclear Energy and Carbon Capture and Storage
  • Downstream Energy Law

Semester 3 

Compulsory

  • Energy Politics and Law Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You are taught by academics with a strong knowledge of the industry from energy to renewable policy research. Aberdeen is situated at the heart of the European oil and gas industry
  • We have developed an international reputation as a centre for academic excellence and political research
  • You get specific expertise in the Middle East, Latin America, North and South Asia, Nordic countries, Europe and the UK

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • 12 Months or 24 Months
  • September start

International Student Fees 2017/2018

Find out about fees:

  • International
  • Scotland and EU
  • Other UK

Find out more from the programme page

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Power Engineering and Sustainable Energy at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Power Engineering and Sustainable Energy at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The Master's course in Power Engineering and Sustainable Energy places strong emphasis on state-of-the-art semiconductor devices and technologies, advanced power electronics and drives, and advanced power systems. The Power Engineering and Sustainable Energy course also covers conventional and renewable energy generation technologies. Exciting new developments such as wide band gap electronics, energy harvesting, solar cells and biofuels are discussed and recent developments in power electronics are highlighted.

Key Features of MSc in Power Engineering and Sustainable Energy

The College of Engineering has an international reputation for electrical and electronics research for energy and advanced semiconductor materials and devices.

Greenhouse gas emission and, consequently, global warming are threatening the global economy and world as we know it. A non-rational use of electrical energy largely contributes to these.

Sustainable energy generation and utilisation is a vital industry in today’s energy thirsty world. Energy generation and conversion, in the most efficient way possible, is the key to reducing carbon emissions. It is an essential element of novel energy power generation system and future transportation systems. The core of an energy conversion system is the power electronics converter which in one hand ensures the maximum power capture from any energy source and on another hand controls the power quality delivered to grid. Therefore the converter parameters such as efficiency, reliability and costs are directly affecting the performance of an energy system.

Transmission and distribution systems will encounter many challenges in the near future. Decentralisation of generation and storage systems has emerged as a promising solution. Consequently, in the near future, a power grid will no longer be a mono-directional energy flow system but a bi-directional one, requiring a much more complex management.

The MSc in Power Engineering and Sustainable Energy is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Power Engineering and Sustainable Energy students must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode

The part-time scheme is a version of the full-time equivalent MSc in Power Engineering and Sustainable Energy scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Power Engineering and Sustainable Energy course can vary each year but you could expect to study:

Advanced Power Electronics and Drives

Power Semiconductor Devices

Advanced Power Systems

Energy and Power Engineering Laboratory

Power Generation Systems

Modern Control Systems

Wide Band-Gap Electronics

Environmental Analysis and Legislation

Communication Skills for Research Engineers

Optimisation

Facilities

The new home of MSc in Power Engineering and Sustainable Energy is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Our new WOLFSON Foundation funded Power Electronics and Power System (PEPS) laboratory well-appointed with the state-of the-art equipment supports student research projects.

Careers

Employment in growing renewable energy sector, power electronic and semiconductor sector, electric/hybrid vehicle industry.

The MSc Power Engineering and Sustainable Energy is for graduates who may want to extend their technical knowledge and for professional applicants be provided with fast-track career development. This MSc addresses the skills shortage within the power electronics for renewable energy sector.

Links with industry

BT, Siemens, Plessey, GE Lighting, Schlumberger, Cogsys, Morganite, Newbridge Networks, Alstom, City Technology, BNR Europe, Philips, SWALEC, DERA, BTG, X-Fab, ZETEX Diodes, IQE, IBM, TSMC, IR, Toyota, Hitachi.

As a student on the MSc Power Engineering and Sustainable Energy course, you will learn about numerical simulation techniques and have the opportunity to visit electronics industries with links to Swansea.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.



Read less
Your programme of study. Regulation of energy is a complex area covering everything across the supply chain. It is also fraught with controversy and advocates attempting to clean up the environment, often providing high profile press when things aren't seen as socially responsible. Read more

Your programme of study

Regulation of energy is a complex area covering everything across the supply chain. It is also fraught with controversy and advocates attempting to clean up the environment, often providing high profile press when things aren't seen as socially responsible. Energy law is a specialist area which is mainly concerned with the huge risks involved in extracting energy within wild and remote environments and dealing with waste products, removal of facilities, implementation of new facilities and operations with environment at the forefront of business operations. There are huge implications for corporate and social responsibility and the energy industry sees it as imperative that they get their regulation and responsibilities right. The negative effects of getting regulation wrong can be hugely costly and very damaging to reputation in a highly regulated and safety conscious industry.

The ability to manage the business through change without loosing time and money and understanding how to work with regulation from government level can be a challenge, especially when business does not follow a straight line of growth. You not only learn the law in terms of energy and environment but you also cover downstream regulation to customer supplies and renewable energy areas which you may also be involved with if you work for a large multinational for example. Many people are not aware of just how much work goes into getting regulation right for company and government and how much potential there is to save the environment from unnecessary practices which put all at risk. In this respect this is a very rewarding subject to study and work in if you are interested in environment and regulation.

Energy Law is an environmental range of laws specifically aligned to exploitation of minerals. Throughout the process you will learn about all the regulatory requirements within the supply chain from extraction to supply. Aberdeen is at the heart of the energy industry and you will benefit from industry networks and regulators situated in the city. This will give you a really good perspective and insight into the discipline and how it is transferred to employment in the energy industry internationally.

Courses listed for the programme

Semester 1

  • Introduction

Compulsory

  • Critical Legal Thinking and Scholarship

Optional

  • Oil and Minerals for Good
  • Low Carbon Energy Transition: Renewable Energy Law
  • Oil and Gas Law
  • International Energy and Environmental Law

Semester 2

Optional

  • Principles of Environmental Regulation
  • Corporate Environmental Liability
  • Downstream Energy Law
  • Low Carbon Energy Transition: Nuclear Energy and Carbon Capture and Storage
  • International Investment Law and Arbitration in the Energy Sector

Semester 3

Compulsory

  • Energy Law Professional Skills

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You are taught by a School of Law which is currently ranked 20th in the UK for Law (Complete University Guide 2018) and has taught the subject since the Middle Ages when Kings College was inaugurated in 1495
  • You are taught by academics who have worked closely in collaboration with the energy industry since the 1970s to continuously provide skills and knowledge which realises current and future needs of the industry. Energy is regulated in the city and there are opportunities to learn and network with from professionals in the industry at industry events throughout the year.

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • January or September
  • 12 Months or 24 Months

International Student Fees 2017/2018

Find out about international fees:

  • International
  • EU and Scotland
  • Other UK

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs

You may be interested in:



Read less
Your programme of study. Regulation of energy is a complex area covering everything across the supply chain. It is also fraught with controversy and advocates attempting to clean up the environment, often providing high profile press when things aren't seen as socially responsible. Read more

Your programme of study

Regulation of energy is a complex area covering everything across the supply chain. It is also fraught with controversy and advocates attempting to clean up the environment, often providing high profile press when things aren't seen as socially responsible. Energy law is a specialist area which is mainly concerned with the huge risks involved in extracting energy within wild and remote environments and dealing with waste products, removal of facilities, implementation of new facilities and operations with environment at the forefront of business operations. There are huge implications for corporate and social responsibility and the energy industry sees it as imperative that they get their regulation and responsibilities right. The negative effects of getting regulation wrong can be hugely costly and very damaging to reputation in a highly regulated and safety conscious industry.

The ability to manage the business through change without loosing time and money and understanding how to work with regulation from government level can be a challenge, especially when business does not follow a straight line of growth. You not only learn the law in terms of energy and environment but you also cover downstream regulation to customer supplies and renewable energy areas which you may also be involved with if you work for a large multinational for example. Many people are not aware of just how much work goes into getting regulation right for company and government and how much potential there is to save the environment from unnecessary practices which put all at risk. In this respect this is a very rewarding subject to study and work in if you are interested in environment and regulation.

Energy Law is an environmental range of laws specifically aligned to exploitation of minerals. Throughout the process you will learn about all the regulatory requirements within the supply chain from extraction to supply. Aberdeen is at the heart of the energy industry and you will benefit from industry networks and regulators situated in the city. This will give you a really good perspective and insight into the discipline and how it is transferred to employment in the energy industry internationally.

Courses listed for the programme

Semester 1

  • Critical Legal Thinking and Scholarship

Optional Courses

  • Oil and Minerals for Good
  • Low Carbon Energy Transition: Renewable Energy Law
  • Oil and Gas Law

Semester 2

  • Low Carbon Energy Transition: Nuclear Energy and Carbon Capture and Storage
  • Corporate Environmental Liability
  • International Investment Arbitration in the Energy Sector

Semester 3

  • Master of Law Dissertation

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • The demand for energy lawyers continues within current and new industry areas internationally
  • You are taught by experts with practical application of theory and close links to regulators and industry in the city
  • Aberdeen is situated at the heart of the European industry, it is an energy city with FTSE 100 multinationals located here
  • The School of Law is ranked in the top 10 in the UK (Complete University Guide 2018)

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • 12 Months or 24 Months
  • September or January

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 

You may also be interested in:



Read less
Climate change and limited fossil fuel reserves are creating an unprecedented demand for renewable energy and Hull, on the Humber - Britain's energy estuary, is the ideal location to study energy engineering. Read more

Climate change and limited fossil fuel reserves are creating an unprecedented demand for renewable energy and Hull, on the Humber - Britain's energy estuary, is the ideal location to study energy engineering.

This MSc will prepare you for specialised industry roles in energy engineering or allow you to advance to specialist PhD study in energy and sustainability engineering.

A strong emphasis is placed on the practical application of knowledge. The University has strong, direct links with industry, providing you with opportunities to work on real-world engineering projects.

There are two pathways leading to the following awards:

MSc Energy Engineering: Energy Technologies in Building

A mainly design-based programme, involving energy consumption analyses in building, building services (heating, ventilation, air conditioning and refrigeration) systems design, as well as renewable energy (solar, ground soil, wind, biomass and fuel cell) application in buildings. The projects are specifically tailored to solve practical problems.

MSc Energy Engineering: Renewable Energy Technologies

An opportunity to study a range of technologies from PV and solar thermal to biomass, wind and tidal. Students will have access to experimental facilities in all of these areas as well as the possibility to investigate resource modeling and design of novel harvesting devices.

Study information

This MSc will prepare specialists with advanced skills in distinct areas of energy engineering. A very strong emphasis is placed on the practical application of theory.

The programme comprises a combination of lectures, practical/design exercises, tutorials, computer-based process simulation and optimisation, and resource-based, problem-based and enquiry-led learning.

Semester one comprises core modules that will provide you with a general background knowledge of the energy industry, including economics, policy and impact assessment as well as a technical overview.

Core modules:

  • Energy Technologies
  • Environmental Management and Policy
  • Research Management and Research Skills

Students will then follow their specialist path, selecting three further modules from options including:

  • Renewable Energy in Buildings
  • Built Energy System Design and Practice
  • Power distribution, storage and control
  • Sustainable Waste Management
  • Energy in Buildings: Load Analysis

You will develop competence and confidence in the application of engineering knowledge and techniques to a range of industrial and real-world energy-related problems.

You will develop a good theoretical and practical understanding that balances the core fundamentals with the latest industry and research practice.

A final project and dissertation will enable you to identify and apply theory and practice to the analysis and solution of complex engineering problems.

* All modules are subject to availability.

Future prospects

The energy engineering industry is expanding rapidly and employment opportunities are high. An increased focus on renewable energy projects is creating demand for sector specialist engineers.

This programme provides you with the skills, competencies and knowledge to be successful in the workplace or will prepare you to advance to specialist PhD study in energy and sustainability engineering.

There are many opportunities to work with energy companies during the programme, enhancing your employability.

This MSc has a host of industry advisors from companies and organisations likely to offer employment opportunities to students completing the programme.

Our industry partners include Spencer Group and NPS Humber Limited. The Humber is the largest Renewable Enterprise Zone in the UK. Green Port Hull, a collaboration between Hull City Council, East Riding of Yorkshire Council and Associated British Ports, promotes investment and development of the renewable energy sector in the region.



Read less
This MSc teaches an international community of students about the latest advances in clean power developments and enables graduates to design and develop benign renewable energy solutions that can be implemented in countries around the world. Read more
This MSc teaches an international community of students about the latest advances in clean power developments and enables graduates to design and develop benign renewable energy solutions that can be implemented in countries around the world.

It is aimed at engineers and natural scientists pursuing or wishing to pursue a career in the renewable energy sector, particularly those in technical positions e.g. systems designers, technical consultants and R&D engineers and scientists.

Core study areas include solar power, wind power, water power, biomass, sustainability and energy systems, integration of renewables and a research project.

Optional study areas include advanced solar thermal, advanced photovoltaics, advanced wind, energy storage, energy system investment and risk management.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-systems-tech/

Programme modules

Compulsory Modules:
- Solar Power
- Wind Power 1
- Water Power
- Biomass
- Sustainability and Energy Systems
- Integration of Renewables
- Research Project

Optional Modules (choose three):
- Advanced Solar Thermal
- Advanced Photovoltaics
- Wind Power 2
- Energy Storage
- Energy System Investment and Risk Management

How will you learn

You can select options to develop a chosen specialism in greater depth, including through your individual project which is often carried out with renewable energy companies or alongside the research portfolio of our international experts.

This is a very practical course backed up by strong theoretical understanding of the principles and facts behind renewable energy production.

Assessment is via a mixture of written and practical coursework and examinations. The individual research project is also assessed by viva. Because of its multidisciplinary nature, assessment may be done in collaboration with academic colleagues from Civil Engineering, Mechanical Engineering and Materials.

Facilities

We have current industrial equipment and laboratories for PV cell production, PV module production, qualification testing, PV quality control, energy storage research facilities, vacuum glazing, wind flow measurement, and instrumentation for energy consumption and monitoring.

You will benefit from experience with industrial tools and software for system design (e.g. PV Syst, WASP, ReSoft Windfarm, DNV GL Windfarmer), materials research hardware (e.g. pilot lines for commercial solar cell production) and quality control laboratories.

This enables you to acquire the practical skills that industry uses today and builds the foundations for developing your knowledge base throughout their career.

Careers and further study

There is a world-wide shortage of skilled engineers in this field and so the combination of hands on experience with global industry standard tools and techniques and the strong theoretical knowledge which graduates of this course acquire, makes them highly attractive to employers.

Students may carry out their projects as part of a short-term placement in a company and graduates of this course are often fast-tracked in their applications. Consequently we have an extensive network of alumni, many in top jobs.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-systems-tech/

Read less
Your programme of study. If you want to get into renewable energy University of Aberdeen offer an online programme which you can study flexibly to fit around your work, life and anywhere in the world. Read more

Your programme of study

If you want to get into renewable energy University of Aberdeen offer an online programme which you can study flexibly to fit around your work, life and anywhere in the world. It is a great way to study a degree from a known and trusted brand with exactly the same content as the on campus version but delivered entirely online.

Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Considerable innovation and improvements are continuous within this field as it is by no means at a stage where society can rely on it to fuel all needs. The sector is interdisciplinary and this programme provides you with a wide range of very useful skills and knowledge to problem solve and progress current renewables and work towards innovation whether that is in a renewables company or as a start up.

You study electrical and electronic engineering pertinent to smart grid, sensing energy use, developing energy harvesting techniques, and renewable energy exchange, plus ability to harvest energy from all of our natural resources including wind, solar, hydro, marine, geothermal, biomass and other newly developing areas. Renewables is definitely an employable sector as governments are now challenged by finite resources coming from traditional areas, climate change and societal concerns about how we harvest energy in the future and our ability to survive climatic issues, population increase and manage work and life.

Courses listed for the programme

Year 1

  • Renewable Energy 2 (Biomass)
  • Fundamental Safety Engineering and Risk Management Concepts
  • Energy Conversation and Storage
  • Legislation, Planning and Economics

Year 2

  • Electrical Systems for Renewable Energy
  • Renewable Energy 1 (Solar and Geothermal)
  • Renewable Energy Integration to Grid
  • Renewable Energy 3 (Wind, Marine and Hydro)

Year 3

  • Individual Project

Find out more detail by visiting the programme web page

or if you want to study on campus find out more

Why study at Aberdeen?

  • You are taught by industry professionals and the engineering department each are highly regarded in their fields
  • The programme is delivered flexibly so you can choose how best to study with various options at your disposal
  • You cover energy harvesting methods and their integration into the grid plus planning and economics, ideal for enterprise and innovation
  • The sector is driven by a need which shows no signs of stopping in terms of necessity to life so there are plenty of opportunities

Where you study

  • Online
  • 5 Months or 27 Months
  • Part Time
  • September or January start

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Related Degrees

Other engineering disciplines you may be interested in:



Read less
Your programme of study. If you are fascinated by protecting the environment across all areas that impact our ability to provide a clean environment in the sea/water, earth/soil and air and you are interestd regulation of harmful pollutant effects on all life on this planet this programme will really interest you. Read more

Your programme of study

If you are fascinated by protecting the environment across all areas that impact our ability to provide a clean environment in the sea/water, earth/soil and air and you are interestd regulation of harmful pollutant effects on all life on this planet this programme will really interest you. You could decide to work for an energy company or any industry within its environmental regulation and protection area whilst it grows and trades or you could be the regulator and work in central government. You could also work for NGOs and activist organisations such as Client Earth to clean up industries that appear to be affecting our potential future life on earth or consultants assisting individuals and groups to seek environmental justice.

The programme is ideally situated in the heart of the energy industry in Aberdeen City where regulators and energy providers work alongside. For the wide ranging environmental aspect you also benefit from highly protected environments nearby such as National Parks and restrictions on planning and development specifically to protect environment. In every day life you can be assured that there will be a constant demand for your skills as a consultant to work with business, groups and individuals to protect environment with the 'Polluter Pays' principle in terms of protecting basic rights relating to environment. There are many instances where our environment needs protecting in our daily lives from poor planning decisions to poorly regulated polluters.

At Aberdeen you get a full range of experts in energy law, drawing from historical and close links with the energy industry in the city and environmental law experts covering renewables, corporate environmental responsibility, and regulation.

Courses listed for the programme

Introduction

  • All students must take to LS50xx courses

Compulsory

  • Critical Legal Thinking and Scholarship

Optional

  • International Energy and Environmental Law
  • Oil and Minerals for Good
  • Low Carbon Energy Transition: Renewable Energy Law 

Semester 2

Optional

  • Principles of Environmental Regulation
  • Low Carbon Energy Transition: Nuclear Energy and Carbon Capture and Storage
  • Corporate Environmental Liability
  • Downstream Energy Law

Semester 3

  • Energy and Environmental Law Professional Skills

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • Aberdeen is an ideal city to study energy and environmental law due to energy industry connections in the city
  • You are taught by wide ranging experts and you gain first hand experience of practise in your specialism at Aberdeen
  • Law is ranked in the top 10 at Aberdeen (Complete University Guide 2018)
  • Increasing development, demands upon environment and pollution highlight employability in this discipline is growing

Where you study

  • University of Aberdeen
  • 12 or 24 months
  • Full Time or Part Time
  • September or January

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 

You may be interested in other programmes:



Read less
Your programme of study. If you are fascinated by protecting the environment across all areas that impact pollution control and health of all living things in sea/water, earth/soil and air this programme will be of real interest to you. Read more

Your programme of study

If you are fascinated by protecting the environment across all areas that impact pollution control and health of all living things in sea/water, earth/soil and air this programme will be of real interest to you. You understand how to regulate and control harmful pollutant effects on all life on this planet and you learn how to ensure the polluter pays. You could decide to work for an energy company or any industry within its environmental regulation and protection area.

There is a balance of growth and just how harmful that growth can be without regulation and control. You could be the regulator and work in central government or local government or you could be the gatekeeper to pollution control to ensure it complies with regulation for your company. You could also work for NGOs and activist organisations such as Client Earth to clean up industries that appear to be affecting our potential future life on earth or consultants assisting individuals and groups to seek environmental justice.

The programme is ideally situated in the heart of the energy industry in Aberdeen City where regulators and energy providers work alongside. For the wide ranging environmental aspect you also benefit from highly protected environments nearby such as National Parks and restrictions on planning and development specifically to protect environment. In every day life you can be assured that there will be a constant demand for your skills as a consultant to work with business, groups and individuals to protect environment with the 'Polluter Pays' principle in terms of protecting basic rights relating to environment. There are many instances where our environment needs protecting in our daily lives from poor planning decisions to poorly regulated polluters.

At Aberdeen you get a full range of experts in energy law, drawing from historical and close links with the energy industry in the city and environmental law experts covering renewables, corporate environmental responsibility, and regulation. This programme differs from the other University of Aberdeen programme as you deliver a research project in the form of dissertation rather than professional skills. 

Courses listed for the programme

Semester 1

  • Introduction: All students must take two LS50xx and LS55xx courses

Compulsory

  • Critical Legal Thinking and Scholarship

Optional

  • Oil and Minerals for Good
  • Low Carbon Energy Transition: Renewable Energy Law

Semester 2

Optional

  • Principles of Environmental Regulation
  • Low Carbon Energy Transition: Nuclear Energy and Carbon Capture and Storage
  • Corporate Environmental Liability
  • Downstream Energy Law

Semester 3

  • Master of Law Dissertation

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • Aberdeen is an ideal city to study energy and environmental law due to energy industry connections in the city
  • You are taught by wide ranging experts and you gain first hand experience of practise in your specialism at Aberdeen
  • Law is ranked in the top 10 at Aberdeen (Complete University Guide 2018)
  • Increasing development, demands upon environment and pollution highlight employability in this discipline is growing

Where you study

  • University of Aberdeen
  • 12 Months Full Time or 24 Months Part Time
  • September or January start

International Student Fees 2017/2018

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 

Other Programmes you may be interested in:   





Read less
Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies. Read more

Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies.

It is designed to build your competence and confidence in the R&D and engineering tasks that are demanded of scientific engineers in the renewable and sustainable-development sector.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and academic support

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

Career prospects

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

Educational aims of the programme

This programme investigates both renewable energy and systems technologies in order to produce scientific researchers and engineers who are competent in the R&D and engineering tasks applicable to the renewable energy and sustainable development sectors.

Its primary aims lie in developing a global understanding of the major types of renewable energy technologies, in-depth knowledge of the technology for biomass-based renewable energy, and knowledge and skills in systems modelling and optimisation.

A balanced curriculum will be provided with a core of renewable energy and systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

Programme learning outcomes

Knowledge and understanding

The programme aims to develop the knowledge and understanding in both renewable energy and systems engineering. The key learning outcomes include:

  • State-of- the-art knowledge in renewable energy technologies, in terms of: the sources, technologies, systems, performance, and applications of all the major types of renewable energy; approaches to the assessment of renewable energy technologies; the processes, equipment, products, and integration opportunities of biomass-based manufacturing
  • State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems; mathematical optimization and decision making; process systems design
  • Advanced level of understanding in technical topics of preference, in one or more of the following aspects: process and energy integration, economics of the energy sector, sustainable development, supply chain management

Intellectual / cognitive skills

The programme aims to strengthen cognitive skills of the students, particularly in the aspects of problem definition, knowledge and information acquiring, synthesis, and creativity, as collectively demonstrable through the successful completion of the research dissertation. The key learning outcomes include the abilities to:

  • Select, define and focus upon an issue at an appropriate level
  • Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
  • Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills

The programme primarily aims to develop skills for applying appropriate methods to analyze, develop, and assess renewable technologies and systems. The key learning outcomes include the abilities to:

  • Assess the available renewable energy systems
  • Design and select appropriate collection and storage, and optimise and evaluate system design
  • Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of renewable energy technologies and systems

Key / transferable skills

The programme aims to strengthen a range of transferable skills which are relevant to the needs of existing and future professionals in knowledge intensive industries irrespective of their sector of operation. The key learning outcomes include the further development of the skills in the following areas:

  • Preparation and delivery of communication and presentation
  • Report and essay writing
  • Use of general and professional computing tools
  • Collaborative working with team members
  • Organizing and planning of work
  • Research into new areas, particularly in the aspect of literature review and skills acquisition

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Your programme of study. Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Read more

Your programme of study

Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Considerable innovation and improvements are continuous within this field as it is by no means at a stage where society can rely on it to fuel all needs. The sector is interdisciplinary and this programme provides you with a wide range of very useful skills and knowledge to problem solve and progress current renewables and work towards innovation whether that is in a renewables company or as a start up.

You study electrical and electronic engineering pertinent to smart grid, sensing energy use, developing energy harvesting techniques, and renewable energy exchange, plus ability to harvest energy from all of our natural resources including wind, solar, hydro, marine, geothermal, biomass and other newly developing areas.Renewables is definitely an employable sector as governments are now challenged by finite resources coming from traditional areas, climate change and societal concerns about how we harvest energy in the future and our ability to survive climatic issues, population increase and manage work and life.

Courses listed for the programme

Semester 1

  • Electrical Systems for Renewable Energy
  • Renewable Energy 1 (Solar and Geothermal)
  • Renewable Energy 2 (Biomass)
  • Fundamental Concepts in Safety Engineering

Semester 2

  • Renewable Energy 3 (Wind, Marine and Hydro)
  • Energy Conversion and Storage
  • Renewable Energy Integration to Grid
  • Legislation, Planning and Economics

Semester 3

  • Project

Find out more detail by visiting the programme web page

or online delivery

Why study at Aberdeen?

  • You study with industry professionals and industry lead projects to encourage and challenge you in practical application
  • The full supply of energy is covered in the programme from the initial harvesting to the conversion methods required to link to grid
  • You can study your degree at University of Aberdeen or online to fit flexibly with your needs
  • You learn within a lab setting with industry visits and events in a global sector community

Where you study

  • University of Aberdeen
  • 12 Months Full Time
  • September start

• Online option available

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 

Other engineering disciplines you may be interested in:



Read less
AN INTERDISCIPLINARY APPROACH TO ENERGY CHALLENGES . The Master's programme. Energy Science. provides a thorough understanding of energy systems and provides students the capabilities to work towards sustainable energy systems. Read more

AN INTERDISCIPLINARY APPROACH TO ENERGY CHALLENGES 

The Master's programme Energy Science provides a thorough understanding of energy systems and provides students the capabilities to work towards sustainable energy systems.

This two-year Master's programme in Energy Science at Utrecht University offers an interdisciplinary approach to tackle challenges including mitigating climate change, securing our long-term energy supply, and providing access to sustainable energy for everyone.

Energy collection, conversion, transport, storage, distribution, and end-use application are all steps in providing energy services to society. All these elements form an energy system, which is complex and interacts with other systems in a multitude of ways. Transitions in energy systems and the merits of innovation for the individual components of each can only be analysed in the context of the complete system. This is why we place energy systems analysis at the very center of our Energy Science programme.

Analyzing energy systems requires a thorough knowledge of the fundamental scientific and technological principles of the discipline. This knowledge enables us to understand how the characteristics of individual technologies can influence their performance, as well as the impact of market and policy contexts on energy systems. Both economics and policy studies are covered in the programme.

Tracks

You can choose one of two tracks:

  • Systems Analysis
  • Natural Science


Read less
Management decisions in the energy sector require profound understanding of the sector’s technical, economic, legal, and entrepreneurial peculiarities. Read more
Management decisions in the energy sector require profound understanding of the sector’s technical, economic, legal, and entrepreneurial peculiarities. Climate change, economic changes, public opinion, technological progress and regulation shape and limit the entrepreneurial leeway, but also offer often unforseen chances and opportunities. The industry therefore requires broadly skilled individuals who are experts in the field.

The master programme is taught over a period of three semesters. The first semester covers the technical, economic, entrepreneurial and legal foundations for management decisions in the energy sector; the second semester deepens this view and looks at business practises, primarily of grid-based utilities, and investment; the third semester broadens the view while simultaneously focusing on practise according to student’s individual interests. All semesters include lectures, tutorials, seminars as well as excursions, online materials related to practice and extracurricular activities. The master thesis due in the third semester concludes the programme.

1. Technical Fundamentals
This module deepens student’s knowledge of energy technologies and systems in the framework of today’s changing world.
Prof. Dr.-Ing. Joachim Müller-Kirchenbauer

2. Economic Foundations
This module presents the economic basics for the understanding of energy markets and their regulation, the framework for operational Energy Management.
Prof. Dr. Georg Erdmann

3. Strategic Leadership and Global Management
This module presents the foundations of strategic management and discusses basic tools and applications in the context of the Energy industry.
Prof. Dr. Dodo zu Knyphausen-Aufseß

4. Energy Law
This module presents the legal framework of today’s Energy Markets on the global scale, the EU plane and Germany.
Prof. Dr. Dr. Dres. h.c. Franz Jürgen Säcker

5. Power Grids
This module deals with the technical and managerial challenges of grid management in a changing energy environment, with a focus on transformation processes between different forms and sources of energy and the novel developments in demand response, IT, and metering.
Prof. Dr. Kai Strunz

6. Energy Economy and Energy Business
This module looks at energetic aspects of enterprises and the implications of the changing energy landscape for industrial organisations. How to engineer efficiency and manage engineering efficiently, given changing energy markets and legal conditions?
Prof. Dr.-Ing. Joachim Müller-Kirchenbauer

7. Investments in Grids, Storage and Power Plants
This module looks at energy infrastructure from a financial point of view. Grids, storage facilities and power plants are large-scale long-term investments of national, if not international, scope and importance. How are such projects financed, how can they be insured, how can their risk be assessed, etc.
Prof. Dr. Christian von Hirschhausen

8a. Building Energy Efficiency (compulsory elective)
In this sub-module, students look at physical projects and products such as buildings, plants, city planning, etc. and apply the knowledge gained in prior modules in practise.
Prof. Dr.-Ing. Joachim Müller-Kirchenbauer

8b. Technology and Innovation Management (compulsory elective)
In this sub-module students look at innovations, team building, management processes, administrative, financial or theoretical issues in a specific practical context.
Prof. Dr. Jan Kratzer

Master thesis
Individual topics, individual supervisors.

Read less
This Master's of Public Administration prepares the next generation of climate and energy leaders and decision makers to tackle complex challenges, from mitigating climate change to developing sustainable and renewable energy. Read more

This Master's of Public Administration prepares the next generation of climate and energy leaders and decision makers to tackle complex challenges, from mitigating climate change to developing sustainable and renewable energy. Graduates gain the tools, practical skills and knowledge to leverage technology and innovate climate and energy policy and gain insights from practising experts.

About this degree

Students are taught the conceptual frameworks, policy analysis tools and analytical methods to develop energy and climate policies. Students also study how energy and climate policies are implemented, evaluated and revised in policy cycles. A focus on leadership and the development of professional skills is emphasised throughout. 

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (105 credits), one optional module (15 credits), an elective module (15 credits), and a major group project module (45 credits) of around 12,000 words.

Core modules

Students undertake three core modules with students from sister MPA programmes, and a specialist module focusing on their degree topic.

  • Introduction to Science, Technology, Engineering and Public Policy
  • Analytical Methods for Policy
  • Energy, Technology and Climate Policy
  • Evidence, Institutions and Power

Optional modules

Students select one optional STEaPP module from the following:

  • Science, Technology and Engineering Advice in Practice
  • Risk Assessment and Governance
  • Communicating Science for Policy
  • Negotiation, Mediation and Diplomacy

Students will then also select one further 15-credit graduate module which is relevant to their degree of study. This module can be selected from any UCL department.

MPA Group Policy Project

In the group project, students work with an external client on a relevant policy challenge. With the support of STEaPP academic staff, the multidiscipinary student groups work together to produce an analysis that meets their clients' needs.

Teaching and learning

The programme combines innovative classroom teaching methods with unique scenario-based learning, enabling students to dynamically engage with real-world policy challenges. Scenarios are designed to help students consolidate knowledge and develop essential practical skills and their understanding of principles. During the programme, students acquire a comprehensive range of relevant skills.

Further information on modules and degree structure is available on the department website: Energy, Technology and Climate Policy MPA

Careers

Graduates of this Master's of Public Administration acquire skills to work in a range of sectors involved in analysis and/or policy-making concerning energy and climate change. Career destinations might include national and local government; international agencies such as the World Bank, United Nations and other global organisations; technology companies focused on sustainable energy; government offices of energy, innovation or development; environment agencies; consultancies and think tanks.

Employability

Throughout the MPA programme, students will:

  • gain a greater awareness of current issues and developments in energy and climate policy and technology
  • develop an understanding of the knowledge systems underpinning successful policy-making processes
  • learn how to communicate with scientists and engineers, policymakers and technology experts
  • develop the skills to mobilise public policy, and science and engineering knowledge and expertise, to address societal challenges relating to energy and climate policy.

Why study this degree at UCL?

A rapidly changing energy landscape and the impacts of climate change are providing opportunities for policy strategy and leadership in almost every country and industry sector. This practical programme offers experiential learning for skills needed in energy and climate policy-making.

Students undertake a week-long scenario activity on the policy-making process where they engage with external experts and UCL academics. Students go on to undertake a nine-month major project for a real-world client. Example policy problems include renewable energy sources, carbon capture and storage, or emerging energy technologies.

Students will gain the opportunity to network with UCL STEaPP's broad range of international partners, expert staff and a diverse range of academics and professionals from across the department's MPA and doctoral programmes.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less

Show 10 15 30 per page



Cookie Policy    X