• University of Bristol Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University College London Featured Masters Courses
University of Bedfordshire Featured Masters Courses
Cranfield University Featured Masters Courses
University of Reading Featured Masters Courses
London School of Economics and Political Science Featured Masters Courses
"energy" AND "planning"×
0 miles

Masters Degrees (Energy Planning)

We have 355 Masters Degrees (Energy Planning)

  • "energy" AND "planning" ×
  • clear all
Showing 1 to 15 of 355
Order by 
The global demand for sustainable energy, combined heat and power, and higher energy efficiency is growing rapidly. As a Sustainable Energy Planning and Management student at Aalborg University you learn to understand these issues. Read more
The global demand for sustainable energy, combined heat and power, and higher energy efficiency is growing rapidly.

As a Sustainable Energy Planning and Management student at Aalborg University you learn to understand these issues. The broad knowledge you build within engineering and economics prepares you for a leading role within the energy system.

Our aim is to give you a comprehensive understanding of the technological, institutional, and economic issues and methods related to energy planning and sustainable development. You acquire not only theoretical and methodological knowledge but also the practical ability to apply your knowledge to particular cases.

Read less
Overview. This is a 12 month full-time Masters degree (See http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/ ) course taught at our Orkney Campus. Read more

Overview

This is a 12 month full-time Masters degree (See http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/ ) course taught at our Orkney Campus. It involves studying 8 taught courses and completing a research dissertation equivalent to 4 taught courses. If you can demonstrate that you have already mastered the subject, you may apply for an exemption from one of the taught courses and undertake a Design Project instead.

For more information visit http://www.hw.ac.uk/schools/life-sciences/research/icit.htm

Distance learning

The Renewable Energy Development MSc/Diploma is also available for independent distance learning. For distance learners, the main difference is that you will undertake the Development Project alone rather than as part of a group. You can still obtain the full MSc in Renewable Energy Development, or you can opt to study fewer courses, depending on your needs.

Programme content

- Energy in the 21st Century

This course is designed to give you a broad understanding of the environmental, political and socio-economic context for current developments in renewable energy. The course examines the extent of current energy resources and how energy markets function. It covers some energy basics you will need for the rest of the programme (e.g. thermodynamics, efficiency conversions) as well as environmental issues associated with energy use, climate change and the political and policy challenges involved in managing energy supply and achieving energy security.

- Economics of renewable energy

This course gives an understanding of the economic principles and mechanisms which affect energy markets today. It covers price mechanisms, the economics of extracting energy and the cost-efficiency of renewable energy technologies. You will learn about economic instruments used by policy-makers to address environment and energy issues, economic incentives to stimulate renewable energy development and about environmental valuation.

- Environmental Policy & Risk

This course explores the legal and policy context in which renewable energy is being exploited. You will gain an understanding of international law, particularly the Law of the Sea, property rights and how these relate to different energy resources. The course also looks at regulatory issues at the international, European and UK level, which affect how energy developments are taken forward, as well as risk assessment and management in the context of renewable energy developments.

- Environmental Processes

Particularly for those without a natural science background, this course provides a broad overview of the environmental processes which are fundamental to an understanding of renewable energy resources and their exploitation. You will study energy flows in the environment, environmental disturbance associated with energy use, and an introduction to the science of climate change. You will also learn about ecosystems and ecological processes including population dynamics and how ecosystems affect and interact with energy generation.

- Renewable Technology I: Generation

This course explores how energy is extracted from natural resources: solar, biomass, hydro, wind, wave and tide. It examines how to assess and measure the resources, and the engineering solutions which have been developed to extract energy from them. You will develop an understanding of the technical challenges and current issues affecting the future development of the renewable energy sector.

- Renewable Technology II: Integration

This course explores the technical aspects of generating renewable energy and integrating it into distribution networks. You will learn about the electricity grid and how electrical power and distribution systems work. You will find out about different renewable fuel sources and end uses, and the challenges of energy storage.

- Development Appraisal

Looking at what happens when renewable energy technologies are deployed, this course examines development constraints and opportunities: policy and regulatory issues (including strategic environmental assessment, environmental impact assessment, landscape assessment, capacity issues and the planning system). It also looks at the financial aspects (valuation of capital assets, financing projects and the costs of generating electricity) and at project management.

- Development Project

This is a team project, where students have the opportunity to apply what they have learned through the other courses in relation to a hypothetical project. You have to look at a range of issues including resource assessment, site selection, development layout, consents, planning and economic appraisal, applying the knowledge and tools you have studied.

- Optional design project

For students who can demonstrate existing knowledge covered by one of the courses, there is the option of understanding a design project supervised by one of our engineers.

- Dissertation

This research project (equivalent in assessment to 4 taught courses) allows you to focus on a specific area of interest, with opportunities to collaborate with businesses and other stakeholders. You choose your dissertation subject, in discussion with your supervisor.

- Additional information

If you study at our Orkney Campus, you will also benefit from a number of activities including guest lectures and practical sessions, which help to develop your skills and knowledge in your field of study, and offer opportunities to meet developers and others involved in the renewable energy industry.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Renewable Energy Development (RED) MSc. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses to help you meet the English language requirement prior to starting your masters programme:

- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);

- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);

- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Distance learning students

Please note that independent distance learning students who access their studies online will be expected to have access to a PC/laptop and internet.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/



Read less
This is a 12 month full-time MSc degree course (See http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview ) taught at our Orkney Campus. Read more

Overview

This is a 12 month full-time MSc degree course (See http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview ) taught at our Orkney Campus. It involves studying 8 taught courses. If you can demonstrate that you have already mastered the subject, you may apply for an exemption from one of the taught courses and undertake a Design Project instead. The MSc programme is completed with a research dissertation equivalent to 4 taught courses.

For more information visit http://www.hw.ac.uk/schools/life-sciences/research/icit.htm

Distance Learning

The Marine Renewable Energy MSc/Diploma is also available for independent distance learning. For distance learners, the main difference is that you will undertake the Development Project alone rather than as part of a group. You can still obtain the full MSc in Marine Renewable Energy, or you can opt to study fewer courses, depending on your needs.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Marine Renewable Energy. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

The Diploma and MSc degree course involves studying the 8 taught courses outlined below. If a student can demonstrate that they have already mastered the subject, they may undertake a Development Project instead of one of these courses.

- Energy in the 21st Century
This course is designed to give you a broad understanding of the environmental, political and socio-economic context for current developments in renewable energy. The course examines the extent of current energy resources and how energy markets function. It covers some energy basics you will need for the rest of the programme (e.g. thermodynamics, efficiency conversions) as well as environmental issues associated with energy use, climate change and the political and policy challenges involved in managing energy supply and achieving energy security.

- Economics of renewable energy
This course gives an understanding of the economic principles and mechanisms which affect energy markets today. It covers price mechanisms, the economics of extracting energy and the cost-efficiency of renewable energy technologies. You will learn about economic instruments used by policy-makers to address environment and energy issues, economic incentives to stimulate renewable energy development and about environmental valuation.

- Environmental Policy & Risk
This course explores the legal and policy context in which renewable energy is being exploited. You will gain an understanding of international law, particularly the Law of the Sea, property rights and how these relate to different energy resources. The course also looks at regulatory issues at the international, European and UK level, which affect how energy developments are taken forward, as well as risk assessment and management in the context of renewable energy developments.

- Oceanography & Marine Biology
This course is designed to give you an understanding of the science of waves and tides, and how this affects efforts to exploit energy from these resources. You will also learn about marine ecosystems and how these may be impacted by energy extraction and about the challenges and impacts associated with carrying out engineering operations in the marine environment.

- Marine Renewable Technologies
You will gain an understanding of renewable energy technologies which exploit wind, wave and tidal resources. The focus is on technical design issues which developers face operating in the marine environment, as well as the logistics of installation, operations and maintenance of marine energy converters.

- Renewable Technology: Integration
This course explores the technical aspects of generating renewable energy and integrating it into distribution networks. You will learn about the electricity grid and how electrical power and distribution systems work. You will find out about different renewable fuel sources and end uses, and the challenges of energy storage.

- Development Appraisal
Looking at what happens when renewable energy technologies are deployed, this course examines development constraints and opportunities: policy and regulatory issues (including strategic environmental assessment, environmental impact assessment, landscape assessment, capacity issues and the planning system). It also looks at the financial aspects (valuation of capital asses, financing projects and the costs of generating electricity) and at project management.

- Development Project
This is a team project, where students have the opportunity to apply what they have learned through the other courses in relation to a hypothetical project. You have to look at a range of issues including resource assessment, site selection, development layout, consents, planning and economic appraisal, applying the knowledge and tools you have studied.

- Dissertation
This research project (equivalent in assessment to 4 taught courses) allows you to focus on a specific area of interest, with opportunities to collaborate with businesses and other stakeholders. You choose your dissertation subject, in discussion with your supervisor.

- Additional information
If you study at our Orkney Campus, you will also benefit from a number of activities including guest lectures and practical sessions which help to develop your skills and knowledge in your field of study, and offer opportunities to meet developers and other involved in the renewable energy industry.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Distance learning students

Please note that independent distance learning students who access their studies online will be expected to have access to a PC/laptop and internet.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview

Visit the Marine Renewable Energy MSc/Diploma page on the Heriot-Watt University web site for more details!

Read less
Renewable energy is an essential and vital resource for the world’s future, and future there is an urgent need for engineers capable of solving the industry’s complex challenges in this field. Read more

About the course

Renewable energy is an essential and vital resource for the world’s future, and future there is an urgent need for engineers capable of solving the industry’s complex challenges in this field.

Studying Renewable Energy Engineering at Brunel provides graduates with the knowledge and skills to make a strategic real-world impact in the resolution of the world’s energy problems.

Graduates from Brunel’s MSc in Renewable Energy Engineering will develop:

- The versatility and depth to deal with new, demanding and unusual challenges across a range of renewable energy issues, drawing on an understanding of all aspects of renewable energy principles including economic assessment.

- The imagination, initiative and creativity to enable them to follow a successful engineering career with national and international companies and organisations.

- Specialist knowledge and transferable skills for successful careers including, where appropriate, progression to Chartered Engineer status.

Aims

Huge business incentives, markets and a wide variety of employment opportunities throughout the world are expected with the development of renewable energy resources as a substitute for fossil fuel technology.

The purpose of the MSc programme is to help meet this demand by cultivating qualified and skilled professionals with specialist knowledge in relevant technologies within the renewable energy sector.

The primary aim is to create Master’s degree graduates with qualities and transferable skills ready for demanding employment in the renewable energy sector. These graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level, and the programme also establishes a strong foundation for those who expect to continue onto a PhD or industrial research and development.

Initial programme learning outcomes

The programme will provide opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas:

Knowledge and understanding of:

1.The principles and environmental impact of renewable energy technologies, including solar (thermal and electricity), wind, tidal, wave and hydro, geothermal, biomass and hydrogen.
3. The principles of energy conversion and appropriate thermodynamic machines.
4. The heat and mass transfer processes that relate to energy systems and equipment.
5. The principles, objectives, regulation, computational methods, economic procedures, emissions trading, operation and economic impact of energy systems.
6. The diversity of renewable energy system interactions and how they can be integrated into actual energy control systems and industrial processes.

At the cognitive thinking level, students will be able to:

1. Select, use and evaluate appropriate investigative techniques.
2. Assemble and critically analyse relevant primary and secondary data.
3. Recognise and assess the problems and critically evaluate solutions to challenges in managing renewable energy projects.
4. Evaluate the environmental and financial sustainability of current and potential renewable energy activities
5. Develop a thesis by establishing the basic principles and following a coherent argument.

In terms of practical, professional and transferable skills, students will be able to:

1. Define and organise a substantial advanced investigation.
2. Select and employ appropriate advanced research methods.
3. Organise technical information into a concise, coherent document.
4. Communicate effectively both orally and in writing.
5. Design and select renewable energy equipment and systems based on specific requirements/conditions.
6. Work as part of, and lead, a team.

Course Content

The taught element of the course (September to April) includes eight modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

Compulsory modules:

Renewable Energy Technologies I-Solar Thermal and electricity systems
Renewable Energy Technologies II-Wind, Tidal, Wave, Hydroelectricity
Renewable Energy Technologies III-Geothermal, Biomass, Hydrogen
Power Generation from Renewable Energy   
Renewable Energy Systems for the Built Environment
Energy Conversion Technologies
Environmental Legislation: Energy and Environmental Review and Audit
Advanced Heat and Mass Transfer
Dissertation

Teaching

Students are introduced to subject material, including key concepts, information and approaches, through a mixture of standard lectures and seminars, laboratory practical, field work, self-study and individual research reports. Supporting material isavailable online. The aim is to challenge students and inspire them to expand their own knowledge and understanding.

Preparation for work is achieved through the development of 'soft' skills such as communication, planning, management and team work. In addition, guest speakers from industries provide a valuable insight into the real world of renewable energy.

Many of the practical activities in which the students engage, develop into enjoyable experiences. For example, working in teams for laboratory and field work and site visits. We encourage students to develop personal responsibility and contribution throughout the course. Many elements of coursework involve, and reward, the use of initiative and imagination. Some of the projects may be linked with research in CEBER, CAPF and BIPS research centres.

1 Year Full-Time: The taught element of the course (September to April) is delivered by a combination of lectures, tutorials and group/seminar work. From May to September students undertake the dissertation.

3-5 Years Distance Learning: The programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace. Students are supplied with a study pack in the form of text books and CD-ROMs; cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations can be taken either at Brunel University London or in the country you are resident in. The dissertation is carried out in one year.

Modules are assessed either by formal examination, written assignments or a combination of the two.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of the academic year. Examinations are normally taken in May. The MSc dissertation project leading to submission of the MSc Dissertation is normally carried out over four months (FT students) or one year (DL students).

Special Features

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

About Mechanical Engineering at Brunel
Mechanical Engineering offers a number of MSc courses all accredited by professional institutes as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Accrediting professional institutes vary by course and include the Institute of Mechanical Engineers (IMechE), Energy Institute (EI) and Chartered Institute of Building Services Engineers (CIBSE).

Teaching in the courses is underpinned by research activities in aerospace engineering, automotive/motorsport engineering, solid and fluid mechanics, and energy & environment. Staff generate numerous publications, conference presentations and patents, and have links with a wide range of institutions both within and outside the UK. The discipline benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The requirement of UK-SPEC reinforces the need for a recent graduate with a Bachelor degree to take an appropriate postgraduate qualification in order to become a chartered engineer (currently, an accredited Bachelors degree does not enable the graduate to proceed to Chartered Engineer status without additional learning at M level).

This MSc program will be compliant with the further learning requirements of UK-SPEC. Accreditation will be sought from the Institute of Mechanical Engineering (IMechE) and Energy Institute. As a result, it will appeal to recent graduates who have not yet obtained the appropriate qualifications but intend to become Chartered Engineers. Most importantly, it will appeal to Mechanical, Chemical and Building Services Engineering graduates who wish to specialise in energy, or suitably experienced graduates of related subjects such as Physics.

Read less
Spatial Planning determines the design of places, the relationships between land uses, and identifies infrastructure requirements. Read more
Spatial Planning determines the design of places, the relationships between land uses, and identifies infrastructure requirements. The planning process makes provision for the needs of households and the requirements of the economy, and planning aims to mitigate the adverse impacts of development upon our natural environment.

Marine Spatial Planning is a new field arising from new legislation geared to sustainable use of the marine environment. New planning procedures are being introduced and new skills are required to engage with the process. It is aimed at environmental planners and consultants working with local authorities, regulatory bodies, government, land owners and NGOs.

Why choose spatial planning?

Spatial Planning is concerned with creating sustainable places, Planners achieve this in a number of ways:

Planners work with building firms and housing organisations to help make available sites addressing the housing needs of local areas. They meet with local communities to learn about their concerns and to discuss ways of tackling issues such as the protection of homes from flood risk. They provide guidance on how to promote quality in the design of places and buildings.

Planning makes possible investment in sustainable economic development. Through preparing medium and long-term plans, planners ensure that land is available for development within and around our cities and towns. Planners often lead on regeneration projects and work in partnership with engineers to bring forward the infrastructures necessary to relieve transport congestion and to provide for long-term energy solutions.

Climate change is making achieving sustainability increasingly important. Planners, work with the environmental agencies and with conservation interests to ensure that the potential environmental impacts arising from development proposals are first established and then they use planning powers to promote a sustainable balance between social and economic development and the protection of the environment.

Who becomes a planning students?

Spatial Planning is a multi-disciplinary activity and attracts a wide mix of graduates. Often these are geography graduates, but increasingly graduates with social science, law, architecture and surveying degrees, as well as graduates from the environmental sciences find that Spatial Planning makes use of their knowledge and training.

Aims of the Programme

The Spatial Planning programmes are designed to provide the knowledge, skills and understanding required for graduates wishing to enter into professional careers in urban planning and development.

Programme Content

Semester 1:
Spatial Analysis has two key components. The first component analyses built and natural environments particularly from a conservation perspective. The second part of the module focuses on socio-economic analysis of data at a city scale and the relevance of this to planning.

Statutory Planning. is a practice based approach to learning processes processes of plan-making and the management of development.

Property Development Processes deals with complexities and challenges in the property development sector and the role of different stakeholders involved.

Semester 2:

Concepts of spatial planning introduces students to the role of planning and planning systems. The other part of this module introduces students to various planning theories and their relevance to practice.

Sustainability in Contemporary Cities examines various challenges facing the growth of cities globally and the implications of these to planning of cities and the countryside.

The third second semester module is optional depending on the selected specialism. Students select one specialist module from the following:

Environmental Assessment
Marine Spatial Planning
Sustainable Urban Design
Urban Conservation
Applied Geographic Information Systems and Geospatial Data Analysis
Semester 3:

A 60 credit dissertation in line with the selected specialism

Methods of Assessment

Assessment methods cover a mix of formats including 'live' project-work and a research project. There are no written examinations. The educational aims are to develop subject understanding and to equip students with research and practice skills. Assignments call for visioning, problem-solving, forward-planning and critical reflection. Assignments are informed by students making effective use of available literature, conducting investigations and accessing sources of data. Attention is paid to building the effective communication and partnering skills vital for practicing professional planners.

Sources of Funding

Information about the School of the Environment scholarships can be found on the School of the Environment scholarships webpage. Other sources of funding for postgraduate students can be found on our Scholarships webpage.

SAAS tuition fee loans are available for this course for students who meet the eligibility criteria. Visit our SAAS tuition fee loan webpage for more information and links.

Read less
A unique programme. Gain an in-depth understanding of global energy management issues and the tools to design more effective energy programmes with the Master of Engineering Studies (Energy Management). Read more

A unique programme

Gain an in-depth understanding of global energy management issues and the tools to design more effective energy programmes with the Master of Engineering Studies (Energy Management).

Find out more about the Master of Engineering Studies parent structure.

In the energy management major of the Master of Engineering Studies, you will gain an detailed understanding of energy efficiency, looking at detail of energy use in industry and commercial settings, as well as tools for energy systems analysis and efficient building design.

A unique qualification

It is a unique postgraduate programme in New Zealand. Taught in conjunction with world-renowned Murdoch University in Australia, it is the only fully-focussed energy management postgraduate programme in New Zealand. The programme has been running for over fifteen years.

Learning in a global context

Your learning will be set in the context of global renewable energy systems and tools. You will learn the detail of contemporary renewable energy issues including greenhouse science, global energy systems, policy, economics and management. This will specifically cover renewable energy devices, resources and system design.

Setting the global agenda

Let our experts help you develop your own expertise. We bring a solid base of experience to your learning from our Centre for Energy Research, established at Massey in 1997 following over 25 years of teaching and research work undertaken in the areas of renewable energy, energy efficiency and energy management. We also bring the most relevant and recent research to your learning. You will learn the theory and practice behind energy management, renewable energy and climate change from lecturers who have been working internationally, contributing to research and policy through panels that are setting the global agenda.

Flexibility

You can study towards the Master of Engineering Studies on campus, or study via our distance learning. This gives you the flexibility to remain in full-time employment while studying. Massey University has been offering distance education for over 50 years and you will be able to take advantage of our well-developed systems for teaching and learning. Part of your study will be a real-life energy management case study.

Dig deeper

The renewable energy systems major includes an optional research project, where you can either investigate a topic you are interested in, or work with us to develop an industry-relevant piece of work.

Real-world learning

You will gain an in-depth understanding of the theory of renewable energy systems, but also focus on practical information that can be applied to real-world situations. This could be through using the international Long Range Energy Alternatives Planning System (LEAP) model to assess climate change mitigation options for a country, city or community. You will also learn how to measure renewable energy resources, and understanding the challenges of providing energy efficiency or renewable energy systems in developing countries as part of sustainable development.

The programme also covers the social issues to change human behaviour regarding the deployment of renewable energy systems and related greenhouse gas emission reductions.

Specialise

This qualification is suitable if you either have an undergraduate engineering degree and wish to specialise in energy management, or you have found yourself working in a energy management-related role and need to upskill. You do not have to have an engineering degree to enrol.

A year full time

The Master of Engineering Studies is a 120 credit qualification able to be completed in one year full-time, or part-time between 2.5 and five years..

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Engineering Studies will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. Our experts are there to guide but if you have come directly from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning and undertaking research.



Read less
The MSc Global Energy and Climate Policy (GECP) is the first Masters programme to jointly address the issues of climate and energy policy in an interdisciplinary fashion. Read more

Who is this programme for?:

The MSc Global Energy and Climate Policy (GECP) is the first Masters programme to jointly address the issues of climate and energy policy in an interdisciplinary fashion. It tackles policy and regulatory change, the historical and technological evolution of energy sources, energy markets and their participants, the global governance of climate change as well as the challenges associated with transitioning to a low-carbon economy.

The programme specifically addresses the requirements of those wishing to deepen their theoretical and practical understanding of how energy and climate policies are designed, shaped, advocated and implemented and by whom across a multitude of cases drawn from the Global North and South and across multiple levels of political organisation from global to local arenas.

The MSc is designed for those engaged with or planning a career in professional contexts relating to energy and/or climate policy. It prepares for a multitude of careers in public and private contexts, including in public administration and government departments, strategic policy and risk advisory, government relations and public affairs, policy advocacy, think tanks and academia.

Guest speakers on the programme's modules have included Angus Miller (Energy Advisor, UK Foreign Office), Tom Burke (Founding Director, E3G and Environmental Policy Advisor, Rio Tinto), Jonathan Grant (Asst. Director Sustainability and Climate Change, PwC), Kash Burchett (European Energy Analyst, IHS Global Insight), Chris Dodwell (AEA Technology, former Head of International Climate Policy, UK Department of Energy and Climate Change) and Andrew Pendleton (Head of Campaigns, Friends of the Earth).

The programme draws on the teaching and research strengths of CISD and of the SOAS departments of International Politics, Law, Economics and area studies (especially of Asia, Africa and the Middle East) as well as a wide range of languages. In particular, students will be able to benefit from the expertise located at the Centre for Environment, Development and Policy (CEDEP), the Law School's Law, Environment and Development Centre (LEDC), the Centre on the Politics of Energy Security (CEPES), the Centre for Water and Development, and the SOAS Food Studies Centre.

In addition to the three core modules of Global Energy and Climate Policy (1 unit), Applied Energy and Climate Studies (0.5 units) and Global Public Policy (0.5 units) students choose a fourth module to meet their specific professional needs and personal interests.

Students on this course will have the opportunity to participate in CISD's Study Tour of Paris and Brussels.

Programme objectives

- Excellent understanding of the nature and development of global energy and climate policy, drawing on a variety of contributing disciplines

- Excellent knowledge of regulatory challenges and their impact on public and private stakeholders in both the Global South and North

- Ability to critically contribute to contemporary policy debates about reforms of international energy and climate governance architectures and their interaction with national and sub-national policy and regulatory frameworks

- Development of practical skills including policy analysis and policy advocacy, risk analysis, strategic communication and media

We welcome applications from a wide variety of fields and backgrounds. It is not necessary to have a degree in a discipline directly related to global energy and climate policy.

Each application is assessed on its individual merits and entry requirements may be modified in light of relevant professional experience and where the applicant can demonstrate a sustained practical interest in the international field.

Listen to the MSc Global Energy and Climate Policy and CISD's 1st Annual Energy and Climate Change Conference (May 2011) podcast (http://www.4shared.com/mp3/EdRUc-qq/CISD_Energy_and_Climate_Change.html), organised by students.

Visit the website http://www.soas.ac.uk/cisd/programmes/msc-global-energy-and-climate-policy/

Programme Specification

Programme Specification 2015/2016 (pdf; 172kb) - http://www.soas.ac.uk/cisd/programmes/msc-global-energy-and-climate-policy/file80890.pdf

Teaching & Learning

The programme may be taken in one year (full time) or in two or three years part time with the schedule designed to allow participation by those in full time employment. Participants may choose a combination of courses to meet their professional needs and personal interests. The programme is convened on a multi-disciplinary basis, and teaching is through lectures, tutorials and workshops conducted by SOAS faculty and visiting specialists.

The Centre endeavours to make as many of the courses for Global Energy and Climate Policy (GECP) accessible to part time students. The majority of CISD lectures are at 18.00 where possible however lecture times will be rotated on a yearly basis for some courses (between evening and daytime slots) so that part time students will have access to as many courses as possible over the duration of their degree. Associated tutorials are repeated in hourly slots with the latest taking place at 20.00. Students sign up for tutorial groups at the start of term and stay in the same group throughout the academic year. There is a minimum of two and a half hours formal teaching a week (lecture and tutorial) for each GECP course taken. Practical exercises may take place at weekends.

Teaching includes:

- Theory and practice of global energy and climate change policy as intertwined global issues

- Practical toolkit including policy analysis and planning, risk analysis, strategic communication, policy advocacy and negotiation skills

- Interaction with policymakers and government officials, energy industry and NGO representatives, and other practitioners

- An elective from a wide range: International Relations, International Law, International Economics, International Security, Multinational Enterprises in a Globalising World or a course offered by other SOAS departments (e.g. Development Studies, Politics, Economics, Law)

Further activities:

Also included in the degree programme:

- Week-long study trip to energy and climate change related organisations in Brussels and Paris
- Advanced media and communication skills training by current and former BBC staff
- Participation in workshops attended by public and private sector stakeholders
- Opportunity to organize and run the Centre’s annual Energy and Climate Policy conference
- Guest lectures by leading scholars and senior practitioners (visit the CISD website (http://www.cisd.soas.ac.uk/all-audios/1) to listen to the podcasts)

This course is also available online and is designed for those engaged with or planning a career in professional contexts relating to energy and/or climate policy and who wish to study in a flexible way. Please click here to view more information http://www.soas.ac.uk/cisd/programmes/msc-global-energy-and-climate-policy-online/

Find out how to apply here - http://www.soas.ac.uk/admissions/pg/howtoapply/

Read less
Spatial Planning determines the design of places, the relationships between land uses, and identifies infrastructure requirements. Read more
Spatial Planning determines the design of places, the relationships between land uses, and identifies infrastructure requirements. The planning process makes provision for the needs of households and the requirements of the economy, and planning aims to mitigate the adverse impacts of development upon our natural environment.

The planning system is currently undergoing change to be better able to address the challenges of competitiveness and sustainability. There is a pressing requirement in both the public and private sectors for planners with appropriate understanding and skills to plan for development and protect the environment.

The University is a long-established provider of planning education. MSc Spatial Planning will be attractive to individuals with a real interest in tackling the challenges of important urban planning issues; MSc Spatial Planning with Urban Conservation is designed to equip graduates for professional management roles concerned with the critical interplay of transport and spatial planning.

Why choose spatial planning?

Spatial Planning is concerned with creating sustainable places. Planners achieve this in a number of ways:

Planners work with building firms and housing organisations to help make available sites addressing the housing needs of local areas. They meet with local communities to learn about their concerns and to discuss ways of tackling issues such as the protection of homes from flood risk. They provide guidance on how to promote quality in the design of places and buildings.

Planning makes possible investment in sustainable economic development. Through preparing medium and long-term plans, planners ensure that land is available for development within and around our cities and towns. Planners often lead on regeneration projects and work in partnership with engineers to bring forward the infrastructures necessary to relieve transport congestion and to provide for long-term energy solutions.

Climate change is making achieving sustainability increasingly important. Planners, work with the environmental agencies and with conservation interests to ensure that the potential environmental impacts arising from development proposals are first established and then they use planning powers to promote a sustainable balance between social and economic development and the protection of the environment.

Who becomes a planning student?

Spatial Planning is a multi-disciplinary activity and attracts a wide mix of graduates. Often these are geography graduates, but increasingly graduates with social science, law, architecture and surveying degrees, as well as graduates from the environmental sciences find that Spatial Planning makes use of their knowledge and training.

Aims of the Programme

The Spatial Planning programmes are designed to provide the knowledge, skills and understanding required for graduates wishing to enter into professional careers in urban planning and development.

Programme Content

Semester 1:
Spatial Analysis has two key components. The first component analyses built and natural environments particularly from a conservation perspective. The second part of the module focuses on socio-economic analysis of data at a city scale and the relevance of this to planning.

Statutory Planning is a practice based approach to learning processes, processes of plan-making and the management of development.

Property Development Processes deals with complexities and challenges in the property development sector and the role of different stakeholders involved.

Semester 2:
Concepts of spatial planning introduces students to the role of planning and planning systems. The other part of this module introduces you to various planning theories and their relevance to practice.

Sustainability in Contemporary Cities examines various challenges facing the growth of cities globally and the implications of these to planning of cities and the countryside.

The third second semester module is optional depending on the selected specialism. You'll select one specialist module from the following:

Environmental Assessment
Marine Spatial Planning
Sustainable Urban Design
Urban Conservation
Applied Geographic Information Systems and Geospatial Data Analysis

Semester 3:
A 60 credit dissertation in line with the selected specialism

Methods of Assessment

Assessment methods cover a mix of formats including 'live' project-work and a research project. There are no written examinations. The educational aims are to develop subject understanding and to equip students with research and practice skills. Assignments call for visioning, problem-solving, forward-planning and critical reflection. Assignments are informed by students making effective use of available literature, conducting investigations and accessing sources of data. Attention is paid to building the effective communication and partnering skills vital for practicing professional planners.

Sources of Funding

Information about the School of the Environment scholarships can be found on the School of the Environment scholarships webpage. Other sources of funding for postgraduate students can be found on our Scholarships webpage.
SAAS tuition fee loans are available for this course for students who meet the eligibility criteria. Visit our SAAS tuition fee loan webpage for more information and links.

Read less
Spatial Planning determines the design of places, the relationships between land uses, and identifies infrastructure requirements. Read more
Spatial Planning determines the design of places, the relationships between land uses, and identifies infrastructure requirements. The planning process makes provision for the needs of households and the requirements of the economy, and planning aims to mitigate the adverse impacts of development upon our natural environment.

The planning system is currently undergoing change to be better able to address the challenges of competitiveness and sustainability. There is a pressing requirement in both the public and private sectors for planners with appropriate understanding and skills to plan for development and protect the environment.

The University is a long-established provider of planning education. MSc Spatial Planning will be attractive to individuals with a real interest in tackling the challenges of important urban planning issues; MSc Spatial Planning with Sustainable Urban Design is designed to equip graduates with the professional skills for resolving environmental, economic, social, cultural and spatial dimensions in designing for sustainable development.

Why choose spatial planning?

Spatial Planning is concerned with creating sustainable places. Planners achieve this in a number of ways:

Planners work with building firms and housing organisations to help make available sites addressing the housing needs of local areas. They meet with local communities to learn about their concerns and to discuss ways of tackling issues such as the protection of homes from flood risk. They provide guidance on how to promote quality in the design of places and buildings.

Planning makes possible investment in sustainable economic development. Through preparing medium and long-term plans, planners ensure that land is available for development within and around our cities and towns. Planners often lead on regeneration projects and work in partnership with engineers to bring forward the infrastructures necessary to relieve transport congestion and to provide for long-term energy solutions.

Climate change is making achieving sustainability increasingly important. Planners, work with the environmental agencies and with conservation interests to ensure that the potential environmental impacts arising from development proposals are first established and then they use planning powers to promote a sustainable balance between social and economic development and the protection of the environment.

Who becomes a planning student?

Spatial Planning is a multi-disciplinary activity and attracts a wide mix of graduates. Often these are geography graduates, but increasingly graduates with social science, law, architecture and surveying degrees, as well as graduates from the environmental sciences find that Spatial Planning makes use of their knowledge and training.

Aims of the Programme

The Spatial Planning programmes are designed to provide the knowledge, skills and understanding required for graduates wishing to enter into professional careers in urban planning and development.

Programme Content

Semester 1:
Spatial Analysis has two key components. The first component analyses built and natural environments particularly from a conservation perspective. The second part of the module focuses on socio-economic analysis of data at a city scale and the relevance of this to planning.

Statutory Planning. is a practice based approach to learning processes processes of plan-making and the management of development.Property Development Processes deals with complexities and challenges in the property development sector and the role of different stakeholders involved.

Semester 2:
Concepts of spatial planning introduces students to the role of planning and planning systems. The other part of this module introduces students to various planning theories and their relevance to practice..

Sustainability in Contemporary Cities examines various challenges facing the growth of cities globally and the implications of these to planning of cities and the countryside.

The third second semester module is optional depending on the selected specialism. Students select one specialist module from the following:

Environmental Assessment
Marine Spatial Planning
Sustainable Urban Design
Urban Conservation
Applied Geographic Information Systems and Geospatial Data Analysis

Semester 3:
A 60 credit dissertation in line with the selected specialism

Methods of Assessment

Assessment methods cover a mix of formats including 'live' project-work and a research project. There are no written examinations. The educational aims are to develop subject understanding and to equip students with research and practice skills. Assignments call for visioning, problem-solving, forward-planning and critical reflection. Assignments are informed by students making effective use of available literature, conducting investigations and accessing sources of data. Attention is paid to building the effective communication and partnering skills vital for practicing professional planners.

Sources of Funding

Information about the School of the Environment scholarships can be found on the School of the Environment scholarships webpage. Other sources of funding for postgraduate students can be found on our Scholarships webpage.
SAAS tuition fee loans are available for this course for students who meet the eligibility criteria. Visit our SAAS tuition fee loan webpage for more information and links.

Read less
The breadth of material covered in our MSc in Sustainable Planning gives students the skills they need in order to meet contemporary sustainability challenges in planning. Read more
The breadth of material covered in our MSc in Sustainable Planning gives students the skills they need in order to meet contemporary sustainability challenges in planning. Planning has a key role to play in improving the condition of life in our towns, cities and rural areas. Towns and cities themselves impact on global sustainability and can play a very influential role in tackling global environmental, social and economic problems. Equally, implementing sustainability principles within urban and rural areas is essential for the well-being of the local residents and improvement of the local environment. Creating more sustainable towns and cities will be central to the future of society and the planet. The planning system is so important because it provides one of the most sophisticated mechanisms for regulating environmental change. Recent policy changes have made planning in neighbourhoods and in communities even more important.

About the course

Increasingly planners are being required to facilitate the creation of more sustainable urban environments. This requires expertise and skills in a diverse range of disciplines and nationally there is a shortage of relevant skills. This course offers both personal opportunities for students to gain valuable skills that make them highly employable, and allows them to contribute to a much needed and fast changing professional area.

Why choose this course?

This exciting new course is specifically aimed at people wishing to gain expertise in contemporary sustainability issues. It provides graduates with excellent career opportunities in planning, environmental management, urban design, community development, regeneration, transport management, climate change mitigation and other planning related careers. The course is suitable for:
-Students who have work experience in planning or related discipline and require a postgraduate qualification and subsequent professional accreditation to develop their career further
-New graduates starting their career in planning with a first degree in geography, environmental science, conservation, sociology, architecture and urban studies
-Students from other disciplines who have developed an interest in planning from voluntary work, work experience or project work.

Key Features

-A combination of stimulating academic study and strong career orientation
-Focus on the role of planning in addressing key sustainability concerns: climate change; urban sprawl; social cohesion; and demands for personal mobility
-Using the latest techniques including GIS; urban design tools and community design engagement techniques such as charettes
-Practical problem based approach to learning that uses real planning issues and case studies
-Flexibility of study based on a programme of short courses scheduled over two or three days at weekends
-UK field trips including visits to the start of town planning nearby at Letchworth and the first New Towns
-International study visit to look at European best practice in France and Germany

This course is available both full and part-time. Full time study in Semester A takes 1 year. Full time study beginning in Semester B will take 15 months. Part time study options typically take two years but students are given a maximum of five years to complete.

Careers

When you graduate from this course you will have excellent career opportunities in planning, environmental management, urban design and urbanism, community development and regeneration, transport management, climate change mitigation and adaptation and other planning related careers - all with a special focus on maximizing your sustainability expertise. Prospective employers include: local government; private sector planning consultancies; specialist consultancies in environmental management, urban design, transport planning; public involvement bodies; national government agencies; third sector employers including charities with an urban and rural focus; and professional bodies.

Teaching methods

The MSc Sustainable Planning course structure is based on a series of two to three day short courses and tutorials that usually run Friday and Saturday, though some modules may require a Thursday as well.

For full time students the modules run approximately twice a month which means that you will be attending classes on four weekdays and two Saturdays.

Part-time students attend the MSc Sustainable Planning short courses over two years. This makes the course easy to attend and fit around a busy workload schedule.

Structure

Core Modules
-Development Viability
-Place-making and Spatial Mediation
-Planning law, policy & practice
-Research Methods
-Spatial Planning: Theories and Strategies
-Sustainable Communities & Environment
-Sustainable Energy
-Sustainable Planning Dissertation
-Urban Design and Conservation

Optional
-Community Engagement and the Planning Process
-Planning for Rural Communities
-Research Methods
-Spatial Analysis for Planning
-Urban Regeneration
-Water Resources

Read less
The part-time MSc Renewable Energy Systems is the first cross-border program in Europe dealing with the future issues of alternative energy production. Read more

The part-time MSc Renewable Energy Systems is the first cross-border program in Europe dealing with the future issues of alternative energy production. Since 2005, TU Wien, Energiepark Bruck/Leitha and further partner organisations across Europe have offered this practice-oriented master’s program.

With this comprehensive education in the field of renewable energy you acquire knowledge and competence for the design of plants for the use of renewable energy sources from an economic and legal point-of-view, the operation of plants and the future assessment of environmental, technical and economic developments of renewable energy systems.

Contents

This master's program focuses on three aspects in particular: technological innovations, management of sustainable energy systems, and economic as well as legal frameworks.

  • Technological Innovations: Participants acquire a basic technical knowledge in the area of alternative energy production. The fast-changing nature and development of this sector are specifically considered. Focal points are solar energy, wind power, biomass, biogas, small hydropower stations, photovoltaics, bio fuel, and geothermal technology as well as issues, such as energy saving and energy efficiency.
  • Management of Sustainable Energy Systems: Conveys skills, such as project development, project financing, project operation, and knowledge on business management. Furthermore, participants obtain a detailed market overview on selected European countries.
  • General Economic and Legal Framework: Participants obtain knowledge on the general economic and legal frameworks of European Union as well as national directives and legal provisions of selected European countries.

Modules

  • Introduction on Renewable Energy
  • Biomass, Biofuels and Biogas
  • Solar Energy – Solar Heating and Photovoltaics
  • Geothermal Energy, Wind Power, and Small Hydro Power
  • Efficient Energy Use and Thermal Building Optimization
  • General Legal and Economical Frameworks
  • Integration of Renewable Energy Sources into the Energy System
  • Management and Soft Skills
  • Perspectives on the Use of Renewable Energy
  • Master´s Thesis

More details on the contents and modules can be found here.

Country Modules

To provide the participants with in-depth knowledge on energy markets in Europe, tailor-made country modules in selected European countries are an essential part of this MSc program. For more information in the country modules, please click here.

Target Group

Individuals within companies, organisations, and authorities who are engaged in planning, operating or evaluation of renewable energy or who are involved in financing, promotion, legal licensing, operation of facilities for the use of renewable energy or environmental issues.

Program Objectives/Goals

With the MSc Program you acquire knowledge and competence for

  • the design of plants for the use of renewable energy sources from economic and legal point-of-view
  • the operation of plants for the use of renewable energy sources,
  • the future assessment of environmental, technological and economic developments of renewable energy systems.


Read less
The breadth of material covered in our MSc in Sustainable Planning gives students the skills they need in order to meet contemporary sustainability challenges in planning. Read more
The breadth of material covered in our MSc in Sustainable Planning gives students the skills they need in order to meet contemporary sustainability challenges in planning. Planning has a key role to play in improving the condition of life in our towns, cities and rural areas. Towns and cities themselves impact on global sustainability and can play a very influential role in tackling global environmental, social and economic problems. Equally, implementing sustainability principles within urban and rural areas is essential for the well-being of the local residents and improvement of the local environment. Creating more sustainable towns and cities will be central to the future of society and the planet. The planning system is so important because it provides one of the most sophisticated mechanisms for regulating environmental change. Recent policy changes have made planning in neighbourhoods and in communities even more important.

About the course

Increasingly planners are being required to facilitate the creation of more sustainable urban environments. This requires expertise and skills in a diverse range of disciplines and nationally there is a shortage of relevant skills. This course offers both personal opportunities for students to gain valuable skills that make them highly employable, and allows them to contribute to a much needed and fast changing professional area.

Why choose this course?

This exciting new course is specifically aimed at people wishing to gain expertise in contemporary sustainability issues. It provides graduates with excellent career opportunities in planning, environmental management, urban design, community development, regeneration, transport management, climate change mitigation and other planning related careers. The course is suitable for:
-Students who have work experience in planning or related discipline and require a postgraduate qualification and subsequent professional accreditation to develop their career further
-New graduates starting their career in planning with a first degree in geography, environmental science, conservation, sociology, architecture and urban studies
-Students from other disciplines who have developed an interest in planning from voluntary work, work experience or project work.

Key Features

-A combination of stimulating academic study and strong career orientation
-Focus on the role of planning in addressing key sustainability concerns: climate change; urban sprawl; social cohesion; and demands for personal mobility
-Using the latest techniques including GIS; urban design tools and community design engagement techniques such as charettes
-Practical problem based approach to learning that uses real planning issues and case studies
-Flexibility of study based on a programme of short courses scheduled over two or three days at weekends
-UK field trips including visits to the start of town planning nearby at Letchworth and the first New Towns
-International study visit to look at European best practice in France and Germany

This course is available both full and part-time. Full time study in Semester A takes 1 year. Full time study beginning in Semester B will take 15 months. Part time study options typically take two years but students are given a maximum of five years to complete.

Careers

When you graduate from this course you will have excellent career opportunities in planning, environmental management, urban design and urbanism, community development and regeneration, transport management, climate change mitigation and adaptation and other planning related careers - all with a special focus on maximizing your sustainability expertise. Prospective employers include: local government; private sector planning consultancies; specialist consultancies in environmental management, urban design, transport planning; public involvement bodies; national government agencies; third sector employers including charities with an urban and rural focus; and professional bodies.

Teaching methods

The MSc Sustainable Planning course structure is based on a series of two to three day short courses and tutorials that usually run Friday and Saturday, though some modules may require a Thursday as well.

For full time students the modules run approximately twice a month which means that you will be attending classes on four weekdays and two Saturdays.

Part-time students attend the MSc Sustainable Planning short courses over two years. This makes the course easy to attend and fit around a busy workload schedule.

Structure

Core Modules
-Development Viability
-Place-making and Spatial Mediation
-Planning law, policy & practice
-Spatial Planning: Theories and Strategies
-Sustainable Communities & Environment
-Sustainable Energy
-Sustainable Planning Dissertation
-Transport Data Collection and Analysis
-Transport Policy & Travel Planning
-Urban Design and Conservation

Optional
-Research Methods

Read less
Your programme of study. If you want to get into renewable energy University of Aberdeen offer an online programme which you can study flexibly to fit around your work, life and anywhere in the world. Read more

Your programme of study

If you want to get into renewable energy University of Aberdeen offer an online programme which you can study flexibly to fit around your work, life and anywhere in the world. It is a great way to study a degree from a known and trusted brand with exactly the same content as the on campus version but delivered entirely online.

Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Considerable innovation and improvements are continuous within this field as it is by no means at a stage where society can rely on it to fuel all needs. The sector is interdisciplinary and this programme provides you with a wide range of very useful skills and knowledge to problem solve and progress current renewables and work towards innovation whether that is in a renewables company or as a start up.

You study electrical and electronic engineering pertinent to smart grid, sensing energy use, developing energy harvesting techniques, and renewable energy exchange, plus ability to harvest energy from all of our natural resources including wind, solar, hydro, marine, geothermal, biomass and other newly developing areas. Renewables is definitely an employable sector as governments are now challenged by finite resources coming from traditional areas, climate change and societal concerns about how we harvest energy in the future and our ability to survive climatic issues, population increase and manage work and life.

Courses listed for the programme

Year 1

  • Renewable Energy 2 (Biomass)
  • Fundamental Safety Engineering and Risk Management Concepts
  • Energy Conversation and Storage
  • Legislation, Planning and Economics

Year 2

  • Electrical Systems for Renewable Energy
  • Renewable Energy 1 (Solar and Geothermal)
  • Renewable Energy Integration to Grid
  • Renewable Energy 3 (Wind, Marine and Hydro)

Year 3

  • Individual Project

Find out more detail by visiting the programme web page

or if you want to study on campus find out more

Why study at Aberdeen?

  • You are taught by industry professionals and the engineering department each are highly regarded in their fields
  • The programme is delivered flexibly so you can choose how best to study with various options at your disposal
  • You cover energy harvesting methods and their integration into the grid plus planning and economics, ideal for enterprise and innovation
  • The sector is driven by a need which shows no signs of stopping in terms of necessity to life so there are plenty of opportunities

Where you study

  • Online
  • 5 Months or 27 Months
  • Part Time
  • September or January start

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Related Degrees

Other engineering disciplines you may be interested in:



Read less
Your programme of study. If you are fascinated by protecting the environment across all areas that impact our ability to provide a clean environment in the sea/water, earth/soil and air and you are interestd regulation of harmful pollutant effects on all life on this planet this programme will really interest you. Read more

Your programme of study

If you are fascinated by protecting the environment across all areas that impact our ability to provide a clean environment in the sea/water, earth/soil and air and you are interestd regulation of harmful pollutant effects on all life on this planet this programme will really interest you. You could decide to work for an energy company or any industry within its environmental regulation and protection area whilst it grows and trades or you could be the regulator and work in central government. You could also work for NGOs and activist organisations such as Client Earth to clean up industries that appear to be affecting our potential future life on earth or consultants assisting individuals and groups to seek environmental justice.

The programme is ideally situated in the heart of the energy industry in Aberdeen City where regulators and energy providers work alongside. For the wide ranging environmental aspect you also benefit from highly protected environments nearby such as National Parks and restrictions on planning and development specifically to protect environment. In every day life you can be assured that there will be a constant demand for your skills as a consultant to work with business, groups and individuals to protect environment with the 'Polluter Pays' principle in terms of protecting basic rights relating to environment. There are many instances where our environment needs protecting in our daily lives from poor planning decisions to poorly regulated polluters.

At Aberdeen you get a full range of experts in energy law, drawing from historical and close links with the energy industry in the city and environmental law experts covering renewables, corporate environmental responsibility, and regulation.

Courses listed for the programme

Introduction

  • All students must take to LS50xx courses

Compulsory

  • Critical Legal Thinking and Scholarship

Optional

  • International Energy and Environmental Law
  • Oil and Minerals for Good
  • Low Carbon Energy Transition: Renewable Energy Law 

Semester 2

Optional

  • Principles of Environmental Regulation
  • Low Carbon Energy Transition: Nuclear Energy and Carbon Capture and Storage
  • Corporate Environmental Liability
  • Downstream Energy Law

Semester 3

  • Energy and Environmental Law Professional Skills

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • Aberdeen is an ideal city to study energy and environmental law due to energy industry connections in the city
  • You are taught by wide ranging experts and you gain first hand experience of practise in your specialism at Aberdeen
  • Law is ranked in the top 10 at Aberdeen (Complete University Guide 2018)
  • Increasing development, demands upon environment and pollution highlight employability in this discipline is growing

Where you study

  • University of Aberdeen
  • 12 or 24 months
  • Full Time or Part Time
  • September or January

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 

You may be interested in other programmes:



Read less
Your programme of study. If you are fascinated by protecting the environment across all areas that impact pollution control and health of all living things in sea/water, earth/soil and air this programme will be of real interest to you. Read more

Your programme of study

If you are fascinated by protecting the environment across all areas that impact pollution control and health of all living things in sea/water, earth/soil and air this programme will be of real interest to you. You understand how to regulate and control harmful pollutant effects on all life on this planet and you learn how to ensure the polluter pays. You could decide to work for an energy company or any industry within its environmental regulation and protection area.

There is a balance of growth and just how harmful that growth can be without regulation and control. You could be the regulator and work in central government or local government or you could be the gatekeeper to pollution control to ensure it complies with regulation for your company. You could also work for NGOs and activist organisations such as Client Earth to clean up industries that appear to be affecting our potential future life on earth or consultants assisting individuals and groups to seek environmental justice.

The programme is ideally situated in the heart of the energy industry in Aberdeen City where regulators and energy providers work alongside. For the wide ranging environmental aspect you also benefit from highly protected environments nearby such as National Parks and restrictions on planning and development specifically to protect environment. In every day life you can be assured that there will be a constant demand for your skills as a consultant to work with business, groups and individuals to protect environment with the 'Polluter Pays' principle in terms of protecting basic rights relating to environment. There are many instances where our environment needs protecting in our daily lives from poor planning decisions to poorly regulated polluters.

At Aberdeen you get a full range of experts in energy law, drawing from historical and close links with the energy industry in the city and environmental law experts covering renewables, corporate environmental responsibility, and regulation. This programme differs from the other University of Aberdeen programme as you deliver a research project in the form of dissertation rather than professional skills. 

Courses listed for the programme

Semester 1

  • Introduction: All students must take two LS50xx and LS55xx courses

Compulsory

  • Critical Legal Thinking and Scholarship

Optional

  • Oil and Minerals for Good
  • Low Carbon Energy Transition: Renewable Energy Law

Semester 2

Optional

  • Principles of Environmental Regulation
  • Low Carbon Energy Transition: Nuclear Energy and Carbon Capture and Storage
  • Corporate Environmental Liability
  • Downstream Energy Law

Semester 3

  • Master of Law Dissertation

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • Aberdeen is an ideal city to study energy and environmental law due to energy industry connections in the city
  • You are taught by wide ranging experts and you gain first hand experience of practise in your specialism at Aberdeen
  • Law is ranked in the top 10 at Aberdeen (Complete University Guide 2018)
  • Increasing development, demands upon environment and pollution highlight employability in this discipline is growing

Where you study

  • University of Aberdeen
  • 12 Months Full Time or 24 Months Part Time
  • September or January start

International Student Fees 2017/2018

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 

Other Programmes you may be interested in:   





Read less

Show 10 15 30 per page



Cookie Policy    X