• Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Kent Featured Masters Courses
Coventry University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Swansea University Featured Masters Courses
"energy" AND "engineering…×
0 miles

Masters Degrees (Energy Engineering)

  • "energy" AND "engineering" ×
  • clear all
Showing 1 to 15 of 917
Order by 
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Read more
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Process engineering, for example, with such fields as environmental- and energy engineering, is now seen as one of the key disciplines. It deals with the engineering required for a wide range of processes and the transformation of materials, in which raw materials are converted in a series of unit operations into salable intermediate and final products.

One focus of training within the discipline relates to the development and application of various environmental and energy technologies. Both environmental- and energy engineering are classified as green technologies, which have developed at an above-average rate in the last few years. That is due to growing social awareness for sustainability and the finite nature of our resources on the one hand and legal constraints on the other. The latter in particular call for innovative processes and technologies in response to today’s challenges. The Master program in Environmental, Process & Energy Engineering is designed to communicate the knowledge, methodology and problem-solving competence needed to tackle a very wide range of engineering problems in the above mentioned fields. With its commitment to bridge-building between the academic and the business worlds, Management Center Innsbruck also provides essential teaching in the increasingly important horizontal disciplines of law and economics, and the skills needed for today’s labor market.

Major Energy Engineering

In the light of dwindling energy resources and volatile energy prices, energy engineering has become an integral economic factor with enormous potential for growth, especially in such fields as energy generation from non-fossil primary energy sources, energy distribution and energy savings. MCI graduates with a specialization in Energy Engineering typically deal with a wide variety of processes, from conventional power plant engineering to the conversion of energy carriers and their various precursors, and decentral energy supply systems. The major in Energy Engineering caters for these market requirements by communicating the relevant knowledge and skills with a combination of in-depth teaching and practical applicability.

Given their interdisciplinary training and the program’s strong practical orientation, graduates are particularly well qualified to work as engineers at the interface with business and management with special reference to the following areas:

Energy trading, energy management & natural resources
Renewable energies
Glass industry
Oil industry
Consulting engineers, consulting & engineering
Paper and paper products
Chemicals
Gas and heating supply industries

Read less
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Read more

Mission and goals

Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc.
The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Professional opportunities

Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_MI.pdf
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are
systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc. The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.
Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas. The programme is taught in English.

Subjects

- Five tracks available: Power Production; Heating, Ventilation and Air-Conditioning; Oil and Gas Engineering; Energy Engineering for an Environmentally Sustainable World (offered on Piacenza campus, see separate leaflet); Energy for Development.

- Subjects and courses common to all the tracks: Heat and Mass Transfer; Fundamentals of Chemical Processes; Advanced Energy Engineering and Thermoeconomics;; Combustion and Safety; Energy Conversion or Refrigeration, Heat Pumps and Thermal Power Systems and Components; Energy Economics or Project Management or Management Control Systems; Graduation Thesis.

- Optional subjects according to the selected track: Development Economy; Engineering and Cooperation for Development; Power Production from Renewable Sources; Engineering of Solar Thermal Processes; Petroleum Reservoir Engineering; Petroleum Technology and Biofuel; Transport Phenomena in the Reservoirs; CFD for Energy Engineering Analysis; System and Electrical Machines; Advanced Energy Systems; Dynamic Behavior and Diagnostics of Machines; Materials for Energy; Turbomachinery; Internal Combustion Engines; Air Conditioning and Room Pollutant-Controlling Plants, Energy Savings and Renewable Energies in Buildings; Applied Acoustics and Lighting; Design of Thermal Systems; Energy Systems and Low-Carbon Technologies; Air Pollutions and Control Engineering; Operation and Control of Machines for Power Generation; Bio-energy and Waste-to-Energy Technologies; Smart Grids and Regulation for Renewable Energy Sources.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
As we improve existing technologies and transition to more sustainable energy systems, clean energy technologies will become increasingly vital to the world's energy mix. Read more
As we improve existing technologies and transition to more sustainable energy systems, clean energy technologies will become increasingly vital to the world's energy mix. Industry and government are critically dependent on hiring talented technical leaders who can develop innovative and practical solutions. There is a growing need across multiple industries for technical experts in clean energy engineering. Our planet needs viable energy solutions to minimize environmental impacts, promote geopolitical stability and enable economic diversification. The Master of Engineering Leadership (MEL) Clean Energy Engineering is an intensive one-year degree program for engineers and environmental science graduates who want to make their sustainable vision a reality and advance their careers in the in-demand field of clean energy.

The project-based curriculum covers all stages of the industry value chain and exposes you to alternative energy systems including hydro, wind, solar, tidal, geothermal and other emerging technologies. You will work in world-class facilities, including the Clean Energy Research Centre. This interdisciplinary research centre brings together engineers and industry partners who collaborate to develop practical solutions that can reduce the environmental impact of energy use and seek sustainable solutions.

While 60 per cent of your classes will focus on your technical specialization, the remaining 40 per cent are leadership development courses that will enhance your business, communication and people skills. Delivery of the management and leadership courses are in partnership with UBC's Sauder School of Business.

What Makes The Program Unique?

The MEL in Clean Energy Engineering degree was developed in close collaboration with industry partners, who told us they need to hire leaders with cross-functional technical and business skills to develop innovative solutions, manage teams and direct projects. The combination of technical expertise and leadership development makes the MEL in Clean Energy Engineering program unique and highly relevant in today's business environment. The MEL in Clean Energy Engineering degree is a unique graduate program that empowers you to develop the sector-relevant cross-disciplinary technical skills required by top employers. As a graduate of this program, you will have the skills to take your career in clean energy to the next level; tackling complex engineering challenges in this in-demand field while confidently leading collaborative teams.

To complement your academic studies, professional development workshops, delivered by industry leaders, are offered throughout the year-long program. These extra-curricular sessions cover a range of topics such as:
-Leadership fundamentals
-Giving and receiving feedback
-Learning how to deliver a successful pitch
-Effective presenting

The workshops also provide opportunities to network with professionals from a wide range of industries, UBC faculty and students in the MEL and MHLP programs.

Funding Sources

The Faculty of Applied Science offers a limited number of $5,000 merit-based awards to MEL students. All applicants who submitted their application before July 1 are automatically considered for this award. You do not need to submit a separate application. The merit-based awards are given to selected applicants and only the successful recipients will be notified before the program starts in January. Aside from the merit-based award, there no other scholarships, grants or funding offered by UBC for MEL students.

Career Options

Our graduates will be in high demand locally, nationally and internationally, with government and industry employers constantly seeking experts in the field who can develop new processes and systems. Typical job roles of CEEN students are Renewable Energy Consultant, Renewable Energy Engineer, Energy Analyst, Energy & Building Consultant, Energy Efficiency Engineer, Energy Management Engineer, Energy Manager, Project Engineer and Project Manager.

Read less
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Read more
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Candidates will be required to plan, design and manage energy systems blending creative solutions with up-to-date technologies relative to energy conversion and efficiency enhancement.

At the end of the course, engineers will be good at operating in the current technological/industrial environment - i.e. a dynamic and competitive one - and sensitive to the main industry, environment and security issues and standards.

The main aim of the course is to offer an in-depth theoretical and practical understanding of the most advanced energy conversion technologies, including renewable energy generation and energy storage.

Please visit http://www.en2.unige.it for any further information.

The Course is held at Savona Campus, in the city of Savona.

WHAT WILL YOU STUDY AND FUTURE PROSPECTS

The course consists of modules that include thermo-fluid dynamics and thermo-chemical dynamics, as well as fluid machinery and energy conversion systems (co-generation, fuel cells, power plants from renewable energy sources and smart grids), traditional energy and civil engineering plants, electric networks, economics, available and emerging technologies for reducing greenhouse gas emissions and environmental monitoring.

A rising interest in and increased urge for 20/20/20 policies in Europe has resulted in a growing industrial demand for highly qualified Energy Engineers with a sound knowledge and specific skills to analyze, design and develop effective solutions in a broad range of contexts. Furthermore, in the last few years both emerging industrial countries and developing ones have increased their awareness of environmental issues and energy production and started implementing large energy engineering projects thus boosting the job opportunities worldwide. The course is aimed at students seeking high qualification in the following main fields:

Energy conversion processes from chemical, bio-chemical, thermal sources into mechanical and electrical ones

Sustainable & Distributed Energy: renewable energy (solar, geothermal, wind, hydro), fuel cells, bio-fuels, smart power grids, low emission power plants Sustainable Development: C02 sequestration, LCA analysis, biomass exploitation, Energy Audit in buildings, energy from waste, recycling, modeling and experimental techniques devoted to optimum energy management.

The MSc course work in partnership with industries and research institutes in Liguria, in Italy and abroad.

WHAT DOES THE MASTER IN ENERGY ENGINEERING OFFER TO ITS STUDENTS

In the last years both industrialization and population growth have brought to a higher demand for sustainable energy, smart energy management with reduced environmental impact. As a result the MSc Energy Engineering was born out of the need to better cope with Sustainable Development issues and progress in energy conversion technologies, in including renewable energy generation and energy storage, NZE buildings, with an increasing attention devoted to greenhouse gas emissions reduction through a multidisciplinary approach.

This MSc course is taught in English and students are supported in achieving higher English language skills. The University of Genoa set its modern campus in Savona and in the last few years, public and private funds have been invested to improve its infrastructures, sport facilities, hall of residence, library and an auditorium.

The University of Genoa and Siemens jointly developed a smart polygeneration microgrid in Savona Campus – officially commissioned on February 2014.

Since then the campus has largely generated enough power to satisfy its own needs with the help of several networked energy producers, i.e. total capacity 250Kw of electricity and 300kW of heating.

The grid includes microgasturbines, absorption chillers, a photovoltaic plant, a solar power station and electrochemical and thermal storage systems.

This huge facility together with a series of laboratories located at the Campus (e.g. Combustion Lab, Energy Hub Lab) offer the students a unique opportunity for hands-on activities, e.g. to measure and investigate the performance of real scale innovative energy systems.

Read less
The MSc. Energy Engineering is a specially designed further education master program of the TU Berlin which offers students and young professionals a unique scientific education in the fields of sustainable energy engineering. Read more
The MSc. Energy Engineering is a specially designed further education master program of the TU Berlin which offers students and young professionals a unique scientific education in the fields of sustainable energy engineering. Besides the teaching of fundamental knowledge in thermodynamics and energy conversion, the practical training is an important part of this program. We have close cooperations with the German Center for Aerospace (DLR) in Stuttgart and the Helmholtz Zentrum in Berlin.

Additionally, we offer ring lectures of local researchers and future workshops tackeling the most urgent problems of energy engineering.

Read less
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Read more
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Process engineering, for example, with such fields as environmental- and energy engineering, is now seen as one of the key disciplines. It deals with the engineering required for a wide range of processes and the transformation of materials, in which raw materials are converted in a series of unit operations into salable intermediate and final products.

One focus of training within the discipline relates to the development and application of various environmental and energy technologies. Both environmental- and energy engineering are classified as green technologies, which have developed at an above-average rate in the last few years. That is due to growing social awareness for sustainability and the finite nature of our resources on the one hand and legal constraints on the other. The latter in particular call for innovative processes and technologies in response to today’s challenges. The Master program in Environmental, Process & Energy Engineering is designed to communicate the knowledge, methodology and problem-solving competence needed to tackle a very wide range of engineering problems in the above mentioned fields. With its commitment to bridge-building between the academic and the business worlds, Management Center Innsbruck also provides essential teaching in the increasingly important horizontal disciplines of law and economics, and the skills needed for today’s labor market.

Major Environmental Engineering

Graduates of this study program, with its strong practical orientation, typically work with a variety of Environmental technologies processes, from air and water pollution control and residual waste treatment to alternative energy carriers. They are capable of analyzing environmental pollutants and employing the results to develop technical solutions to reduce the impacts on soil, air and water. They may also be responsible for controlling, optimizing and monitoring plants and ensuring compliance with the relevant laws.

Graduates tend to work as process and environmental engineers in the following fields:

Environmental engineering
Natural resources
Renewable energies
Glass industry
Oil industry
Waste and waste water management
Consulting engineers
Paper and paper products
Chemicals

Read less
This Renewable Energy Engineering course is an advanced MSc course in the area of renewable energy engineering, with an emphasis on the mechanical engineering aspects of renewable energy production. Read more
This Renewable Energy Engineering course is an advanced MSc course in the area of renewable energy engineering, with an emphasis on the mechanical engineering aspects of renewable energy production.

The course is aimed at students wishing to develop a critical understanding of the significant changes emerging in the energy system due to the development and integration of wind, marine, biomass and solar technologies. The course will equip students with the skills needed to develop and implement creative solutions to the problems encountered in renewable energy capture, conversion, storage and management.

For further details, please refer to

Read less
The Master of Engineering Leadership in Clean Energy Engineering combines engineering science, management and leadership in clean energy. Read more
The Master of Engineering Leadership in Clean Energy Engineering combines engineering science, management and leadership in clean energy. The program balances advanced engineering theory, interdisciplinary knowledge and real-world applications to give you the technical and leadership skills needed to take your career to the next level.

LEARN FROM THE BEST

UBC introduced North America’s first Master of Engineering in Clean Energy degree in 2009 and operates a world-class research facility bringing together leaders from industry, government and academia.

COMPREHENSIVE CURRICULUM

You’ll broaden your technical skill sets in the areas of sustainable energy generation, energy transmission, distribution and storage, and efficient energy use.

DEVELOP TECHNICAL AND BUSINESS SKILLS

In this project-based curriculum, you will explore cutting-edge concepts in clean energy engineering while building your strengths as a leader.

Quick Facts

- Degree: Master of Engineering
- Specialization: Environmental Engineering
- Subject: Engineering
- Mode of delivery: On campus
- Program components: Coursework only
- Faculty: Faculty of Applied Science

Read less
The Master of Science programme in Energy Engineering for an Environmentally Sustainable World (EEE-SW) is taught in English and offers a broad overview of the various technical issues related to energy and the environment. Read more

Mission and Goals

The Master of Science programme in Energy Engineering for an Environmentally Sustainable World (EEE-SW) is taught in English and offers a broad overview of the various technical issues related to energy and the environment. This special programme aims to prepare technicians capable of following and actively directing technological advances, operating effectively in a competitive and multi-disciplinary industrial context.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

Career Opportunities

Graduates find employment in numerous industrial sectors, including industries producing and distributing energy, thermal, thermal-electric, air-conditioning and refrigeration plant design and management companies, energy management in companies or bodies with production objectives which may be far-removed energy. A Master of Science Engineer has openings in research and development as well as in activities related to the feasibility study and design of large-scale plant, innovative processes and development of technologically advanced machines and components.

For the academic year 2014-2015 prospective students with a university qualification obtained abroad can apply only for the 1st semester. This study course does not accept applications for the 2nd semester.
Applicants are required to take the GRE test (Graduate Record Examination) through ETS DI code 6939 in due time to have test scores sent to Welcome Desk Piacenza (welcome.piacenza(at)polimi.it) within the last day of the application period.

Recommended minimum GRE scores to be achieved for admission:
Verbal Reasoning: 155
Quantitative Reasoning: 155
Analytical Writing: 4.0

Only students with a Degree earned at an Italian University can apply without taking GRE test and they can also apply for admission at the 2nd semester.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_01.pdf
The programme provides a mix of design, operational and management skills, with particular emphasis on system and process engineering related to the production of basic energy carriers (electricity, heat and fuels) under tight environmental constraints. Students will learn how to evaluate and solve engineering issues (thermal, environmental, mechanical, chemical, electrical) raised by energy conversion systems, as well as analyze and assess operational and maintenance issues. Particular attention will be devoted to renewable energy sources, non-conventional energy technologies, emission control, electric systems with distributed power generation, etc. Teaching is organized around 3 core aspects: modeling and simulation tools; interdisciplinary vision; problem-solving approach. The programme is taught in English.

Subjects*

1st year – 1st semester
- Advanced Mathematical methods for energy engineering
- Advanced Thermodynamics and Heat Transfer
- Fundamentals of chemical processes for energy and the environment
1st year – 2nd semester
- Turbomachinery and internal combustion engines
- Energy and environmental technologies for building systems
- Electric conversion of renewable energy sources
- Materials and manufacturing process for energy

2nd year – 1st semester
- Energy systems and low-carbon technologies
- Air pollution and control engineering
- Operation and control of machines for power generation
2nd year – 2nd semester
- Bio-energy and waste-to-energy technologies
- Smart grids and regulation for renewable energy sources
- Major independent project work

* The list and titles of the courses to be followed is undergoing a revision aimed at enhancing the focus of the programme on the connection between Energy and the Environment. This will entail a reduction of the credits devoted to manufacturing, operation and control of machines and an increase of the credits devoted to optimization methods, renewable energy, industrial ecology. The final list of courses to be taken for the Academic Year 2016-17 will be available in January 2016.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This programme aims to prepare students with science backgrounds to develop unique expertise in the fundamentals of energy and the environment, their applications for the benefit of humankind, and the ability to stay abreast of the field of sustainable energy engineering. Read more
This programme aims to prepare students with science backgrounds to develop unique expertise in the fundamentals of energy and the environment, their applications for the benefit of humankind, and the ability to stay abreast of the field of sustainable energy engineering.

The programme structure is designed to appeal to students with sciences or mathematics backgrounds, and is modular in format. The content of the programme includes a compulsory Engineering Methods module in the first semester, which aims to introduce and develop engineering techniques for students with varied backgrounds. Other than these modules students will be taking specialist energy engineering modules that are being developed for the MSc. This will bolster our current offering, but will also allow these students to become specialists in their field.

A 60 credit research project is to be undertaken using our research activities and our state of the art facilities. Several high performance computing clusters owned by the university support a full spectrum of computational research. Our well equipped laboratories include a wide range of IC engines, heat transfer facilities, wind tunnels, an anechoic chamber, a UK CueSim Flight Simulator and France-Price Induction Jet engine test bench, and energy materials synthesis and characterisation labs. support Systems, Aerodynamics and Propulsion research. Nanotechnology research is further supported by the facilities and expertise provided by Nanoforce, a company directly associated with the School.

* All new courses are required to undergo a two-stage internal review and approval process before being advertised to students. Courses that are marked "subject to approval" have successfully completed the first stage of this process. Applications are welcome but we will not make formal offers for this course until it has passed this second (and final) stage.

Read less
Accredited by the Energy Institute and the Institution of Chemical Engineers. Tailor the course to suit you by blending core and optional modules. Read more

About the course

Accredited by the Energy Institute and the Institution of Chemical Engineers

Tailor the course to suit you by blending core and optional modules. This practical degree has been developed with the Institution of Chemical Engineers and the Energy Institute to equip you with the skills and expertise needed for work in sectors including industry, education, public administration and commerce.

Take advantage of our expertise

Our teaching is grounded in specialist research expertise. Our reputation for innovation secures funding from industry,
UK research councils, the government and the EU. Industry partners, large and small, benefit from our groundbreaking work addressing global challenges.

You’ll have access to top facilities, including modern social spaces, purpose-built labs, the Harpur Hill Research Station for large-scale work, extensive computing facilities and a modern applied science library. There are high-quality research facilities for sustainable energy processes, safety and risk engineering, carbon capture and utilisation, and biological processes and biomanufacturing.

Studentships

Contact us for current information on available scholarships.

Course content

Diploma: five core and three optional modules. MSc(Eng): five core modules, major research or design project, and three optional modules.

Core modules

Introduction to Fuel and Energy
Applied Energy Engineering
Environment: Gaseous Emissions
Environment: Particulate Emissions
Environment: Liquid Effluents
Research Project

Examples of optional modules

Computational Fluid Dynamics
Fires and Explosion Dynamics
Energy from Biomass and Waste
Low Carbon Energy and Technology (Renewables)
Environmental Impacts and Protection
Nuclear Reactor Engineering
Oil and Gas Origins and Usage

Teaching and assessment

We use lectures, tutorials and project work. All your tutors are actively involved in research and consultancy in their field. Assessment is by formal examinations and a research or design project dissertation. Continuous assessment of some modules.

Read less
This course is an advanced MSc course in the area of renewable energy engineering, with an emphasis on the design, analysis and implementation of renewable energy projects. Read more
This course is an advanced MSc course in the area of renewable energy engineering, with an emphasis on the design, analysis and implementation of renewable energy projects. The course is designed to help you develop critical understanding that you can apply to assist the wide range of renewable energy industries. The course will equip you with the engineering knowledge and practical skills necessary to develop and implement creative solutions to engineering problems encountered in renewable energy capture and conversion, system design and analysis, project development and implementation.

You will use lab and field-testing facilities for measuring and monitoring performance of different renewable energy systems, such as wind turbines, photovoltaic power systems and heat pumps. You will also learn to use tools for component and system design, simulation of the performance and monitoring of renewable energy systems. These tools include Matlab/Simulink, ANSYS and SciLab for wind turbine blade design and CFD, GH WindFarmer and WAsP for wind farm design, PVsyst for photovoltaic system design and Labview for system monitoring.

The course is suitable for students with a science or engineering background.

Professional Accreditation

This MSc is accredited by the Institution of Engineering and Technology (IET), as further learning satisfying the educational requirements for Chartered Engineer (CEng) registration

Professional Placements

The Professional/Work Placement options will give you the opportunity to research, secure and undertake a period of work experience or industrial placement in an organization appropriate to the field of study. They take place after the completion of the taught modules.

Course content

Core Modules
• SC4107 Research Methods
• MP4708 Renewable Energy Technology
• MP4709 Energy Systems
• MP4710 Design and Analysis of Renewable Energy Systems
• EL4895 Masters Project (Engineering)

Option Modules
Two of the following:
• MP4701 Design and Operation of Sustainable Systems
• MP4705 Sustainable Systems Development
• MP4706 Sensors, Instrumentation & Control
• MP4713 Wind Turbine Generators, Power Electronics and Control

Optional placement modules:
• Professional Placement (Engineering); (120 credits)
• Work Placement (Engineering); (60 credits)

Read less
The MSc in Renewable Energy Engineering aims to deliver qualified engineers of the highest standard and who are capable of contributing significantly to the increased demand for renewable energy technologies. Read more
The MSc in Renewable Energy Engineering aims to deliver qualified engineers of the highest standard and who are capable of contributing significantly to the increased demand for renewable energy technologies. Many other MSc courses in this area only provide a very broad overview and do not offer the academic and technical depth required for designers of renewable energy power generation systems. This course will equip you with the advanced interdisciplinary skills required to design, optimise and evaluate the technical and economic viability of renewable energy schemes. You will have the opportunity for visits to renewable energy companies, giving an operational view of work in this sector.

Read less
This programme is an advanced MSc course in renewable energy engineering, with an emphasis on the design, analysis and implementation of renewable energy projects. Read more
This programme is an advanced MSc course in renewable energy engineering, with an emphasis on the design, analysis and implementation of renewable energy projects. Designed to help you develop critical understanding, the course will equip you with the engineering knowledge and practical skills necessary to develop and implement creative solutions to engineering problems encountered in renewable energy capture and conversion, system design and analysis, project development and implementation. You’ll use lab and field-testing facilities for measuring and monitoring performance of different renewable energy systems, such as wind turbines, photovoltaic power systems and heat pumps.

You’ll also learn to use tools for component and system design, simulation of the performance and monitoring of renewable energy systems. These tools include Matlab/Simulink, ANSYS and SciLab for wind turbine blade design and CFD, GH WindFarmer and WAsP for wind farm design, PVsyst for photovoltaic system design and Labview for system monitoring. You’ll also have the option to experience a Professional/Work Placement in addition to the taught course.

PROFESSIONAL ACCREDITATION

This MSc is accredited by the Institution of Engineering and Technology (IET), as further learning satisfying the educational requirements for Chartered Engineer (CEng) registration.

LEARNING ENVIRONMENT

Students will benefit from:
-Free supportive short course tailored to students individual needs. This is a group of lectures/tutorials, provided as part of the independent learning on foundation topics such as electric circuits, 3-phase current, rotating machines, maths, and excel.
-Free supportive English language module for International students
-Seminars on Employability
-Sites visits on UK renewable energy installations.
-Variety in assessment for learning methods including: examination, coursework, tests, presentations, poster defence and written reports.

Read less
This degree mirrors the two-year Masters programme structure that is common in the USA, and is an ideal stepping stone to a PhD or a career in industry. Read more
This degree mirrors the two-year Masters programme structure that is common in the USA, and is an ideal stepping stone to a PhD or a career in industry.

The optional professional placement component gives you the opportunity to gain experience from working in industry, which cannot normally be offered by the standard technically-focused one-year Masters programme.

PROGRAMME OVERVIEW

The Electronic Engineering Euromasters programme is designed for electronic engineering graduates and professionals with an interest in gaining further qualifications in advanced, cutting-edge techniques and technologies. Current pathways offered include:
-Communications Networks and Software
-RF and Microwave Engineering
-Mobile Communications Systems
-Mobile and Satellite Communications
-Mobile Media Communications
-Computer Vision, Robotics and Machine Learning
-Satellite Communications Engineering
-Electronic Engineering
-Space Engineering
-Nanotechnology and Renewable Energy
-Medical Imaging

Please note that at applicant stage, it is necessary to apply for the Electronic Engineering (Euromasters). If you wish to specialise in one of the other pathways mentioned above, you can adjust your Euromaster programme accordingly on starting the course.

PROGRAMME STRUCTURE

This programme is studied full-time over 24 months and part-time over 60 months. It consists of ten taught modules and an extended project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Communications
-Digital Signal Processing A
-Object Oriented Design and C++
-RF and Microwave Fundamentals
-Nanoscience and Nanotechnology
-Space Dynamics and Missions
-Space Systems Design
-Antennas and Propagation
-Image Processing and Vision
-Fundamentals of Mobile Communications
-Principles of Telecommunications and Packet Networks
-Space Robotics and Autonomy
-Speech and Audio Processing and Recognition
-Satellite Communication Fundamentals
-Satellite Remote Sensing
-Molecular Electronics
-RF Systems and Circuit Design
-Internet of Things
-Nanofabrication and Characterisation
-Space Avionics
-Applied Mathematics for Communication Systems
-Data and Internet Networking
-Digital Design with VHDL
-Computer Vision and Pattern Recognition
-Mediacasting
-Semiconductor Devices and Optoelectronics
-AI and AI Programming
-Advanced Signal Processing
-Advanced Guidance, Navigation and Control
-Image and Video Compression
-Launch Vehicles and Propulsion
-Advanced Mobile Communication Systems
-Microwave Engineering Optional
-Nanoelectronics and Devices
-Network and Service Management and Control
-Operating Systems for Mobile Systems Programming
-Advanced Satellite Communication Techniques
-Nanophotonics Principles and Engineering
-Mobile Applications and Web Services
-Spacecraft Structures and Mechanisms
-Space Environment and Protection
-Renewable Energy Technologies
-Engineering Professional Studies 1 (with industrial Placement)
-Engineering Professional Studies 1
-Engineering Professional Studies 2
-Extended Project

PARTNERS

The MSc Euromasters complies with the structure defined by the Bologna Agreement, and thus it is in harmony with the Masters programme formats adhered to in European universities. Consequently, it facilitates student exchanges with our partner universities in the Erasmus Exchange programme.

A number of bilateral partnerships exist with partner institutions at which students can undertake their project. Current partnerships held by the Department include the following:
-Brno University of Technology, Czech Republic
-University of Prague, Czech Republic
-Universität di Bologna, Italy
-Universität Politècnica de Catalunya, Barcelona, Spain
-Universita' degli Studi di Napoli Federico II, Italy

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate degree programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in electronic engineering, physical sciences, mathematics, computing and communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

A graduate from this MSc programme should:
-Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin electronic engineering
-Be able to analyse problems within the field of electronic engineering and find solutions
-Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within electronic engineering
-Be aware of the societal and environmental context of his/her engineering activities
-Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Be able to carry out research-and-development investigations
-Be able to design electronic circuits and electronic/software products and systems

Enhanced capabilities of MSc (Euromasters) graduates:
-Demonstrate transferable skills such as problem solving, analysis and critical interpretation of data, through the undertaking of the extended 90-credit project
-Know how to take into account constraints such as environmental and sustainability limitations, health and safety and risk assessment
-Have gained comprehensive understanding of design processes
-Understand customer and user needs, including aesthetics, ergonomics and usability
-Have acquired experience in producing an innovative design
-Appreciate the need to identify and manage cost drivers
-Have become familiar with the design process and the methodology of evaluating outcomes
-Have acquired knowledge and understanding of management and business practices
-Have gained the ability to evaluate risks, including commercial risks
-Understand current engineering practice and some appreciation of likely developments
-Have gained extensive understanding of a wide range of engineering materials/components
-Understand appropriate codes of practice and industry standards
-Have become aware of quality issues in the discipline

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Use of quantitative methods for problem solving. Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X