• University of Leeds Featured Masters Courses
  • Loughborough University London Featured Masters Courses
  • Durham University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Loughborough University Featured Masters Courses
  • Queen Mary University of London Featured Masters Courses
  • Arden University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Loughborough University Featured Masters Courses
"energy" AND "efficient" …×
0 miles

Masters Degrees (Energy Efficient Building Design)

  • "energy" AND "efficient" AND "building" AND "design" ×
  • clear all
Showing 1 to 15 of 48
Order by 
The built environment is changing - the EU has set a target for all new buildings to be nearly zero-energy efficient by the end of 2020. Read more
The built environment is changing - the EU has set a target for all new buildings to be nearly zero-energy efficient by the end of 2020. This is your opportunity to get up to speed on the newest practices in designing energy efficient buildings and refurbishments.

Through case studies and fieldwork, you will analyse the latest energy efficiency innovations and renewable technologies applied to new buildings and those undergoing a retrofits. By examining contemporary passive houses, nearly-zero buildings and energy plus structures, you'll discover how the leading exemplars in this field achieve their efficiency performances. You'll also study the shortcomings in current building efficiencies - where they fall short in meeting their energy targets and how they can be improved with the resources available.

Your work will be shaped by cutting-edge research as you collaborate with specialists who help inform new Government regulations and policies. This will broaden your knowledge and help you forge contacts with the principal thinkers and leaders in the building performance sector.

Visit the website http://courses.leedsbeckett.ac.uk/energyefficientbuildings_apd

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

Energy efficiency surveyors and specialists arealready in high demand, and the need for their expertise will continue to growas the industry faces tighter energy legislation. This demand should filterthrough to related professions in architecture, construction management andquantity surveying, where knowledge in this area will complement existingexpertise and give those at the start of their careers a significant advantagein the jobs market.

- Property Developer
- Architect
- Construction Manager
- Quantity Surveyor

Careers advice:
The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

You will take part in site visits to study the very latest energy efficient buildings in detail, examining their characteristics and design specifications first-hand.

Our University has strong research links to industry, including many of the organisations such as the Department of Energy and Climate Change and the International Energy Institute that drive the energy efficiency agenda forward. This will give you the chance to network with the leading thinkers sharing and share in their latest insights. You will also evaluate industry software and the methodologies used to assess and monitor building efficiency.

All of our teaching staff have practical experience as consultants in new builds and refurbishment. They are recognised nationally and internationally, and some are directly involved in regulation and research that influences the direction of the industry.

Your course will give you the commanding expertise to make you highly sought after as the industry responds to the growing demand for energy efficiency specialists.

Core Modules

Low to Zero Energy Buildings & Energy Efficient Building Systems
Gain a comprehensive understanding of the principals of low to zero energy buildings, focusing on their energy sustainability, fabric and systems such as lighting and heating.

Sustainable Refurbishment & Retrofit
Discover the techniques relating to sustainable refurbishment and retrofit, examining the design and detail of existing and pre-1900 structures.

Chris Gorse

Senior Lecturer

"New legislation is pushing for tightened building energy requirements over the next few years, so knowledge in this area is essential. Once the legislation is in place, the industry will have to rapidly upskill itself."

Chris Gorse is Professor of Construction and Project Management and Director of Leeds Sustainability Institute. He leads projects in the areas of sustainability, low carbon and building performance and has an interest in domestic new builds, commercial buildings and refurbishment. Chris is an established author and has consultancy experience in construction management and law.

Facilities

- Design Studios
You will be able to access our extensive studio facilities, which include workshops and computer modelling software to design and build projects.

- Library
Our Library is open 24/7, every day of the year. However you like to work, we have got you covered with group and silent study areas, extensive e-learning resources and PC suites.

- Leeds Sustainability Institute
We offer the latest drone and thermal imaging technology to provide new ways of measuring and evaluating building sustainability.

- Broadcasting Place
Broadcasting Place provides students with creative and contemporary learning environments, is packed with the latest technology and is a focal point for new and innovative thinking in the city.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
This innovative course is for people who wish to understand the ways new and renewable energy can be harnessed in buildings, who wish to gain the ability to undertake the simulation and modelling tasks which are essential for credible building performance analysis, and acquire the ability to work creatively within a multidisciplinary design team. Read more

About the course

This innovative course is for people who wish to understand the ways new and renewable energy can be harnessed in buildings, who wish to gain the ability to undertake the simulation and modelling tasks which are essential for credible building performance analysis, and acquire the ability to work creatively within a multidisciplinary design team.

The need for sustainable approaches to building design is universally acknowledged. As the effects of climate change are felt, the drive towards more energy efficient buildings is intensifying. Sustainable buildings need not be technologically complex but a high level of sophistication in design procedures and performance analysis is required.

The course has an interdisciplinary approach that gives a broad insight into energy and sustainability issues, and in-depth knowledge of the computer modelling techniques that are used in the design of modern sustainable buildings.

The course has been approved by both the Chartered Institute of Building Services Engineers (CIBSE) and the Energy Institute for completing the educational requirements for chartered engineer registration.

Reasons to Study;

• Flexible study options
the course is designed to be flexible and fit around you with on campus, part-time or full-time or distance learning options, and multiple exit awards from a full master’s to a single module

• Accredited by CIBSE and the Energy Institute
ensuring you will benefit from the highest quality teaching, and graduate with a recognised qualification

• Interdisciplinary teaching
develop a broad insight in to energy and sustainability issues, with in-depth knowledge of computer modelling techniques for the design of modern sustainable buildings

• Excellent graduate career prospects
graduates of the programme have gone on to work for the European Commission, Mott MacDonald, WSP Group, WYG, and Arup; as well as a variety of other energy and environmental consultancies, central and local government and multinational organisations

• Academic and research expertise
With more than 30-year’s research experience, our Institute of Energy and Sustainable Development (IESD) research and teaching staff provide students with a unique opportunity to learn from scientists actively involved in furthering knowledge and sharing expertise

Course Structure

Modules

The MSc has been designed to offer flexibility, with attended or distance learning study available and a range of possible awards from a full MSc to a single module. Modules studied:

• Sustainable Development
• Energy in Buildings
• Sustainable Energy
• Resource-Efficient Design
• Energy and Thermal Performance
• Ventilation and Daylight Modelling
• Energy Analysis Techniques
• Research Methods
• Design Project

Teaching and Assessment

Full-time students attend for two days each week and receive formal lectures from experienced researchers and teaching staff, complemented by informal seminars and group discussions. Part-time students attend one day per week. You will also be expected to undertake self-directed study. All teaching material is fully documented and available on the web-based virtual learning environment (VLE) before timetabled events take place.

Distance learning students follow a structured study plan provided on the VLE, supported by discussion forums with other students, and email and telephone conversations with the module leader. Our course has been commended in an academic quality review for its “innovative and sophisticated forms of e-based learning and teaching”.

All assessment is by coursework. Each taught module has two items of coursework. The first is a smaller assignment for which feedback is given while the module is being studied. A second, major assignment is due at a later date after the material has been assimilated.

As well as the eight taught modules, students complete either an individual dissertation or a team-based design project, and all students get to attend the annual MSc conference, where final year students present.

Contact and learning hours

You will normally attend two - four hours of timetabled taught sessions each week for each module undertaken during term time; for full time study this would be 12 hours per week during term time. You can also expect to typically undertake a further hours of six hours independent study and assignments as required per week.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
This programme responds to the worldwide demand for building services engineers who have a sound knowledge of engineering principles and the ability to apply this knowledge within the building services industry. Read more

About the course

This programme responds to the worldwide demand for building services engineers who have a sound knowledge of engineering principles and the ability to apply this knowledge within the building services industry.

Professional ‘Building Services Engineers’ design all of the systems that are necessary in a building for occupants to carry out their business. These systems include: heating, lighting, air-conditioning and electrical systems. The role is increasingly involved with the provision of sustainable, energy efficient and green building within our society. Services have to be carefully designed and installed so that they are unobtrusive and aesthetically pleasing, and also work in harmony with the architecture of the building. The programme will respond to the worldwide demand for building services engineers who have a sound knowledge engineering principles and the ability to apply this knowledge to the complex situations prevailing within the building services industry.

The course is available either as a full-time, 1-year programme at Brunel or as a 3-to-5 year distance learning programme.

Aims

With the growing complexity of engineering services in modern buildings and the significance of energy conservation and emissions control, the role of the building services engineer is becoming increasingly important.

As an interdisciplinary profession that involves the specification, design, installation and management of all the engineering services associated with the built environment, comfort and function also need to be combined – which calls for engineers with a wide range of knowledge and skills.

This MSc programme is suitable for:

Recent engineering and technology graduates, moving into building services and related disciplines.
Established engineers and technologists, working in building services and faced with the challenge of new areas of responsibility.
Engineers who want to develop technical understanding and expertise across the multi-disciplines of building services engineering.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in building services engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with building services engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.

Course Content

Modes of Study

1 Year Full-Time: The taught element of the course (September to April) includes seven modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

3-5 Years Distance Learning: The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to study yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.

Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Typical Modules

The course comprises four core modules, three technical modules and a dissertation. The taught modules are:

Core Modules:

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Energy Conversion Technologies
Dissertation

Technical Modules:

Building Management and Control Systems
Design of Fluid Services and Heat Transfer Equipment
Building Services Design and Management

Special Features

There are several advantages in choosing the Brunel Building Services programme:

Award-winning courses: Building Services Engineering courses have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: It is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: Emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Collaborative research
Engineering at Brunel benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Additioanlly we are seeking reaccreditation with the Energy Institute.

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of the academic year.
Examinations are normally taken in May. MSc dissertation project normally is carried out over four months (full-time students) or one year (distance learning students) and it is accessed by submission of an MSc dissertation.

Read less
The world is recognising that buildings need to consume less energy in the future – and this course develops your building services engineering knowledge with a focus on sustainable design. Read more

About the course

The world is recognising that buildings need to consume less energy in the future – and this course develops your building services engineering knowledge with a focus on sustainable design.

You will learn about renewable energy technologies, efficient ventilation, air conditioning and energy conversion technologies in the programme, and can choose from a broad range of dissertation topics.

The course is available on either a one-year, full-time or three-to-five-year, distance-learning basis.

Aims

The era of zero emission building is within grasping distance of the mass construction industry – creating a huge demand for specialists with the skills to design and project manage effectively.

The aim of this programme is to respond to the worldwide demand for building services engineers and managers who have a sound knowledge of engineering principles and the ability to apply this knowledge to the complex situations prevailing within the building services industry.

Course Content

Modes of Study

1-Year Full-Time
The taught element of the course (September to April) includes seven modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

3-to-5-Years Distance-Learning
The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to suit yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.
Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Typical Modules

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Energy Conversion Technologies
Building Services Design and Management
Renewable Energy Technologies
Energy Efficient Ventilation for Buildings
Dissertation

Special Features

There are numerous advantages in choosing the Brunel Building Services programme:

Award-winning courses: Building Services Engineering courses have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: It is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: Emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Collaborative research
Engineering at Brunel benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Additionally we are seeking reaccreditation with the Energy Institute.

Teaching

Students are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May/June.
Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Read less
Our MSc Building Diagnostics for Energy and Environmental Performance aims to give students a solid foundation in the evaluation of the operational performance of buildings for energy and environmental aspects. Read more
Our MSc Building Diagnostics for Energy and Environmental Performance aims to give students a solid foundation in the evaluation of the operational performance of buildings for energy and environmental aspects. The programme will focus on the diagnostics of energy and environmental performance, integrating technical and occupants’ data. It will prepare you for a future career across a range of roles in facilities and building management, consultancy, energy and environmental performance assessment and research.

Most existing programmes in this subject area focus on the design of new buildings. However, the efficient operation of existing buildings is becoming more important. There is a need to improve the quality of environments and, at the same time, to reduce the energy that they consume and their carbon dioxide emissions. You will learn from interdisciplinary approaches, as the programme draws on bodies of theories from building science, social sciences and humanities.

On successful completion of the programme, you should be able to conduct sound evidence-based environmental and energy performance assessments of buildings in operation. You should also be able to analyse and integrate technical and social aspects of performance using methods of energy and environmental monitoring and human studies.

Our structured curriculum will enable you to develop essential knowledge and practical skills in building diagnostics. We will support you to become an independent learner, able to undertake and understand the industry and policy challenges and to respond to them effectively. The Welsh School of Architecture at Cardiff University is a friendly, supportive and culturally diverse environment in which to study.

Distinctive features

• Study in one of the top schools of architecture in the UK

• Available on a 1-year full-time or 2-year part-time basis

• Looks at buildings diagnostics in a holistic way by considering both technical and human aspects affecting the performance of existing buildings Develops an advanced knowledge of investigation methods and techniques to conduct performance evaluation exercises, integrating technical and human data

• Includes management strategies to improve the building performance and to meet energy and environmental goals

• Looks holistically at building performance evaluation, explaining the relationship between environmental conditions in buildings and occupants’ satisfaction, comfort and wellbeing

• Highly relevant, as the efficient operation of existing buildings is becoming more important

• Work on a live project to embed your knowledge of building energy and environmental performance with a focused and hands-on approach

• Benefit from our close links with industry and other building clients to boost your employability

Structure

The taught element of the programme consists of modules to the value of 120 credits taken over two years . After successfully completing the taught modules, you will undertake a dissertation to the value of 60 credits. The dissertation will provide you with the opportunity to follow your professional and academic interests in the field, supported by experts in different aspects of building performance evaluation. This gives you the flexibility to follow your personal interests.

Through the programme’s taught modules you will gain fundamental knowledge around energy and environmental aspects of the built environment. Several of these modules are shared with some of our other postgraduate master’s courses, which will enable you to network with other students and make connections. You will also undertake most specialist modules which focus on developing discipline-specific skills and knowledge in conducting sound evidence-based building performance evaluations.

Core modules:

Earth and Society
Low Carbon Footprint
Climate Comfort & Energy
Architectural Science Research
Perspectives on Performance
People and Buildings
Advanced Monitoring Tools and Techniques
Post Occupancy Evaluation for Sustainable Building Management
Dissertation

Assessment

Taught and project-based modules are assessed in a variety of different ways depending on the module content and learning outcomes (found in the module descriptions). We use class tests, course work (both written assignments and oral presentations or critical assessments/crits), and project work, or a combination of these to assess your progress on the module.

In the dissertation stage, your dissertation is the sole object of assessment. The dissertation is a written report on a piece of research which you have carried out in an agreed subject area under supervision.

Career Prospects

Typically graduates from this type of programme will have employability opportunities in energy and environmental consultancy, building management, facilities management, architectural and engineering firms, and research.

Fieldwork

An important element of this course is a live project on a real building or development. This will entail study trips to the area in question.

Read less
The Programme, entirely offered in English, prepares high-level professionals that can work in the field of the built environment, and in particular of high energy performance, low environmental impact buildings, thanks to a multi-disciplinary training and to the acquisition of specialist engineering skills. Read more

Mission and goals

The Programme, entirely offered in English, prepares high-level professionals that can work in the field of the built environment, and in particular of high energy performance, low environmental impact buildings, thanks to a multi-disciplinary training and to the acquisition of specialist engineering skills.

The Programme offers two tracks with specific characteristics:
- Architectural Engineering (offered in Lecco), giving students the ability to manage – and take part in – the integrated design process of complex construction projects;
- Building Engineering (offered in Milano Leonardo), giving students the ability to design, model and predict the physical, mechanical, and energy behaviour of complex building components and systems, services and structures.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

Career opportunities

The Building and Architectural Engineer is a professional that can effectively practice in complex, multi-disciplinary and multi-scale projects, and in particular in the following fields:
- design of complex new buildings, in particular in the areas of technology, structures, energy efficiency and environmental quality;

- refurbishment and retrofit of existing buildings, in particular in the areas of technology, energy upgrade and structural consolidation;

- management of the multi-disciplinary, multi-scalar design process, with the help of specific design and information tools;

- technological innovation of building components and systems;

- advanced performance modelling of complex building components and systems, services and structures;

- management of global performances, with the goal of reducing the environmental impact of buildings.

More information on the programme website: http://www.ccsarcheng.polimi.it/

Presentation

See http://www.polinternational.polimi.it/uploads/media/Architectural_Engineering_Lecco.pdf
This track of the Master of Science in Building and Architectural Engineering trains Architectural Engineers that can manage and take part in the integrated design process of complex construction projects. An interdisciplinary approach to design and construction, and the related teamwork, are widely recognized as the essential tools to deliver buildings with high performances, reliable sustainability credentials, and a balanced life cycle cost.
The Architectural Engineer is a professional ready to work in complex, multidisciplinary and multi-scalar projects. The programme trains students through two parallel approaches:
- Giving them the tools, from the fields of both engineering and architecture, to be
effective members of design teams;
- Involving them in integrated studios where they can apply the principles of
integrated design to specific projects.

The programme prepares students to approach, among others, the fields of multiscale energy-efficient design, innovative construction technology and refurbishment of existing buildings, with a strong focus on the different scales of intervention (from the city and territory to the building and construction components). The programme is also strongly rooted in the European and Italian tradition which has created cities and buildings celebrated worldwide.

Subjects

- Architectural Design
- History of Architecture
- Building Physics
- Building Services
- Conservation
- Integrated Project Management
- Refurbishment and Energy Retrofit
- Structural Design
- Sustainable Building Technologies
- Sustainable Multidisciplinary Design Process
- Urban Design

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Gain the expertise to determine if buildings are achieving their required energy efficiency targets, and how to go about improving them. Read more
Gain the expertise to determine if buildings are achieving their required energy efficiency targets, and how to go about improving them.

The energy performance of today's new buildings must withstand far more scrutiny than ever before. Those involved or investing in construction projects will need an increasing awareness of these factors to maintain compliance with the law, as tougher EU and UK directives for building performance are drawn up and legislated.

You will use the latest technologies to evaluate building performance, including software to model 2D thermal movement or track moisture. You will also visit real-life testing sites and help set up and carry out some of the procedures yourself, investigating heat loss, heat transfer, moisture development and thermal bridges.

Your course will provide an essential platform if you are wanting to evaluate the energy efficiency of buildings, or if you want to get involved in building forensics or surveying.

Visit the website http://courses.leedsbeckett.ac.uk/buildingperformance_apd

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

New legislation and the need for more energy efficient buildings will ensure the demand for experts in the design and evaluation of high-performing homes and workplaces continues to grow. Specialist knowledge in this field should help if you already work in surveying, building forensics and energy efficient assessment to further your career.

- Sustainable Property Developer
- Energy Efficient Assessor
- Building Forensic Assessor
- Building Surveyor

Careers advice:
The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

You'll be exposed to the latest techniques and technologies to measure heat loss and energy transfer, as well as the latest cutting-edge research from our Sustainability Institute and our School of Built Environment & Engineering.

Our teaching staff are involved in building performance evaluation on national research schemes. Our University is frequently commissioned by Innovate UK, a leading technology advisory body, to analyse the best energy performing buildings in the country, which underlines our expertise in this area. Our academics will feed these findings directly into your learning, giving you access to first-class research and a rich variety of contacts to network with.

You will also have access to our state-of-the-art building performance testing kits to analyse buildings in the field, such as thermal imaging cameras and drone technology, and you will work with the latest 2D and dynamic simulation modelling software to measure standards and sharpen your experience of working with the latest technology.

Core Modules

Building Performance & Evaluation
Develop the knowledge of a range of tools and techniques to analyse the energy performance of a building.

Building Environmental Science & Modelling
Gain an overview of the science that governs how buildings perform in relation to occupant comfort, health, energy use and service life.

Chris Gorse

Senior Lecturer

"You will be exposed to the latest methods of testing and monitoring buildings. We have researchers who have informed building performance evaluation and their knowledge feeds directly into this course."

Chris Gorse is Professor of Construction & Project Management and Director of Leeds Sustainability Institute. He leads projects in the areas of sustainability, low carbon and building performance and has an interest in domestic new builds, commercial buildings and refurbishment. Chris is an established author and has consultancy experience in construction management and law.

Facilities

- Design Studios
Our modern multi-media studios include a dedicated CAD suite and specialist software, such as REVIT, allowing you to develop skills in 3D design and building information modelling.

- Library
Our Library is one of the only university libraries in the UK open 24/7, every day of the year. However you like to work, our Library has you covered with group and silent study areas, extensive e-learning resources and PC suites.

- Leeds Sustainability Institute
We offer the latest drone and thermal imaging technology to provide new ways of measuring and evaluating building sustainability.

- Broadcasting Place
Keeping fit is easy at Leeds Beckett - our fitness suites are easy to get to, kitted out with all the latest technology and available to all sports members.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
This leading-edge programme, established before many in the built environment field were aware of greenhouse gases, has produced a stream of high-achieving graduates sought after by the biggest names in building design and the construction industry. Read more
This leading-edge programme, established before many in the built environment field were aware of greenhouse gases, has produced a stream of high-achieving graduates sought after by the biggest names in building design and the construction industry. We attract students from across the globe eager to find positions throughout the globe or to take relevant, cutting-edge thinking about sustainable building design back to their own part of the world.

Degree information

The programme aims to develop students' knowledge and expertise in problem solving in the area of the built environment, and provide a framework for developing innovative thinking in the design and operation of buildings, placing associated environmental issues in a global, national and personal context.

Students undertake modules to the value of 180 credits. The programme consists of six core modules (90 credits), two optional modules (30 credits) and a built environment dissertation (60 credits). A Postgraduate Diploma (120 credits, full-time nine months) is offered.

Core modules
-The Built Environment: The Energy Context
-Health, Comfort and Wellbeing in Buildings
-Building Solar Design
-Natural and Mechanical Ventilation of Buildings
-Efficient Building Service Systems
-Methods of Environmental Analysis

Optional modules
-Building Acoustics
-Advanced Building Simulation
-Light, Lighting and Vision in Buildings
-Energy Systems Modelling
-Environmental Masterplanning
-Industrial Symbiosis
-Low Energy Housing Retrofit
-Low Carbon, Energy Supply Systems
-Smart Energy Systems Implementation
-Post Occupancy Evaluation of Buildings
-Multi-objective Design Optimisation
-Introduction to System Dynamics Modelling
-Indoor Air Quality in Buildings

The availability of all optional modules is subject to demand.

Dissertation/report
All MSc students submit a 10,000-word report on a topic related to the main themes of the programme. The topic can be chosen to enhance career development or for its inherent interest.

Teaching and learning
The programme is delivered through a combination of interactive seminars, individual and group tutorials, site visits and a residential field trip. Assessment is through unseen examination, coursework, and the built environment report. Joint coursework, including two major low-energy architectural design projects, is carried out by students in multi-disciplinary teams.

Fieldwork
Students will have the opportunity to participate in field trips and site visits including a residential trip to the Centre for Alternative Technology in north Wales. There are no additional cost to students for the field trip to the Centre for Alternative Technology.

Careers

Most students who complete the programme move into, or continue in, a building-related profession, such as architecture, low-energy design consultancy, or building services engineering. As the awareness of global environmental issues increases, the demand for people with expertise in the health and energy performance of buildings is expanding rapidly. A number of students have used the MSc as a foundation for MPhil/PhD research.

First destinations of recent graduates include: Neapoli, XC02, Max Fordham, Arup, WSP, Atkns, Buro Happold, PassivSystems, EnergyExcel, local authorities, Foster and Partners, Rogers Stirk Harbour and Partners.

Top career destinations for this degree:
-Environmental Design Engineer, Neapoli
-Energy Consultant, XCO2 Energy
-Graduate Engineer, Arup
-Environmental Engineer, XCO2 Energy
-Sustainability Consultant, Arup and studying Environment Facility Management, University College London (UCL)

Employability
This programme is very "close to market" with many students finding jobs even before their studies have finished: the skills students gain are those that employers need. For example, we teach several tools used by commercial companies including the thermal analysis software IESVE and SAP. Students can walk straight into jobs where these are used and be useful immediately. Students sometimes take placement positions while working on their dissertations; in recent years this has included overseas options, for example, with Neapoli in Malaysia. Graduates often contact us through our strong alumni network to recruit for new positions, listening to their feedback ensures we keep the programme relevant to industry needs.

Why study this degree at UCL?

The UCL Bartlett is the UK's largest multidisciplinary Faculty of the Built Environment, bringing together scientific and professional specialisms required to research, understand, design, construct and operate the buildings and urban environments of the future.

Located in London, the UCL Bartlett is at the heart of a large cluster of creative architects and engineering firms, next to the UK's seat of government and finance and has all the resources of a world city to hand. It offers unrivalled networking opportunities, with alumni in the majority of the major firms in London, who often give lectures to students and appear at networking events.

The multidisciplinary faculty contains the UCL Bartlett School of Architecture, which has been ranked first for Architecture in the UK for many years, and is characterised by a high level of invention and creativity. The school is internationally known as a centre for innovative design.

Read less
As we head towards zero carbon buildings, we need to better understand how buildings should be constructed and the materials we should use in their construction in order to increase their energy efficiency. Read more
As we head towards zero carbon buildings, we need to better understand how buildings should be constructed and the materials we should use in their construction in order to increase their energy efficiency.

Whether you are working in the construction industry, a graduate from a built environment background or you want to upskill for a new construction role, we will teach you how to analyse the performance of existing buildings and to design and model new, energy efficient buildings.

You will gain an understanding of building physics and performance, including how buildings respond to weather, how to heat buildings efficiently and how bricks, mortar, timber and insulants act as a thermal barrier. Discover how to use 3D modelling packages to study individual building components and analyse how buildings respond to environmental conditions and occupancy patterns.

You can combine this course with other Advanced Professional Diplomas as part of our MSc Sustainable Engineering or study it as a standalone qualification.

Visit the website http://courses.leedsbeckett.ac.uk/buildingmodellingandsimulation_apd

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

Aimed at professionals working within the built environment or graduates looking to build on their knowledge of the built environment, we will help you further your employment prospects within the construction industry. With the ability to assess the performance of existing buildings and the specialist skills to design and model new buildings, you will be a valuable asset to any construction company.

- Building Surveyor
- Architectural Technician
- Mechanical Engineer

Careers advice:
The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

Study part time at your own pace around your job and learn the latest developments in building modelling and performance that will set you apart in the workplace.

When it comes to understanding the performance of buildings in the UK, the government and building industry alike turn to our University for expertise and advice. You will be learning from a teaching team and industry experts who have worked with the UK government and large material manufacturers including Saint-Gobain and ARC Building Solutions to enhance the performance and efficiency of buildings. You will hear the first-hand experiences of business leaders and sustainability experts involved in UK and international consultancy projects on building modelling and simulation.

Through our virtual learning environment you will have access to the latest information about building designs and research on how building stock can be made more energy efficient. Online materials including videos, up-to-date research on thermal performance, moisture propagation and building fabrics, and simulations considering weather conditions, occupancy and the impact of solar and ventilation will inform your learning.

Core Modules

Building Environmental Science & Modelling
Learn to assess building performance for occupant comfort, health, energy use and serviceable life. Discover how modelling of building fabrics and components is used to predict performance.

Building Detailed Design & Specification
Apply the principals learned in the Building Environment Science & Modelling module to the design of building details to maximise performance while avoiding problems.

Professor Chris Gorse

Professor of Construction and Project Management

"The future of our energy efficient homes, workplaces and smart cities is underpinned by the performance and reliability of the models we use. This course will advance your understanding and ability to apply the latest tools and techniques to the field"

Chris Gorse is Professor of Construction and Project Management and Director of Leeds Sustainability Institute. He leads projects in the areas of sustainability, low carbon and building performance and has an interest in domestic new builds, commercial buildings and refurbishment. Chris is an established author and has consultancy experience in construction management and law.

Facilities

- Northern Terrace
Based at our City Campus, only a short walk from Leeds city centre, Northern Terrace is home to our School of Built Environment & Engineering.

- Leeds Sustainability Institute
Our Leeds Sustainability Institute's facilities include the latest drone and thermal imaging technology to provide new ways of measuring and evaluating building sustainability.

- Library
Our Library is open 24/7, every day of the year. However you like to work, we have got you covered with group and silent study areas, extensive e-learning resources and PC suites.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
The increasing drive towards low carbon and sustainable solutions in the built environment has introduced a need for built environment professionals who can take a holistic view of the sustainability debate. Read more
The increasing drive towards low carbon and sustainable solutions in the built environment has introduced a need for built environment professionals who can take a holistic view of the sustainability debate. This programme will combine the technical design and engineering issues associated with the delivery of sustainable built environments with an appreciation for how such approaches can be justified in a commercially focused world. The programme considers passive (building fabric) and active measures (building services and renewable energy technologies) setting out what approach may be taken when considering new build or, as is becoming increasingly important the existing building stock. Students will gain the skills needed to assess these options on a whole life basis with an appreciation for how the financial and business case can be made for such approaches. The programme is closely linked with the schools Sustainable Built Environments Research Group (SBERG) and will be informed by the cutting edge research carried out by the group considering technical, behavioural and social issues associated with the delivery of sustainable built environments. The University of Greenwich is a Passive House Examination Centre and students can gain extra certification as a Passive House Designer/Consultant by taking the programme.

The university has invested £76 million in a new building to house the campus library, TV studios and academic facilities for disciplines including architecture, design and construction. Stockwell Street, where the programme will be delivered, is a short walk from the university's buildings on the Old Royal College site.

The aims of the programme are:

- To develop skills and understanding around the principles of sustainable building with a view to delivering healthy, comfortable, efficient and environmentally friendly buildings

- To consider how the above issues can be applied when working with existing buildings

- To take the technical knowledge gained and working within a commercial world to produce convincing and robust business cases for implementing sustainable solutions.

Visit the website http://www2.gre.ac.uk/study/courses/pg/buil/sbe

Built Environment

We need tools to help us create a built environment that is responsive rather than obstructive to its users and to the world around it. At Greenwich we encourage both students and staff to embrace the interconnectedness of design, construction and building management, of landscape architecture and graphic design, and to constantly look at new ways of exploring these areas.

All architecture programmes focus on the urgent necessity to change our living habits in order to design and build a sustainable urban environment.

The construction management programmes are designed to provide students with a high level of understanding of the design, function, construction and statutory requirements for buildings of all classes, and to prepare them for more advanced employment within the construction industry.

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Building Rehabilitation & Pathology (20 credits)
MSc Dissertation (Built Environment) (40 credits)
Delivering Sustainable Built Environments (20 credits)
Passive Design (20 credits)
Building Integrated Systems and Technologies (20 credits)
Building Simulation (20 credits)
Research Methods (20 credits)

Students are required to choose 20 credits from this list of options.

Development Economics and Planning (20 credits)
Facilities Management (20 credits)
Project Management (20 credits)
Applied Construction Management (20 credits)
Applied Project Management (20 credits)
Property Asset Management (20 credits)
Risk Management (20 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Passive Design (20 credits)
Building Integrated Systems and Technologies (20 credits)
Research Methods (20 credits)

Students are required to choose 20 credits from this list of options.

Development Economics and Planning (20 credits)
Facilities Management (20 credits)
Project Management (20 credits)
Applied Construction Management (20 credits)
Applied Project Management (20 credits)
Property Asset Management (20 credits)
Risk Management (20 credits)

- Year 2:
Students are required to study the following compulsory courses.

Building Rehabilitation & Pathology (20 credits)
MSc Dissertation (Built Environment) (40 credits)
Delivering Sustainable Built Environments (20 credits)
Building Simulation (20 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

Students will be assessed through project and other coursework, presentations, examination (in a limited number of courses) and a dissertation.

Career options

Graduates can pursue opportunities in the design or engineering professions as consultants or in other professional roles in private practice, government agencies, local authorities, development agencies and other large estate holders.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Beautiful architecture. Solid structure. What else do buildings need?. Try living in one without any heating, cooling, electrical power, lighting, water or drainage. Read more
Beautiful architecture. Solid structure. What else do buildings need?

Try living in one without any heating, cooling, electrical power, lighting, water or drainage. What would it be like to work in a tower without lifts? How would you manage without telephones, an IT system or an internet connection? All of these systems and many more are designed by building services engineers. Building Service Engineers turn buildings from empty shells into spaces fit for people to use.

From the very start of the building design, Building Services Engineers are involved helping architects and other members of the design team to get the size, shape and configuration of the building right. They determine strategies for designing energy efficient buildings, making them sustainable in the long term. Buildings are responsible for a large chunk of carbon emissions so this work makes a critical contribution to reducing a building's impact on climate change.

Of all the disciplines working in the built environment today, the building services engineer has the broadest reach and the deepest impact, affecting virtually every aspect of building design. In short, they make buildings work.

This Masters course provides a broad basis of advanced understanding in the technological areas of building services and energy engineering, with particular emphasis on those areas that are relevant to the interaction between the built and natural environments, modern industry, and the analysis of developing technologies.

Modules

The course provides a practitioner perspective with which we analyse building energy requirements in terms of the external environment and internal space, and the effect on energy resources. We consider the principles and analyse associated building engineering systems to understand control, simulation and modelling techniques.

As well as the core engineering skills, appropriate areas of management and research methods are studied to provide a balance foundation for the specialist units. The MSc dissertation provides an opportunity to develop further research skills by application to problems that require in-depth and innovative thinking.

Modules taught on this course include:

Thermal environment, acoustics and lighting
Heating and energy in buildings
Energy resource and use analysis
Electrical power
Sustainable refrigeration
Ventilation and air conditioning
Energy engineering project

Timetable

Full-time timetable: 2 days per week
Part-time day release timetable: 1 day per week

Accreditation

This course is accredited by the Chartered Institution of Building Services Engineers (CIBSE) and the Energy Institute as masters further learning to meet the academic requirements of becoming a Chartered Engineer (with a suitable first degree). The course is accredited on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer.

Expertise

The course is based in what was formerly the National College for Heating Ventilation and Refrigeration Engineering as well as Centre for Energy Studies, and maintains extremely strong links with all areas of the associated industries. Many of the leaders in energy and building services engineering fields are former LSBU students, lending much support in guidance and industrial collaboration, placement and employment.

Employability

Employment prospects are excellent. Construction and engineering activity is expected to accelerate in the UK, Europe and worldwide over the next 20 years and demand for building services engineers continues to outstrip supply.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
This unique multi-disciplinary course is taught by architects, engineers and physicists involved in practice and research. It focuses on the theory and practice of developing low carbon and sustainable buildings. Read more
This unique multi-disciplinary course is taught by architects, engineers and physicists involved in practice and research. It focuses on the theory and practice of developing low carbon and sustainable buildings.

The course includes a number of interlinked modules that simulate the design and development of a sustainable project. This enables students from different disciplines to develop skills and understanding relevant to their own discipline, be it design or consultancy, and in relation to a national and international context.

Why choose this course?

The course is run by the School of Architecture, which is recognised as one of the country's leading schools of architecture and is consistently ranked by The Architect's Journals one of the five best schools in the UK. You will gain an advanced understanding of the key sustainability issues related to buildings enabling them to strategically influence feasibility and design processes within the built environment. The course attracts some of the best students in the field from a diverse range of ages, backgrounds, gender and nationalities. This offers opportunities for interdisciplinary, globally aware teaching and learning.

The range of subjects draws on the research strengths of the teaching staff and enables research to inform the teaching modules. You are encouraged where possible to take part in staff research projects. You will have the opportunity to go on an annual field trip. This is an opportunity to directly experience some of the very best of sustainable design projects in another culture. Previous field trips have been to Germany, Scotland and Denmark. Students from this course have gone on to work in a wide range of occupations from architectural and engineering practices and research consultancies to development work, furniture design, owning and operating electricity utilities, and even carbon trading.

This course in detail

The course is organised on a modular credit system, 60 credits for postgraduate certificate, 120 credits for the postgraduate diploma (9 months full-time, 20 months part-time) and 180 credits for the master's degree (12 months full-time, 24 months part-time).

Modules combine a ratio of taught to self-led study. For example, a module of 20 credits approximates to 200 hours of student effort, up to 36 hours of which will normally be devoted to lectures, seminars, individual tutorials or other staff contact. The remainder of the time is devoted to student-led study and assessment.

Please note: as courses are reviewed regularly, the module list you choose from may vary from that shown below.

The core modules for the MSc and PGDip are:
-Building Physics (20 credits)
-The Sustainable Built Environment (20 credits)
-Post-occupancy Building Evaluation (20 credits)
-Advanced Low Carbon Building Technologies (20 credits)
-Modelling and Passive Strategies (20 credits)
-Sustainable Design in Context (20 credits)

The compulsory modules for the MSc are:
-Research Methods and Design (10 credits)
-MSc Dissertation (50 credits)

Teaching and learning

The teaching and learning methods reflect the wide variety of topics and techniques associated with sustainability, low-carbon and resource efficient design.

Staff-led lectures provide the framework, background and knowledge base, and you are encouraged to probe deeper into the topics by further reading and review. Analysis, synthesis and application of material introduced in the lectures are achieved through professional and staff-led workshops, group and one-to-one tutorials, student-led seminars, case studies, and practical work that anticipates the design project.

The course attracts students from a diverse range of ages, backgrounds, gender and nationalities. This offers opportunities for interdisciplinary, globally aware teaching and learning. You are exposed to a variety of cultural perspectives and issues through the use of international case studies and draw on their diverse strengths through peer learning and group work.

An annual field trip is an opportunity to directly experience some of the very best of sustainable design projects in another culture. Previous field trips have been to Germany, Scotland and Denmark.

The range of subjects draws on the research strengths of the teaching staff and enables research to inform the teaching modules. You are encouraged where possible to take part in staff research projects.

We attract some of the best students in the field, drawn by the integrating basis of the programme and its solid theoretical foundation on expertise within the University.

Careers and professional development

Graduates will possess an advanced understanding of the key sustainability issues related to buildings enabling them to strategically influence feasibility and design processes within the built environment. They will be familiar with a range of models, tools and methods with which to quantify, predict, evaluate and manage building performance, and will be able to use them and switch to other tools based on an understanding from first principles.

Drawing on a working knowledge of how to minimise energy, carbon emissions and resource consumption in buildings through the various stages of their life cycles, they will be able to take account of changing, incomplete and uncertain information related to the environment. They will also have well developed skills in auditing, analysis, reporting and presentation and a thorough understanding of the interdisciplinary subject area.

Students from this course have gone on to work in a wide range of occupations from architectural and engineering practices and research consultancies to development work, furniture design, owning and operating electricity utilities, and even carbon trading.

Read less
Whether you’re from an engineering, scientific or technical background, this programme will equip you with expertise in new and traditional energy technologies, renewable energy sources, solid waste recycling, air pollution, climate change and energy management systems. Read more

Whether you’re from an engineering, scientific or technical background, this programme will equip you with expertise in new and traditional energy technologies, renewable energy sources, solid waste recycling, air pollution, climate change and energy management systems.

You’ll gain an understanding of the environmental impacts of energy technology choices and the technical expertise to further develop them, preparing you to handle the complex challenges created by the growing energy demands, climate change and urban growth of the 21st century.

Core modules will build your knowledge of topics like atmospheric pollution controls, as well as a range of renewable technologies. You’ll also choose from optional modules that suit your interests and career plans such as combustion theory, energy management or fuel processing.

Specialist facilities

You’ll benefit from the chance to study in cutting-edge facilities where our researchers are pushing the boundaries of sustainable energy engineering. We have a wide range of analytical facilities for advanced fuel characterisation, environmental monitoring and pollution control.

There are also pilot scale combustion systems, and wide range of experimental facilities researching the production of low carbon fuels and energy from waste and new materials such as biomass and algae. In our Energy Building, you’ll even find a full scale engine testing and transport emissions suite, and pilot scale wave power, fuel cell, gas turbine power station, wind and solar labs and rigs.

Accreditation

The course is accredited by the Energy Institute (EI) under licence from the UK regulator, the Engineering Council, which adheres to the requirements of further learning for Chartered Engineer (CEng) status. 

Course content

Core modules will develop your understanding of key topics such as how air pollution and carbon emissions can be measured and controlled, as well as their impact on the surrounding environment. You’ll also focus on renewable technologies such as wind, solar and geothermal energy and hydroelectricity.

In addition, you’ll consider waste and biomass as renewable technologies and how energy can be recovered from landfill and waste incineration. You’ll also gain a broader understanding of the contexts in which these technologies are emerging, including related legal, environmental and financial issues.

With this foundation, you’ll specialise in areas that suit your interests and career ambitions when you choose from optional modules. You could focus on energy management and conservation, or how developments in engine technology are making transportation more fuel efficient, among other topics.

In the latter part of the year, you’ll focus on your research project. You’ll choose your topic – normally related to one of our world-class research institutes – and work closely with your supervisor to apply what you’ve learned to a real-life problem.

Want to find out more about your modules?

Take a look at the Energy and Environment module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Research Project (MSc) 60 credits
  • Pollution Sampling and Analysis 15 credits
  • Renewable Technologies 30 credits
  • Atmospheric Pollution: Impacts and Controls 30 credits
  • Advanced Renewable Technologies 15 credits

Optional modules

  • Combustion Theory and Design 15 credits
  • Energy Management and Conservation 15 credits
  • Fuel Processing 15 credits
  • Advanced Engines and Turbines 15 credits

For more information on typical modules, read Energy and Environment MSc in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings. Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent research projects by students on this programme have included:

  • Potential of marine biomass for production of chemicals and biofuels
  • Influence of particle size on the analytical and chemical properties of Miscanthus energy crop
  • Assessing the exposure of commuters to traffic generated particles:
  • a comparison of transport options
  • Location of solar farms under climate change
  • Steam reforming of waste pyrolysis oils for sustainable hydrogen production

A proportion of research projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

The need for all businesses and industrial companies to reduce their greenhouse gas emissions will be a major driver of future development. Graduates with the skills offered by this course will be in high demand.

Typically, graduates are likely to go on to work in senior posts with high levels of responsibility in energy and environmental consultancies, energy specialists, architectural firms, environmental departments of local authorities, government agencies, major funding bodies, large industrial companies and emerging businesses in the renewable sector.

You’ll also be well prepared for PhD level study and a career in academic research.



Read less
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability. Read more
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability.

By the time you graduate, you will have a thorough understanding of sustainability standards, various renewable energies, smart grid and power electronics for renewable energy and energy use management in buildings, urban design and other areas. Research on sustainable energy technology has opened up many job opportunities in industry, government institutions and research centres.

What are benefits of the programme?

• studying at international university recognised throughout the world
• close cooperation with world-famous universities and research centres to solve major technical challenges including energy crises and environmental pollution
• excellent research opportunities, using advanced experimental equipment including a network analyser, power analyser, Dspace controller, wind turbine and PV testing system
• continuous development of core modules to meet the requirement of industrial innovation
• cutting-edge research in the intelligent and efficient utilisation of solar, wind energy and other renewable energy sources

Lab Facilities

Power electronics laboratory equipped with advanced experimental equipment
• Sustainable energy laboratory equipped with advanced experimental equipment including a 600W wind turbine, two 270W solar modules, batteries, an inverter with sinusoidal output and main controller
• Electric machine and power system laboratory

Modules

• Sustainable Energy and Environment
• Nuclear Energy Technology
• Power System Network and Smart Grid
• Integration of Energy Strategies in the Design of Buildings
• Photovoltaic Energy Technology
• Renewable Kinetic Energy Technologies
• Power Electronics and Applications for Renewable Energy
• Sustainable Urban Planning Strategies
• Msc Project

What are my career prospects?

Graduates of this programme will typically work on professional tasks including the implementation of sustainable energy technologies within existing or new systems, and modelling and evaluation of the impact on ecosystems, economics and society. Graduates may be employed as electric power system engineers, electric power system consultants, sustainable technology consultants, electric power projects managers, sustainable cities and building design consultants, managers and team leaders in government.

Read less
MSc Architecture is a specialised programme designed to develop digital design and practical manufacturing skills. It builds on the ethos of rigorous and directed design studio tuition of LSBU’s established RIBA part 1 and 2 degrees. Read more
MSc Architecture is a specialised programme designed to develop digital design and practical manufacturing skills. It builds on the ethos of rigorous and directed design studio tuition of LSBU’s established RIBA part 1 and 2 degrees. It also emphasises the value of detailed and analytical research and the expression of this through structured extended writing.

You’ll extend your understanding of advanced architectural design and progressive contextual urbanism through studio- and workshop-based projects. Tutorials in the design studio and analogue and digital workshops, as well as instruction in advanced design software, will help you define and enhance your personal response to architectural challenges.

The course connects 2D and 3D representations (drawing and physical modelling) with an understanding of digital fabrication and manufacturing, and you’ll have the opportunity to develop and make architectural components using the onsite facilities of the DARLAB(Digital Architecture and Robotic Lab).

You’ll also consider architectural history and theory, and evaluate this to develop your own position in the form of an extended written project on a subject of your choice. For your final design project you'll develop a proposition for a complex building or buildings, drawing together all your learning to highlight the relationships between theory, design and technology.

Modules

Advanced digital design techniques
Integrative technologies: robotic manufacturing
Design 1: research
History and theory: critical thinking
Architecture and theory: dissertation
Technology: technical thesis
Design 2: synthesis

Assessment

All design modules are subject to continuous assessment:

• Design tutors monitor design scheme proposals throughout the semester, and collectively moderate assessments at each semester’s end;
• Individual feedback on design project proposals is provided at every individual studio tutorial;
• An evaluative, critical summary of design projects is provided at all final presentations

Provisional grades are given at the end of semester 1, with all students offered opportunities to review, revise, and add to their design
project submissions:

• A written and illustrated project report examining aspects of environmental technology;
• A major extended written and illustrated assignment (dissertation) on a subject of personal interest related to architecture, and using primary and secondary sources;
• Workshop-based fabrication and design projects;
• A written and illustrated technology report examining aspects of the constructional, environmental, and material implications of the major design project.

Teaching and learning

Teaching takes place in our dedicated Masters level studios, and makes use of LSBU’s specialist workshops; the Digital Architecture Robotic Laboratory, and Centre for Efficient and Renewable Energy in Buildings.

You'll learn in a variety of formats including structured lecture programmes, 1:1 tutorials, small and large group seminars, and interim and final design juries with tutors and invited guests present.

Timetable

Typically each module involves 40 contact hours, and 160 self-managed learning hours; exceptionally, 'Design 2: synthesis' involves 80 contact hours, and 320 self-managed learning hours.

Professional links

The course has been developed in consultation with employers interested in upskilling their workforce with enhanced digital design and manufacturing skills. The course has strong links with the Royal Institute of British Architects, Architects Registration Board, and South London Society of Architects, plus numerous local, regional, and national practices.

Employability

Digital design and practical manufacturing skills are applicable to, and sought after in a very broad range of employment opportunities in architecture and other design-related activities, including visualisation, gaming, animation, media, production engineering, and industrial design.
The course is not intended to lead to a professional qualification, although it reflects the criteria and graduate attributes used by RIBA to deliver their validation services to programmes in architecture.
Curriculum developed to reflect (but not meet) professional and statutory body requirements.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less

Show 10 15 30 per page



Cookie Policy    X