• Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of York Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Leeds Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of St Andrews Featured Masters Courses
Swansea University Featured Masters Courses
"energy" AND "efficient"×
0 miles

Masters Degrees (Energy Efficient)

  • "energy" AND "efficient" ×
  • clear all
Showing 1 to 15 of 159
Order by 
The built environment is changing - the EU has set a target for all new buildings to be nearly zero-energy efficient by the end of 2020. Read more
The built environment is changing - the EU has set a target for all new buildings to be nearly zero-energy efficient by the end of 2020. This is your opportunity to get up to speed on the newest practices in designing energy efficient buildings and refurbishments.

Through case studies and fieldwork, you will analyse the latest energy efficiency innovations and renewable technologies applied to new buildings and those undergoing a retrofits. By examining contemporary passive houses, nearly-zero buildings and energy plus structures, you'll discover how the leading exemplars in this field achieve their efficiency performances. You'll also study the shortcomings in current building efficiencies - where they fall short in meeting their energy targets and how they can be improved with the resources available.

Your work will be shaped by cutting-edge research as you collaborate with specialists who help inform new Government regulations and policies. This will broaden your knowledge and help you forge contacts with the principal thinkers and leaders in the building performance sector.

Visit the website http://courses.leedsbeckett.ac.uk/energyefficientbuildings_apd

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

Energy efficiency surveyors and specialists arealready in high demand, and the need for their expertise will continue to growas the industry faces tighter energy legislation. This demand should filterthrough to related professions in architecture, construction management andquantity surveying, where knowledge in this area will complement existingexpertise and give those at the start of their careers a significant advantagein the jobs market.

- Property Developer
- Architect
- Construction Manager
- Quantity Surveyor

Careers advice:
The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

You will take part in site visits to study the very latest energy efficient buildings in detail, examining their characteristics and design specifications first-hand.

Our University has strong research links to industry, including many of the organisations such as the Department of Energy and Climate Change and the International Energy Institute that drive the energy efficiency agenda forward. This will give you the chance to network with the leading thinkers sharing and share in their latest insights. You will also evaluate industry software and the methodologies used to assess and monitor building efficiency.

All of our teaching staff have practical experience as consultants in new builds and refurbishment. They are recognised nationally and internationally, and some are directly involved in regulation and research that influences the direction of the industry.

Your course will give you the commanding expertise to make you highly sought after as the industry responds to the growing demand for energy efficiency specialists.

Core Modules

Low to Zero Energy Buildings & Energy Efficient Building Systems
Gain a comprehensive understanding of the principals of low to zero energy buildings, focusing on their energy sustainability, fabric and systems such as lighting and heating.

Sustainable Refurbishment & Retrofit
Discover the techniques relating to sustainable refurbishment and retrofit, examining the design and detail of existing and pre-1900 structures.

Chris Gorse

Senior Lecturer

"New legislation is pushing for tightened building energy requirements over the next few years, so knowledge in this area is essential. Once the legislation is in place, the industry will have to rapidly upskill itself."

Chris Gorse is Professor of Construction and Project Management and Director of Leeds Sustainability Institute. He leads projects in the areas of sustainability, low carbon and building performance and has an interest in domestic new builds, commercial buildings and refurbishment. Chris is an established author and has consultancy experience in construction management and law.

Facilities

- Design Studios
You will be able to access our extensive studio facilities, which include workshops and computer modelling software to design and build projects.

- Library
Our Library is open 24/7, every day of the year. However you like to work, we have got you covered with group and silent study areas, extensive e-learning resources and PC suites.

- Leeds Sustainability Institute
We offer the latest drone and thermal imaging technology to provide new ways of measuring and evaluating building sustainability.

- Broadcasting Place
Broadcasting Place provides students with creative and contemporary learning environments, is packed with the latest technology and is a focal point for new and innovative thinking in the city.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
Discover the real-world career opportunities in the energy sector with this MSc in Energy and Environmental Technology and Economics. Read more
Discover the real-world career opportunities in the energy sector with this MSc in Energy and Environmental Technology and Economics.

Who is it for?

Wherever you are, energy has an implication. This course is for students who want to engage with different types of settings to research and establish the energy, environmental and technological implications that exist within them. Energy and Environmental Technology and Economics students will care for the environment as a sustainable system and ultimately have a desire to improve conditions for the wider population.

Students come from a range of backgrounds including engineering, finance and economics – and from within the energy industry itself.

Objectives

This Masters degree has been designed to give you a wide perspective when it comes to analysing and forecasting the future for energy, environmental technology and economics. We engage with the industry so you gain a real-world understanding of the problems that exist, and we consider our own ethical responsibilities in relation to energy use.

Imagine a Grade 1-listed building such as the Guildhall in London. As an energy consultant your task is to analyse the site to make it more efficient. But there is a caveat: you cannot make any structural changes to the walls or the windows. The MSc Energy and Environmental Technology and Economics course gives you the tools to examine and address these kinds of challenges.

The MSc Energy and Environmental Technology and Economics course is not about learning academic theories. Instead we focus on the breadth of the subject in the real world. By engaging with practising businesses and trade associations we identify a range of perspectives, and look at the influence of a myriad of other forces at play, from regulation and government funding, to behavioural psychology and emerging technologies. Here are some of the questions the course poses:
-Does this new form of technology operate as it should?
-How does the UK relate to other European countries when it comes to energy efficiency?
-How does organisational psychology affect energy use within a company?
-How do you decide which energy contract to choose?
-What is the impact of a consumer society on personal energy use?

Placements

There is no formal requirement to do an industry-based placement as part of the programme. However, some students arrange to undertake their dissertation research within a company or within their part of the world. A recent student investigated the future of coal-fired generation in Turkey, and another student is combining a work placement at The World Energy Council with their dissertation.

Academic facilities

As part of the University of London you can become a member of Senate House Library for free with your student ID card.

Teaching and learning

Teaching is organised into modules comprising four consecutive day courses taken at a rate of one a month or so. This format makes the programme accessible for students who want to study part time while working.

Full-time students are also welcome. Whether you choose to take the course as a part-time or full-time student, we will offer a great deal of support when it comes to helping you prepare for the modules and project work. You will be expected to devote a significant part of your non-taught hours to project work as well as private study.

Our course is led by an exceptional group of experts in energy, supply, demand management and policies. As an example, one of our module leaders leads the UK contribution to writing international energy management standards and informing policy through the European Sector Forum for Energy Management. This forum looks at methodologies across the continent. There is also input to global standards development through the International Standards Organisation (ISO). At City we bring on board people with well-established academic careers as well as leaders from the energy industry. The programme has strong links with industry and commerce and involves many visiting lecturers who hold senior positions in their fields.

The Energy and Environmental Technology and Economics MSc gives you the opportunity to consider the role of International Energy Management Standards. You will explore the opportunities these standards provide for global service users and providers in relation to reducing energy costs and the environmental impact of energy use.

You will discover the range of current European and International Standards, explore why they are needed and how they are developed, and examine the benefits they deliver through case studies.

The UK has had a leading role in developing these standards in terms of both their writing and implementation. For example the Energy Audit standard, which forms part of the EU Energy Efficiency Directive, Article 8, mandates audits for private sector, non-SME organisations. In the UK this has been implemented as the Energy Savings Opportunities Scheme (ESOS).

Modules

Each course module is taught over four consecutive days of teaching with one module each month. Alongside the teaching you will have coursework to complete for each module. The modules run from October to April, and in the remaining time, you will concentrate on your dissertation, which forms a significant part of the programme.

The dissertation gives you the opportunity to create your own questions and to decide on your own area of interest. It should be a detailed investigation into a subject on energy supply and/or demand, with your own analysis and conclusions outlining the way forward. You may see the focus of your dissertation as a future career path, but whatever your area of study, these final few months of the degree should embody your vision of the future.

You will take four core modules and have six elective modules from which you can choose four topics from diverse subjects relating to energy supply and demand. These include energy in industry and the built environment, renewables, energy markets from the purchaser’s perspective and water supply and management. The latter has close parallels, and directly engages, with energy. You start the course with an introduction to energy and environmental issues and energy policies and economic dimensions in the first term, but you do not need to follow the course in any particular order from this point onwards.

If you are interested in sustainability, you have the option of taking up to two elective modules from the MSc in Environmental Strategy offered by the University of Surrey.

Completing eight modules and four examinations and four modular assessments will lead to a Postgraduate Diploma. Completing four core and four elective modules and a dissertation will lead to a Masters degree. If you are interested in this course may also be interested in the MSc Renewable Energy and Power Systems Management.

Core modules
-Introduction to energy and environmental issues (15 credits)
-Energy policies and economic dimensions (15 credits)
-The energy market from the purchaser's perspective (15 credits)
-Corporate energy management (15 credits)

Elective modules
-Energy, consumer goods and the home (15 credits)
-Transport energy and emissions (15 credits)
-Energy in industry and the built environment (15 credits)
-Renewable energy and sustainability (15 credits)
-Risk management (15 credits)
-Water supply and management (15 credits)

Career prospects

The story of energy is now part of public debate and climate change drives the international agenda. In the UK, there are additional energy supply issues, through the decline of existing nuclear capacity, growing imports of fossil fuels and challenging medium-term targets for renewables and low carbon supply.

Our priority is to make you employable in a range of sectors in which effective energy supply and demand side management has become an important consideration.

You will graduate with economic and market-based skills relevant to complying with relevant legislation and technical and engineering skills related to energy generation and management.

With strong industry links and working level experience from our exceptional team of expert lecturers, as well as the diverse modules on offer, you will be equipped to become a leader and entrepreneur in your chosen area of specialisation within the realm of energy management, supply or policy making.

Our graduates have gone on to hold high-ranking positions as energy consultants, data analysts and directors of corporate sustainability working within organisations including:
-AK Home Energy
-Enelco Environmental Technology
-Energy Institute
-Equinoxe Services Ltd
-Log Tech Consultancy
-Ofgem
-Peckham Power
-RWE NPower Renewables
-SCFG

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
The world’s long-term economic development depends on the existence of efficient, innovative and creative energy and resources industries. Read more

Why Study Specialisation in Energy Finance at Dundee?

The world’s long-term economic development depends on the existence of efficient, innovative and creative energy and resources industries. These in turn rely on individuals who possess a sound grasp of their legal, economic, technical and policy backgrounds.

Energy Studies with specialisation in Energy Finance is at the heart of these issues and provides the best in advanced education in its field, preparing its graduates to meet the challenges posed by the evolving global economy.

This MSc is aimed at graduates and other professionals, both in government and industry, who wish to gain an in-depth understanding of the energy industry and general international Financial impacts. The position of this programme at the Centre provides the student a unique opportunity to combine studies in general energy management with international Economic policy and specialized courses in the energy/resources industries. This intensive professional and academic training, provided by internationally leading practitioners and professors in this field, leads to a distinctive and reputed advanced academic qualification based on academic excellence and professional relevance.

What's great Specialisation in Energy Finance at Dundee?

Throughout its history, the Centre for Energy, Petroleum and Mineral Law and Policy as part of the Graduate School of Natural Resources Law, Policy and Management at the University of Dundee has achieved continuous growth and has established international pre-eminence in its core activities. Scholarly performance, high level academic research, strategic consultancy and top-quality executive education. Currently, we have over 500 registered postgraduate students from more than 50 countries world-wide.

Our interdisciplinary approach to teaching, research and consultancy gives us a unique perspective on how governments and businesses operate. We offer flexible courses delivered by the best in the field, devised and continually updated in line with the Centre’s unique combination of professional expertise and academic excellence.

This provides a rigorous training for graduate students and working professionals. Full-time and part-time degrees, intensive training programmes tailor-made for individuals or companies and short-term professional seminars are all on offer.

We will teach you the practical and professional skills you need to mastermind complex commercial and financial transactions in the international workplace, and we will expose you to many varied and exciting opportunities.

How you will be taught

The MSc is made up of compulsory and elective modules with this taught component being followed by either:

A dissertation of up to 15,000 words on a topic approved by an academic supervisor

An Internship report - students who choose this option are required to source an organisation willing to offer a 3-month work placement, approved by an academic supervisor

An extended PhD Proposal - students who propose to follow up the LLM with a PhD may, with the approval of an academic supervisor, submit a 10,000 word PhD proposal

What you will study

Compulsory Modules:
• Natural Resources Sectors: A Multidisciplinary Introduction
• Project Report or Internship
Core Modules:
Core Compulsory Modules:
• Energy Economics: The Issues
• Energy Economics: The Tools
• Quantitative Methods for Energy Economists
Core Specialist Modules:
• Commodity Trading and Strategic Asset Optimisation in the Energy Industry
• Risk Analysis for Energy and Mining Investment Decision Making
• Financial and Project Analysis of Natural Resources and Energy Ventures
• Legal Framework for International Project Finance

Elective Modules: Candidates are advised to choose additional modules from what is available on the academic timetable subject to any restrictions that may apply.

How you will be assessed

Each course is assessed by a combination of examinations and a research paper.

Read less
Beautiful architecture. Solid structure. What else do buildings need?. Try living in one without any heating, cooling, electrical power, lighting, water or drainage. Read more
Beautiful architecture. Solid structure. What else do buildings need?

Try living in one without any heating, cooling, electrical power, lighting, water or drainage. What would it be like to work in a tower without lifts? How would you manage without telephones, an IT system or an internet connection? All of these systems and many more are designed by building services engineers. Building Service Engineers turn buildings from empty shells into spaces fit for people to use.

From the very start of the building design, Building Services Engineers are involved helping architects and other members of the design team to get the size, shape and configuration of the building right. They determine strategies for designing energy efficient buildings, making them sustainable in the long term. Buildings are responsible for a large chunk of carbon emissions so this work makes a critical contribution to reducing a building's impact on climate change.

Of all the disciplines working in the built environment today, the building services engineer has the broadest reach and the deepest impact, affecting virtually every aspect of building design. In short, they make buildings work.

This Masters course provides a broad basis of advanced understanding in the technological areas of building services and energy engineering, with particular emphasis on those areas that are relevant to the interaction between the built and natural environments, modern industry, and the analysis of developing technologies.

See the website http://www.lsbu.ac.uk/courses/course-finder/building-services-engineering-msc

Modules

The course provides a practitioner perspective with which we analyse building energy requirements in terms of the external environment and internal space, and the effect on energy resources. We consider the principles and analyse associated building engineering systems to understand control, simulation and modelling techniques.

As well as the core engineering skills, appropriate areas of management and research methods are studied to provide a balance foundation for the specialist units. The MSc dissertation provides an opportunity to develop further research skills by application to problems that require in-depth and innovative thinking.

Module descriptions

- Thermal environment, acoustics and lighting
The module provides an introduction to the processes and characteristics that determine the quality of the internal built thermal, acoustic and visual environment. The aims of this module are to examine the principal parameters that affect the thermal, acoustic and visual environment, and the theory and principles necessary for the design of the internal environment.

- Heating and energy in buildings
This module introduces the key components of building heating and cooling systems, and presents sizing methodologies of central plant and techniques for analysing energy consumption and carbon emissions. System configurations and controls are discussed that ensure optimum safe and efficient operation of the plant.

- Energy resource and use analysis
This module offers the opportunity to develop strategic and operational management skills in the fields of infrastructure asset management and project appraisal. It covers design life extensions, risk and asset management techniques for infrastructure, and techniques for physical appraisal of infrastructure, and their economic, environmental and social impacts.

- Electrical power
The module covers electrical power engineering as applied to the design of systems in buildings. In particular, this includes the connection of, and the effects of, small-scale embedded generation as might be employed to exploit renewable energy sources. The module aims to provide an appreciation and understanding of electrical services design in buildings with particular reference to safety requirements and the effects of embedded generation on the supplier and the consumer.

- Sustainable refrigeration
The module introduces the principles of thermodynamics, and applies them to the study and design of energy efficient refrigeration systems. Vapour compression, absorption and other novel cycles are analysed and modeled. Practical applications of sustainable refrigeration are investigated through case studies.

- Ventilation and air conditioning
This module introduces the theory and principles necessary for the evaluation of ventilation and cooling loads, the selection and design of ventilating and air conditioning systems. It examines the principles of operation and characteristics of contemporary systems and their associated controls and distribution systems with particular emphasis on energy use and heat recovery. It discusses the effect of system balancing and maintenance on the correct and energy efficient operation of the systems.

- Energy engineering project

Employability

Employment prospects are excellent. Construction and engineering activity is expected to accelerate in the UK, Europe and worldwide over the next 20 years and demand for building services engineers continues to outstrip supply.

Graduate success stories

Successful students enter various roles including building services design, management of construction projects, and operation of complex installations.

Professional accreditation

The course is fully accredited by Chartered Institution of Building Services Engineers (CIBSE) and the Energy Institute as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) undergraduate degree. Potential students are advised to check directly with the CIBSE or EI as to the validity of their first degree for a CEng route.

Accredited on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Read less
As we head towards zero carbon buildings, we need to better understand how buildings should be constructed and the materials we should use in their construction in order to increase their energy efficiency. Read more
As we head towards zero carbon buildings, we need to better understand how buildings should be constructed and the materials we should use in their construction in order to increase their energy efficiency.

Whether you are working in the construction industry, a graduate from a built environment background or you want to upskill for a new construction role, we will teach you how to analyse the performance of existing buildings and to design and model new, energy efficient buildings.

You will gain an understanding of building physics and performance, including how buildings respond to weather, how to heat buildings efficiently and how bricks, mortar, timber and insulants act as a thermal barrier. Discover how to use 3D modelling packages to study individual building components and analyse how buildings respond to environmental conditions and occupancy patterns.

You can combine this course with other Advanced Professional Diplomas as part of our MSc Sustainable Engineering or study it as a standalone qualification.

Visit the website http://courses.leedsbeckett.ac.uk/buildingmodellingandsimulation_apd

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

Aimed at professionals working within the built environment or graduates looking to build on their knowledge of the built environment, we will help you further your employment prospects within the construction industry. With the ability to assess the performance of existing buildings and the specialist skills to design and model new buildings, you will be a valuable asset to any construction company.

- Building Surveyor
- Architectural Technician
- Mechanical Engineer

Careers advice:
The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

Study part time at your own pace around your job and learn the latest developments in building modelling and performance that will set you apart in the workplace.

When it comes to understanding the performance of buildings in the UK, the government and building industry alike turn to our University for expertise and advice. You will be learning from a teaching team and industry experts who have worked with the UK government and large material manufacturers including Saint-Gobain and ARC Building Solutions to enhance the performance and efficiency of buildings. You will hear the first-hand experiences of business leaders and sustainability experts involved in UK and international consultancy projects on building modelling and simulation.

Through our virtual learning environment you will have access to the latest information about building designs and research on how building stock can be made more energy efficient. Online materials including videos, up-to-date research on thermal performance, moisture propagation and building fabrics, and simulations considering weather conditions, occupancy and the impact of solar and ventilation will inform your learning.

Core Modules

Building Environmental Science & Modelling
Learn to assess building performance for occupant comfort, health, energy use and serviceable life. Discover how modelling of building fabrics and components is used to predict performance.

Building Detailed Design & Specification
Apply the principals learned in the Building Environment Science & Modelling module to the design of building details to maximise performance while avoiding problems.

Professor Chris Gorse

Professor of Construction and Project Management

"The future of our energy efficient homes, workplaces and smart cities is underpinned by the performance and reliability of the models we use. This course will advance your understanding and ability to apply the latest tools and techniques to the field"

Chris Gorse is Professor of Construction and Project Management and Director of Leeds Sustainability Institute. He leads projects in the areas of sustainability, low carbon and building performance and has an interest in domestic new builds, commercial buildings and refurbishment. Chris is an established author and has consultancy experience in construction management and law.

Facilities

- Northern Terrace
Based at our City Campus, only a short walk from Leeds city centre, Northern Terrace is home to our School of Built Environment & Engineering.

- Leeds Sustainability Institute
Our Leeds Sustainability Institute's facilities include the latest drone and thermal imaging technology to provide new ways of measuring and evaluating building sustainability.

- Library
Our Library is open 24/7, every day of the year. However you like to work, we have got you covered with group and silent study areas, extensive e-learning resources and PC suites.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
Gain the expertise to determine if buildings are achieving their required energy efficiency targets, and how to go about improving them. Read more
Gain the expertise to determine if buildings are achieving their required energy efficiency targets, and how to go about improving them.

The energy performance of today's new buildings must withstand far more scrutiny than ever before. Those involved or investing in construction projects will need an increasing awareness of these factors to maintain compliance with the law, as tougher EU and UK directives for building performance are drawn up and legislated.

You will use the latest technologies to evaluate building performance, including software to model 2D thermal movement or track moisture. You will also visit real-life testing sites and help set up and carry out some of the procedures yourself, investigating heat loss, heat transfer, moisture development and thermal bridges.

Your course will provide an essential platform if you are wanting to evaluate the energy efficiency of buildings, or if you want to get involved in building forensics or surveying.

Visit the website http://courses.leedsbeckett.ac.uk/buildingperformance_apd

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

New legislation and the need for more energy efficient buildings will ensure the demand for experts in the design and evaluation of high-performing homes and workplaces continues to grow. Specialist knowledge in this field should help if you already work in surveying, building forensics and energy efficient assessment to further your career.

- Sustainable Property Developer
- Energy Efficient Assessor
- Building Forensic Assessor
- Building Surveyor

Careers advice:
The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

You'll be exposed to the latest techniques and technologies to measure heat loss and energy transfer, as well as the latest cutting-edge research from our Sustainability Institute and our School of Built Environment & Engineering.

Our teaching staff are involved in building performance evaluation on national research schemes. Our University is frequently commissioned by Innovate UK, a leading technology advisory body, to analyse the best energy performing buildings in the country, which underlines our expertise in this area. Our academics will feed these findings directly into your learning, giving you access to first-class research and a rich variety of contacts to network with.

You will also have access to our state-of-the-art building performance testing kits to analyse buildings in the field, such as thermal imaging cameras and drone technology, and you will work with the latest 2D and dynamic simulation modelling software to measure standards and sharpen your experience of working with the latest technology.

Core Modules

Building Performance & Evaluation
Develop the knowledge of a range of tools and techniques to analyse the energy performance of a building.

Building Environmental Science & Modelling
Gain an overview of the science that governs how buildings perform in relation to occupant comfort, health, energy use and service life.

Chris Gorse

Senior Lecturer

"You will be exposed to the latest methods of testing and monitoring buildings. We have researchers who have informed building performance evaluation and their knowledge feeds directly into this course."

Chris Gorse is Professor of Construction & Project Management and Director of Leeds Sustainability Institute. He leads projects in the areas of sustainability, low carbon and building performance and has an interest in domestic new builds, commercial buildings and refurbishment. Chris is an established author and has consultancy experience in construction management and law.

Facilities

- Design Studios
Our modern multi-media studios include a dedicated CAD suite and specialist software, such as REVIT, allowing you to develop skills in 3D design and building information modelling.

- Library
Our Library is one of the only university libraries in the UK open 24/7, every day of the year. However you like to work, our Library has you covered with group and silent study areas, extensive e-learning resources and PC suites.

- Leeds Sustainability Institute
We offer the latest drone and thermal imaging technology to provide new ways of measuring and evaluating building sustainability.

- Broadcasting Place
Keeping fit is easy at Leeds Beckett - our fitness suites are easy to get to, kitted out with all the latest technology and available to all sports members.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
The world’s long-term economic development depends on the existence of efficient, innovative and creative energy and resources industries. Read more

Why Specialisation in Energy Economics at Dundee?

The world’s long-term economic development depends on the existence of efficient, innovative and creative energy and resources industries. These in turn rely on individuals who possess a sound grasp of their legal, economic, technical and policy backgrounds.

Energy Studies with specialisation in Energy Economics is at the heart of these issues and provides the best in advanced education in its field, preparing its graduates to meet the challenges posed by the evolving global economy.

This MSc is aimed at graduates and other professionals, both in government and industry, who wish to gain an in-depth understanding of the energy industry and general international economic impacts. The position of this programme at the Centre provides the student a unique opportunity to combine studies in general energy management with international Economic policy with specialized courses in the energy and resources industries. This intensive professional and academic training, provided by internationally leading practitioners and professors in this field, leads to a distinctive and reputed advanced academic qualification based on academic excellence and professional relevance.

What's great Specialisation in Energy Economics at Dundee?

Throughout its history, the Centre for Energy, Petroleum and Mineral Law and Policy as part of the Graduate School of Natural Resources Law, Policy and Management at the University of Dundee has achieved continuous growth and has established international pre-eminence in its core activities. Scholarly performance, high level academic research, strategic consultancy and top-quality executive education. Currently, we have over 500 registered postgraduate students from more than 50 countries world-wide.

Our interdisciplinary approach to teaching, research and consultancy gives us a unique perspective on how governments and businesses operate. We offer flexible courses delivered by the best in the field, devised and continually updated in line with the Centre’s unique combination of professional expertise and academic excellence.

This provides a rigorous training for graduate students and working professionals. Full-time and part-time degrees, intensive training programmes tailor-made for individuals or companies and short-term professional seminars are all on offer.

We will teach you the practical and professional skills you need to mastermind complex commercial and financial transactions in the international workplace, and we will expose you to many varied and exciting opportunities. Why not take a few minutes to complete our application form - it could be the most far-reaching career move you’ll ever make!

How you will be taught

The MSc is made up of compulsory and elective modules with this taught component being followed by either:

A dissertation of up to 15,000 words on a topic approved by an academic supervisor

An Internship report - students who choose this option are required to source an organisation willing to offer a 3-month work placement, approved by an academic supervisor

An extended PhD Proposal - students who propose to follow up the LLM with a PhD may, with the approval of an academic supervisor, submit a 10,000 word PhD proposal

What you will study

Compulsory Modules:
• Natural Resources Sectors: A Multidisciplinary Introduction
• Project Report or Internship
Core Modules:
Core Compulsory Modules:
• Energy Economics: The Issues
• Energy Economics: The Tools
• Quantitative Methods for Energy Economists
Core Specialist Modules:
• Economics of Electric power
• Economics of Regulation and Restructuring of Energy Industries
• Petroleum and Economics
• Renewable Energy: Technology, Economics and Policy

Elective Modules: Candidates are advised to choose additional modules from what is available on the academic timetable subject to any restrictions that may apply.

How you will be assessed

Each course is assessed by a combination of examinations and a research paper.

Read less
The world’s long-term economic development depends on the existence of efficient, innovative and creative energy and resources industries. Read more

Why Specialisation in Energy Policy at Dundee?

The world’s long-term economic development depends on the existence of efficient, innovative and creative energy and resources industries. These in turn rely on individuals who possess a sound grasp of their legal, economic, technical and policy backgrounds.

Energy Studies with specialisation in Energy Policy is at the heart of these issues and provides the best in advanced education in its field, preparing its graduates to meet the challenges posed by the evolving global economy.

This MSc is aimed at graduates and other professionals, both in government and industry, who wish to gain an in-depth understanding of the energy industry and general international impacts of policy and procedure. The position of this programme at the Centre provides the student a unique opportunity to combine studies in general energy management with international Economic policy and specialized courses in the energy/resources industries. This intensive professional and academic training, provided by internationally leading practitioners and professors in this field, leads to a distinctive and reputed advanced academic qualification based on academic excellence and professional relevance.

What's great about Specialisation in Energy Policy at Dundee?

Throughout its history, the Centre for Energy, Petroleum and Mineral Law and Policy as part of the Graduate School of Natural Resources Law, Policy and Management at the University of Dundee has achieved continuous growth and has established international pre-eminence in its core activities. Scholarly performance, high level academic research, strategic consultancy and top-quality executive education. Currently, we have over 500 registered postgraduate students from more than 50 countries world-wide.

Our interdisciplinary approach to teaching, research and consultancy gives us a unique perspective on how governments and businesses operate. We offer flexible courses delivered by the best in the field, devised and continually updated in line with the Centre’s unique combination of professional expertise and academic excellence.

This provides a rigorous training for graduate students and working professionals. Full-time and part-time degrees, intensive training programmes tailor-made for individuals or companies and short-term professional seminars are all on offer.

We will teach you the practical and professional skills you need to mastermind complex commercial and financial transactions in the international workplace, and we will expose you to many varied and exciting opportunities.

How you will be taught

The MSc is made up of compulsory and elective modules with this taught component being followed by either:
A dissertation of up to 15,000 words on a topic approved by an academic supervisor

An Internship report - students who choose this option are required to source an organisation willing to offer a 3-month work placement, approved by an academic supervisor

An extended PhD Proposal - students who propose to follow up the LLM with a PhD may, with the approval of an academic supervisor, submit a 10,000 word PhD proposal

What you will study

Compulsory Modules:
• Natural Resources Sectors: A Multidisciplinary Introduction
• Project Report or Internship
Core Modules:
Core Compulsory Modules:
• Energy Economics: The Issues
• Energy Economics: The Tools
Core Specialist Modules:
• Quantitative Methods for Energy Economists
• Downstream Energy Law and Policy
• International Relations and Energy and Natural Resources
• Public Policies for Resource-Based Development

Elective Modules: Candidates are advised to choose additional modules from what is available on the academic timetable subject to any restrictions that may apply.

How you will be assessed

Each course is assessed by a combination of examinations and a research paper.

Read less
The world’s long-term economic development depends on the existence of efficient, innovative and creative energy and resources industries. Read more

Why Specialisation in Energy and the Environment at Dundee?

The world’s long-term economic development depends on the existence of efficient, innovative and creative energy and resources industries. These in turn rely on individuals who possess a sound grasp of their legal, economic, technical and policy backgrounds.

Energy Studies with specialisation in Energy and the Environment is at the heart of these issues and provides the best in advanced education in its field, preparing its graduates to meet the challenges posed by the evolving global economy.

This MSc is aimed at graduates and other professionals, both in government and industry, who wish to gain an in-depth understanding of the environmental energy field and general international economic impacts. The position of this programme at the Centre provides the student a unique opportunity to combine studies in general energy management with international environmental policy with specialized courses in the energy and resources industries. This intensive professional and academic training, provided by internationally leading practitioners and professors in this field, leads to a distinctive and reputed advanced academic qualification based on academic excellence and professional relevance.

What's great about Specialisation in Energy and the Environment?

Throughout its history, the Centre for Energy, Petroleum and Mineral Law and Policy as part of the Graduate School of Natural Resources Law, Policy and Management at the University of Dundee has achieved continuous growth and has established international pre-eminence in its core activities. Scholarly performance, high level academic research, strategic consultancy and top-quality executive education. Currently, we have over 500 registered postgraduate students from more than 50 countries world-wide.

Our interdisciplinary approach to teaching, research and consultancy gives us a unique perspective on how governments and businesses operate. We offer flexible courses delivered by the best in the field, devised and continually updated in line with the Centre’s unique combination of professional expertise and academic excellence.

This provides a rigorous training for graduate students and working professionals. Full-time and part-time degrees, intensive training programmes tailor-made for individuals or companies and short-term professional seminars are all on offer.

We will teach you the practical and professional skills you need to mastermind complex commercial and financial transactions in the international workplace, and we will expose you to many varied and exciting opportunities. Why not take a few minutes to complete our application form - it could be the most far-reaching career move you’ll ever make!

How you will be taught

The MSc is made up of compulsory and elective modules with this taught component being followed by either:

A dissertation of up to 15,000 words on a topic approved by an academic supervisor

An Internship report - students who choose this option are required to source an organisation willing to offer a 3-month work placement, approved by an academic supervisor

An extended PhD Proposal - students who propose to follow up the LLM with a PhD may, with the approval of an academic supervisor, submit a 10,000 word PhD proposal

What you will study

Compulsory Modules:
• Natural Resources Sectors: A Multidisciplinary Introduction
• Project Report or Internship

Core Modules:
Core Compulsory Modules:
• Energy Economics: The Issues
• Energy Economics: The Tools
• Quantitative Methods for Energy Economists

Core Specialist Modules:
• Environmental and Climate Change Economics and Policy
• Environmental and Natural Resources: Science and Society
• Environmental and Law and Policy for Natural Resources and Energy

Elective Modules: Candidates are advised to choose additional modules from what is available on the academic timetable subject to any restrictions that may apply.

How you will be assessed

Each course is assessed by a combination of examinations and a research paper.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X