• University of Leeds Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Nottingham in China Featured Masters Courses
Cranfield University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Reading Featured Masters Courses
ETH Zürich Featured Masters Courses
"energy" AND "conversion"…×
0 miles

Masters Degrees (Energy Conversion)

We have 113 Masters Degrees (Energy Conversion)

  • "energy" AND "conversion" ×
  • clear all
Showing 1 to 15 of 113
Order by 
This course is designed to provide a high level of engineering and technical expertise in energy conversion processes, combined with the application of practical abilities in management-related issues. Read more
This course is designed to provide a high level of engineering and technical expertise in energy conversion processes, combined with the application of practical abilities in management-related issues. The course puts a strong emphasis on the context of renewable and sustainable energy technologies and the built environment, and combines this with effective management skills, economic appraisal, and an understanding of the current policies and regulations that are applicable at UK, EU and international level.

This course is tailored towards graduates in engineering, science and related disciplines. The strong emphasis on science, technology and engineering is specifically targeted towards subject areas within the context renewable and sustainable technologies and the built environment and uniquely combines this with effective management skills, economic appraisal and an understanding of the current policies and regulations that can be applied within modern industry in the UK, EU and internationally.

Advanced study in engineering-related research methodologies provides invaluable experience either towards further academic
study or industry-based research and development.

Students will develop:
the ability to communicate ideas effectively in written reports, verbally and by means of presentations to groups
the ability to exercise original thought
the ability to plan and undertake an individual project
interpersonal, communication and professional skills

Students on the course will cover all forms of energy conversion including cooling technologies, renewable energy technologies, combustion & biomass, advanced heat transfer and fuel cell technology. The course also includes practical subjects such as management & UK/EU/International regulations & policy, research methodologies, economic appraisal, CFD and materials science. The introduction of this course coincides with the huge demand for young, highly trained engineers who have strong enthusiasm for sustainability and the environment. This MSc can be used to gain full Chartered Engineer (CEng) status as appropriate.

Previous research projects have included:

a comparision study of solar Photo Voltaic (PV) & wind turbine power generation for domestic application
a feasibility study of PCM impregnated carbon composites
CO2 capture & storage by mineralisation of waste aggregates
simulation of an integrated CHP/ground source heat pump system for a library

This course is fully accredited by the Chartered Institute of Building Services Engineers (CIBSE) and Engineering Council UK (ECUK).

Scholarship information can be found at http://www.nottingham.ac.uk/graduateschool/funding/index.aspx

Read less
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Read more
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Candidates will be required to plan, design and manage energy systems blending creative solutions with up-to-date technologies relative to energy conversion and efficiency enhancement.

At the end of the course, engineers will be good at operating in the current technological/industrial environment - i.e. a dynamic and competitive one - and sensitive to the main industry, environment and security issues and standards.

The main aim of the course is to offer an in-depth theoretical and practical understanding of the most advanced energy conversion technologies, including renewable energy generation and energy storage.

Please visit http://www.en2.unige.it for any further information.

The Course is held at Savona Campus, in the city of Savona.

WHAT WILL YOU STUDY AND FUTURE PROSPECTS

The course consists of modules that include thermo-fluid dynamics and thermo-chemical dynamics, as well as fluid machinery and energy conversion systems (co-generation, fuel cells, power plants from renewable energy sources and smart grids), traditional energy and civil engineering plants, electric networks, economics, available and emerging technologies for reducing greenhouse gas emissions and environmental monitoring.

A rising interest in and increased urge for 20/20/20 policies in Europe has resulted in a growing industrial demand for highly qualified Energy Engineers with a sound knowledge and specific skills to analyze, design and develop effective solutions in a broad range of contexts. Furthermore, in the last few years both emerging industrial countries and developing ones have increased their awareness of environmental issues and energy production and started implementing large energy engineering projects thus boosting the job opportunities worldwide. The course is aimed at students seeking high qualification in the following main fields:

Energy conversion processes from chemical, bio-chemical, thermal sources into mechanical and electrical ones

Sustainable & Distributed Energy: renewable energy (solar, geothermal, wind, hydro), fuel cells, bio-fuels, smart power grids, low emission power plants Sustainable Development: C02 sequestration, LCA analysis, biomass exploitation, Energy Audit in buildings, energy from waste, recycling, modeling and experimental techniques devoted to optimum energy management.

The MSc course work in partnership with industries and research institutes in Liguria, in Italy and abroad.

WHAT DOES THE MASTER IN ENERGY ENGINEERING OFFER TO ITS STUDENTS

In the last years both industrialization and population growth have brought to a higher demand for sustainable energy, smart energy management with reduced environmental impact. As a result the MSc Energy Engineering was born out of the need to better cope with Sustainable Development issues and progress in energy conversion technologies, in including renewable energy generation and energy storage, NZE buildings, with an increasing attention devoted to greenhouse gas emissions reduction through a multidisciplinary approach.

This MSc course is taught in English and students are supported in achieving higher English language skills. The University of Genoa set its modern campus in Savona and in the last few years, public and private funds have been invested to improve its infrastructures, sport facilities, hall of residence, library and an auditorium.

The University of Genoa and Siemens jointly developed a smart polygeneration microgrid in Savona Campus – officially commissioned on February 2014.

Since then the campus has largely generated enough power to satisfy its own needs with the help of several networked energy producers, i.e. total capacity 250Kw of electricity and 300kW of heating.

The grid includes microgasturbines, absorption chillers, a photovoltaic plant, a solar power station and electrochemical and thermal storage systems.

This huge facility together with a series of laboratories located at the Campus (e.g. Combustion Lab, Energy Hub Lab) offer the students a unique opportunity for hands-on activities, e.g. to measure and investigate the performance of real scale innovative energy systems.

Read less
This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility. Read more

About the course

This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility.

It caters to the worldwide demand for building services engineering managers who have a sound knowledge of engineering and management principles – and the ability to apply this knowledge to complex situations.

Management modules cover engineering finance and accounting, people management, business organisation and facilities and contract management.

Aims

Building Service Engineers help buildings to deliver on their potential by working with architects and construction engineers to produce buildings that offer the functionality and comfort we expect, with the minimum impact on our environment. They design the lighting appropriate for the space, the heating, cooling, ventilation and all systems that ensure comfort, health and safety in all types of buildings, residential commercial and industrial.

Building services engineering is an interdisciplinary profession. It involves the specification, design, installation and management of all the engineering services associated with the built environment.

With the growing complexity of engineering services in modern buildings and the significance of energy conservation and pollution control, the role of the building services engineer is becoming increasingly important.

As an interdisciplinary profession that involves the specification, design, installation and management of all the engineering services associated with the built environment, comfort and function also need to be combined – which calls for engineers with a wide range of knowledge and skills.

This MSc programme is for:

Recent engineering and technology graduates, moving into building services and related disciplines.
Established engineers and technologists, working in building services and faced with the challenge of new areas of responsibility.
Engineers who want to develop technical understanding and expertise across the multi-disciplines of building services engineering.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in building services engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with building services engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.

Course Content

Modes of Study
3-5 Years Distance Learning

The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to suit yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.

Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Compulsory Modules

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Engineering Finance and Accounting
Management of People in Engineering Activities
Organisation of Engineering Business
Management of Facilities and Engineering Contracts
Dissertation

Students should choose one of the two themes below:

Theme A - Traditional

Energy Conversion Technologies
This element provides a broad introduction to the principles of energy conversion and thermodynamic machines and demonstrates their application to energy conversion and management in buildings. Emphasis is placed on refrigeration plant, energy conversion plant and energy management.
Refrigeration covers the basic principles and components of vapour compression systems, heat pumps and absorption systems.
Energy Conversion considers power cycles, combined heat and power, combustion processes, boiler plant, thermal energy storage and environmental impacts of plant operation.

Theme B - Renewable

Renewable Energy Technologies
This element includes: energy sources, economics and environmental impact, energy storage technologies, the role of renewables, solar thermal, solar electricity, wind power generation, hydro, tidal and wave power, biofuels, building integrated renewables.

Special Features

There are several advantages in choosing Brunel's Building Services programme:

Award-winning courses: Building Services Engineering courses at Brunel have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: it is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Accreditation

The course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng).

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May.
Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Read less
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Read more
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Process engineering, for example, with such fields as environmental- and energy engineering, is now seen as one of the key disciplines. It deals with the engineering required for a wide range of processes and the transformation of materials, in which raw materials are converted in a series of unit operations into salable intermediate and final products.

One focus of training within the discipline relates to the development and application of various environmental and energy technologies. Both environmental- and energy engineering are classified as green technologies, which have developed at an above-average rate in the last few years. That is due to growing social awareness for sustainability and the finite nature of our resources on the one hand and legal constraints on the other. The latter in particular call for innovative processes and technologies in response to today’s challenges. The Master program in Environmental, Process & Energy Engineering is designed to communicate the knowledge, methodology and problem-solving competence needed to tackle a very wide range of engineering problems in the above mentioned fields. With its commitment to bridge-building between the academic and the business worlds, Management Center Innsbruck also provides essential teaching in the increasingly important horizontal disciplines of law and economics, and the skills needed for today’s labor market.

Major Energy Engineering

In the light of dwindling energy resources and volatile energy prices, energy engineering has become an integral economic factor with enormous potential for growth, especially in such fields as energy generation from non-fossil primary energy sources, energy distribution and energy savings. MCI graduates with a specialization in Energy Engineering typically deal with a wide variety of processes, from conventional power plant engineering to the conversion of energy carriers and their various precursors, and decentral energy supply systems. The major in Energy Engineering caters for these market requirements by communicating the relevant knowledge and skills with a combination of in-depth teaching and practical applicability.

Given their interdisciplinary training and the program’s strong practical orientation, graduates are particularly well qualified to work as engineers at the interface with business and management with special reference to the following areas:

Energy trading, energy management & natural resources
Renewable energies
Glass industry
Oil industry
Consulting engineers, consulting & engineering
Paper and paper products
Chemicals
Gas and heating supply industries

Read less
This is a one-year postgraduate course designed to provide civil engineers and other suitably qualified professionals with a good understanding of energy management and efficiency as well as sustainable energy generation. Read more

Introduction:

This is a one-year postgraduate course designed to provide civil engineers and other suitably qualified professionals with a good understanding of energy management and efficiency as well as sustainable energy generation. The course will further advanced knowledge in efficiency techniques, sustainable energy technologies and energy management systems and strategies. It will include theory and practice along with economics, current legal requirements and standards. The course will be of particular interest to those already in employment as part of ongoing professional training as well as leading to the widening of new job opportunities for its graduates. The Diploma award is based on a combination of the results of two examination papers and an individual project. Students must pass each paper and the project and neither of these can be deferred.

Course Content:

The course consists of 3 taught modules each carrying 20 ECTS credits.

Module 1: Energy management and efficiency will introduce topics such as energy physics, energy resources, climate change and environment. Energy demand and energy management will be detailed sectorally in terms of energy in buildings; in transport and in industry. There will be a focus on measures for energy reduction and energy efficiency along with assessment procedures. Topics in energy economics, policy, embodied energy and life cycle analysis and finally energy legislation and energy markets will be addressed.

Module 2: Sustainable energy technologies will introduce energy generation and conversion. It will concentrate on renewable energy generation technologies (and include lectures on wind, wave, tidal, biomass, biofuels, geothermal, hydro, solar, waste to energy) and low carbon technologies (nuclear energy, hydrogen, fuel cells). Grid integration and energy storage will be addressed as well as the future of fossils including clean coal and carbon capture and storage.

Module 3: Individual project is a key element of the course where the theoretical and technical aspects of Sustainable Energy which have been presented, analysed and discussed in the other two modules are brought into practical and innovative focus. Each student will be expected to engage in a piece of original study to reveal a novel aspect of sustainable energy.

Lectures will be held on Friday evenings and Saturday mornings each week throughout the two semesters (September to April), with laboratories or site visits scheduled for Saturday mornings. In addition to attending lectures, students are required to prepare and submit individual original pieces of coursework relating to the subject matter of each of the modules. Assessment is by examination and coursework.

Read less
Environmental challenges require complex solutions, bringing together scientific, social, political and economic perspectives. GCU's MSc Environmental Management will provide you with the interdisciplinary perspective and diverse skillset to help solve environmental problems in a leadership role. Read more

Environmental challenges require complex solutions, bringing together scientific, social, political and economic perspectives. GCU's MSc Environmental Management will provide you with the interdisciplinary perspective and diverse skillset to help solve environmental problems in a leadership role. You can help your community manage environmental concerns responsibly, making a positive impact and supporting the common good.

The programme is accredited by the Chartered Institution of Water and Environmental Management (CIWEM), the Chartered Institution of Building Services Engineers (CIBSE) and the Energy Institute (EI). With the endorsement of four prestigious professional organisations, the MSc Environmental Management offers a respected credential that's relevant to employers around the world.

You'll have the option to complete a general programme - giving you a broad understanding across a wide range of environmental disciplines - or choose among four pathways for specialisation.

  • Energy - Global demand for energy has significant environmental implications, and renewable energy is just one part of a broader strategy. You'll explore energy technology, renewable energy, and building and energy performance.

What you will study

The MSc Environmental Management comprises of eight taught modules. Three compulsory modules, four optional modules and a Masters project. You also have the option to broaden your understanding of environmental issues via the general masters’ curriculum or to select modules from one of four specific pathways; waste, energy, water and oil and gas.

Health, Safety and Environmental Management

This module introduces the health, safety and environmental demands that face industry today. Study the role of legislation in achieving sustainability and the use of environmental management to improve corporate responsibility..

Climate Change and Carbon Management

Examine global climate change issues within the context of the built environment and learn to conduct practical investigation into carbon management.

Energy Technology

Explore conventional and emerging technologies including waste heat recovery, energy storage and fuel cells.

GIS and Environmental Management

Study the principles and concepts of GIS and its role in environmental management.

Renewable Energy Technologies

Explore technologies that allow us to become more energy efficient including alternative energy sources, conversion technologies and sustainable energy use.

Water Quality and Waste Water Treatment

Examine water quality and the provision of potable water in the UK.

Additional Energy modules include:

Renewable Energy Technologies

Examine the renewable energy technologies most likely to succeed in the UK and other temperate countries, i.e. solar energy, energy from waste, wind, hydro and biomass .

Building and Energy Performance Simulation

Study the factors that determine energy efficiency of buildings, including properties of the fabric, and heating and ventilation systems.

Accreditation

This programme is accredited by the Chartered Institution of Water and Environmental Management (CIWEM), the Chartered Institution of Building Services Engineers (CIBSE) and the Energy Institute (EI). With the endorsement of four prestigious professional organisations, the MSc Environmental Management offers a respected credential that's relevant to employers around the world.

Why Choose this Programme?

This course aims to develop the critical intellectual and practical skills of the students in the collection, analysis, interpretation and understanding of data related to environmental pollution. The course aims to provide the students with up-to-date knowledge and skills to equip them for a career in environmental management, waste management or in the oil and gas sector. It will develop the students' competence in applying advanced skills to solve environmental problems, using a critical and holistic approach. The MSc Environmental Management programme will enhance students' interpersonal, communications and other transferable skills, so that they are competent to operate in senior positions in industry. This programme will allow students to acquire educational qualifications which would enable them to gain recognition by professional bodies. It aims to provide students with an opportunity to critically explore environmental problems with others from different educational backgrounds, hence enhancing the breadth of their viewpoints on such issues; to further develop the students. This MSc will develop skills in research methods and practice, so that they can undertake advanced research in environmental, waste or oil and gas topics. The programme will enable students to engage with life-long learning, research and creativity tempered with scientific discipline and social awareness.

Graduate prospects

As a graduate of GCU's MSc Environmental Management, you'll have excellent career prospects in both the public and private sectors. Past graduates have found work with organisations such as the Scottish Environmental Protection Agency (SEPA), international consulting companies including Carl Bro Group, ERS Land Regeneration and Valpak, and other government agencies and consulting firms.



Read less
Gain a robust understanding in renewable energy and sustainable technologies, as well as carbon management and energy use in the built environment. Read more

Gain a robust understanding in renewable energy and sustainable technologies, as well as carbon management and energy use in the built environment.

The MSc Renewable Energy: Technology and Sustainability deals with the applications of renewable energy and sustainable technology combined with the impact on the environment of using non-sustainable technologies. We focus on the technical and policy questions arising from global demands for secure, affordable and sustainable energy. We cover rapidly-evolving fields that are vitally relevant to how society develops in the 21st century. This course is accredited by the Energy Institute and the Chartered Institute of Building Services Engineers.

The distinctive focus is on renewable energy and sustainable technologies, as well as carbon management and energy use in the built environment.

There is international concern about the environmental damage associated with the conversion of energy from all sources. Renewable energy sources can make a significant contribution to the reduction of pollution, if used in a sustainable way. Renewable fuels and energy systems can also offer protection against future shortages and price increases of conventional energy, and can provide energy supplies in remote areas.

This course has been Labelled by Climate KIC - a knowledge and Innovation Community that works with existing and relevant Master's courses to enhance them with complementary learning

What will you study?

Sample modules

  • Energy carbon and the environment
  • Sustainable heat and power
  • Energy in buildings
  • Sustainable urban systems
  • Building information modelling

Please note that all modules are subject to change. Please see our modules disclaimer for more information.

Dissertation

The dissertation is a major individual research project. Guidance will be given on choosing a research topic, research techniques and the style and presentation of the finished document. Classes in research skills are provided as part of the dissertation module. Students will have their own carefully selected dissertation tutor whose role is to help them plan and successfully execute this key part of the programme.

Full-time

We offer a one-year, full-time modular course. It is taught with ten, one-week attendance periods at the University. The full-time programme starts in September each year.

Flexible part-time

We also offer a two-year, part-time modular course. It is taught with ten, one-week attendance periods at the University. The duration of the flexible route is strongly recommended as two years, but this is not fixed. The flexible course starts in September each year.

What career can you have?

The School has international alumni spread throughout the world. Many are in senior positions within governments, NGOs or the private sector. Graduates from the MSc in Renewable Energy: Technology and Sustainability are uniquely equipped to engage with the challenges of reducing the carbon footprint of energy generation and use. You will acquire the expertise and skills to significantly enhance your employability options in a wide range of energy and sustainability-related occupations. Particular attention is given to the development of research skills and critical thinking. The specific aim is to develop specialist skills. These arise from exposure to theory, research and methods of critical evaluation, while enabling career development.

Graduates will typically be employed in professional roles, such as:

  • Energy Officer
  • Sustainability Consultant
  • Sustainable Energy Consultant
  • Renewables Engineer
  • Renewables Consultant
  • Technical Director
  • Project Analyst
  • Researcher
  • Sales and Marketing Specialist
  • Design Engineer


Read less
AN INTERDISCIPLINARY APPROACH TO ENERGY CHALLENGES . The Master's programme. Energy Science. provides a thorough understanding of energy systems and provides students the capabilities to work towards sustainable energy systems. Read more

AN INTERDISCIPLINARY APPROACH TO ENERGY CHALLENGES 

The Master's programme Energy Science provides a thorough understanding of energy systems and provides students the capabilities to work towards sustainable energy systems.

This two-year Master's programme in Energy Science at Utrecht University offers an interdisciplinary approach to tackle challenges including mitigating climate change, securing our long-term energy supply, and providing access to sustainable energy for everyone.

Energy collection, conversion, transport, storage, distribution, and end-use application are all steps in providing energy services to society. All these elements form an energy system, which is complex and interacts with other systems in a multitude of ways. Transitions in energy systems and the merits of innovation for the individual components of each can only be analysed in the context of the complete system. This is why we place energy systems analysis at the very center of our Energy Science programme.

Analyzing energy systems requires a thorough knowledge of the fundamental scientific and technological principles of the discipline. This knowledge enables us to understand how the characteristics of individual technologies can influence their performance, as well as the impact of market and policy contexts on energy systems. Both economics and policy studies are covered in the programme.

Tracks

You can choose one of two tracks:

  • Systems Analysis
  • Natural Science


Read less
The programme offers a new and unique approach to energy issues and does not teach how to produce more energy but how to use energy more efficiently! The curriculum provides education in alternative energy materials science and engineering with a strong technology component with specialisations on either materials or processes in sustainable energetics. Read more

The programme offers a new and unique approach to energy issues and does not teach how to produce more energy but how to use energy more efficiently! The curriculum provides education in alternative energy materials science and engineering with a strong technology component with specialisations on either materials or processes in sustainable energetics. The goal of this programme is to educate specialists who are able to design, develop and improve materials for use in sustainable energy systems.

The programme offers a joint degree from two of the biggest and most respected universities in Estonia: Tallinn Tech and the University of Tartu

Key features

  • Integrating lectures, laboratory, theoretical classes and experience in industries
  • Professors of the programme are highly recognised scientists. In 2013 Professor Enn Mellikov received the Estonian National Science Award in the field of solar energy
  • Specialisation in Materials will concentrate on solar panels and fuel cells
  • Specialisation in Processes will teach all about the different ways to produce energy: oil shale, wind energy, water, etc.

Course outline

The goal of the programme is to educate engineers and material scientists in the field of sustainable energetics. For that reason there are two specializations to choose between:

  • Specialization on Materials will concentrate on solar panels and fuel cells
  • Specialization on Processes will teach all about the different ways to produce energy: oil shale, wind energy, water etc. It also gives an overview about how to analyse different methods and how to combine them

Master's programme is connected to the industry and will offer experience in the Estonian Energy Company already during the studies.

The main aim of the curriculum is to educate engineers able to solve or minimize problems connected first of all with the utilization but also with the conversion, transportation and storage of energy. The curriculum provides education in alternative energy materials science and engineering at MSc level with a strong technology component.

The curriculum offers an integrated approach towards current and long term materials and energetics issues, focusing on technologies and concepts in sustainable development of industrial production and use of energy.

The courses will be taught both, in Tallinn University of Technology and University of Tartu in compact courses integrating lectures, laboratory and theoretical classes blocked to just several days duration enabling also the integration of foreign visiting students.

Energy is becoming more and more a major cost factor for all the players in the energy business due to increased worldwide consumption on the one hand and on the other hand a need to restrict the production of greenhouse gases.

By 2030, the world's energy needs are expected to be 50% greater than today. Nowadays, much of this energy comes from non-renewable sources, such as fossil fuels- coal, oil and gas. These fuels are being used faster rate than they are produced and may be unavailable for future generations. At the same time, there is a need for a 25% reduction in greenhouse gas emissions by 2050 to avoid serious changes in the Earth's climate system.

In 2009 Tallinn University of Technology launched in cooperation with University of Tartu a joint master programme „Materials and Processes of Sustainable Energetics“ which teaches different sustainable energy methods.

Keywords such as solar energyfuel cellsbiomass, and wind energy are just the tip of the iceberg to describe the programme. Student can choose specialization either in materials of sustainable energetics or processes of sustainable energetics. Specialization on materials of sustainable energetics will give the student knowledge about solar panels and fuel cells- there is already a spin-off company Crystalsol which specializes on building solar panels. Students who choose to study processes of sustainable energetics will learn different ways how to produce and combine sustainable energy- solar, wind, biomass, etc.

Volume of the programme is 2 years and graduates will be awarded with the Master of Science in Engineering.

Curriculum

Structure of curriculum

Future career options

Since the beginning of the programme, almost 50% of the graduates have continued their studies at PhD level in Tallinn University of Technology or in other universities in Europe or America. This has the result of many career possibilities as a researcher in the field of fuel cells and solar panels for material specialisation students whereas processes students are demanded in industries related to sustainable energetics.



Read less
This is an advanced, specialist programme in the rapidly expanding area of renewable energy engineering with a clear Mechanical Engineering focus. Read more

This is an advanced, specialist programme in the rapidly expanding area of renewable energy engineering with a clear Mechanical Engineering focus. The programme is aimed at students wishing to develop critical understanding of the significant changes afoot in the energy system due to the development and integration of wind, marine, biomass and solar technologies. The programme will enable graduates to develop and implement creative solutions to the problems encountered in renewable energy capture, conversion, storage and management.

Students will gain the knowledge and skills to assess renewable energy resources, design appropriate renewable energy systems, evaluate the performance of these systems and assess the wider impacts of renewable energy development. The programme provides introductory courses to fundamental energy science and current energy issues, while the project-led courses focus on the design of renewable energy systems. The programme concludes with a research-led dissertation in the summer.

Renewable energy research focuses on six main areas:

  • Photovoltaics and Solar Energy
  • Wind and Marine Energy
  • Renewable Energy Systems
  • Minimising CO2 Emissions
  • Biofuels
  • Wind and Marine Energy


Read less
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. Read more
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. This programme is open to Engineering graduates of all disciplines with an 8 month programme option leading to a Postgraduate Diploma in Sustainable Energy.

Visit the website: http://www.ucc.ie/en/ckr26/

Course Details

In Part I students take modules to the value of 50 credits and a Preliminary Research Report in Sustainable Energy (NE6008) to the value of 10 credits. Part II consists of a Dissertation in Sustainable Energy (NE6009) to the value of 30 credits which is completed over the summer months.

Part I

Students take 50 credits as follows:

NE3002 Energy in Buildings (5 credits)
EE3011 Power Electronic Systems (5 credits)
EE4010 Electrical Power Systems (5 credits)
NE3003 Sustainable Energy (5 credits)
NE4006 Energy Systems in Buildings (5 credits)
NE6003 Wind Energy (5 credits)
NE6004 Biomass Energy (5 credits)
NE6005 Ocean Energy (5 credits)
NE6006 Solar and Geothermal Energy (5 credits)
NE6007 Energy Systems Modelling (5 credits)

Depending on the background of the student, the Programme Coordinator may decide to replace some of the above taught modules from the following list of modules up to a maximum of 20 credits:

CE4001 The Engineer in Society (Law, Architecture and Planning) (5 credits)
EE3012 Electromechanical Energy Conversion (5 credits)
EE4001 Power Electronics, Drives and Energy Conversion (5 credits)
EE4002 Control Engineering (5 credits)
EE6107 Advanced Power Electronics and Electric Drives (5 credits)
ME6007 Mechanical Systems (5 credits)
NE4008 Photovoltaic Systems (5 credits)
PE6003 Process Validation and Quality (5 credits)

In addition, all students must take 10 credits as follows:

NE6008 Preliminary Research Report in Sustainable Energy (10 credits)

Part II

NE6009* Dissertation in Sustainable Energy (30 credits)

*must be submitted on a date in September as specified by the Department

Detailed Entry Requirements

Candidates must have a BE(Hons) or BEng (Hons) Degree or equivalent engineering qualification, with a minimum grade 2H2. However, candidates with equivalent academic qualifications and suitable experience may be accepted subject to the approval of College of Science, Engineering and Food Science. In all cases, the course of study for each candidate must be approved by the Programme Coordinator.
Candidates, for whom English is not their primary language, should possess an IELTS of 6.5 (or TOEFL equivalent) with no less than 6.0 in each individual category.

Candidates from Grandes Écoles Colleges are also eligible to apply if they are studying a cognate discipline in an ENSEA or EFREI Graduate School and are eligible to enter the final year (M2) of their programme.

Assessment

- Postgraduate Diploma in Sustainable Energy -

Students who pass but fail to achieve the requisite grade of 50% across the taught modules and the Preliminary Research Report will be eligible for the award of a Postgraduate Diploma in Sustainable Energy. Candidates passing Part I of the programme who do not wish to proceed to Part II may opt to be conferred with a Postgraduate Diploma in Sustainable Energy.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The world is recognising that buildings need to consume less energy in the future – and this course develops your building services engineering knowledge with a focus on sustainable design. Read more

About the course

The world is recognising that buildings need to consume less energy in the future – and this course develops your building services engineering knowledge with a focus on sustainable design.

You will learn about renewable energy technologies, efficient ventilation, air conditioning and energy conversion technologies in the programme, and can choose from a broad range of dissertation topics.

The course is available on either a one-year, full-time or three-to-five-year, distance-learning basis.

Aims

The era of zero emission building is within grasping distance of the mass construction industry – creating a huge demand for specialists with the skills to design and project manage effectively.

The aim of this programme is to respond to the worldwide demand for building services engineers and managers who have a sound knowledge of engineering principles and the ability to apply this knowledge to the complex situations prevailing within the building services industry.

Course Content

Modes of Study

1-Year Full-Time
The taught element of the course (September to April) includes seven modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

3-to-5-Years Distance-Learning
The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to suit yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.
Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Typical Modules

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Energy Conversion Technologies
Building Services Design and Management
Renewable Energy Technologies
Energy Efficient Ventilation for Buildings
Dissertation

Special Features

There are numerous advantages in choosing the Brunel Building Services programme:

Award-winning courses: Building Services Engineering courses have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: It is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: Emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Collaborative research
Engineering at Brunel benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Additionally we are seeking reaccreditation with the Energy Institute.

Teaching

Students are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May/June.
Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Read less
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?. The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Read more
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?

The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Throughout the duration of this course you will develop a critical awareness of ethical and environmental considerations, in addition to learning about advanced mechanical engineering practice and theory.

Accredited by the Institution of Mechanical Engineers (IMechE), this course fully meets the academic requirements to become a Chartered Engineer.

At a time when there is an international shortage of mechanical engineers there has never been a better time to enter this dynamic and rewarding industry.

Accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

This course can also be started in January - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/mechanical-engineering-msc-ft-dtfmez6/

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The initial semesters of this course focus on taught subjects that cover topics such as computational fluid dynamics and heat transfer, multidisciplinary design and engineering optimisation, composite materials and lightweight structures, advanced stress and analysis and thermo-mechanical energy conversion systems.

Teaching is primarily delivered by lectures, seminars and workshops, all of which are assessed by methods such as assignments, exams and technical reports. All of this course’s assessments have been devised to closely mirror the outputs required in a real working environment.

On completion of the taught modules you will undertake a substantial piece of research related to an area of mechanical engineering that particularly interests you. Our teaching team will be on-hand to offer support and guidance throughout every stage of your course.

Module Overview
KB7001 - Computational Fluid Dynamics and Heat Transfer (Core, 20 Credits)
KB7006 - Composite Materials and Lightweight Structures (Core, 20 Credits)
KB7008 - Advanced Stress and Structural Analysis (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)
KB7052 - Research Project (Core, 60 Credits)

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by our team of specialist staff who boast a wealth of multi-dimensional expertise.

Our teaching team includes a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key mechanical engineering practice and research.

You will be encouraged to undertake your own research–based learning where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

We aim to regularly welcome industry specialists to deliver guest lecturers to further enable you to understand real-world issues and how they link to the concepts, theories and philosophies taught throughout your course.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in General Engineering.

Give Your Career An Edge

The MEng Mechanical Engineering course will equip you with all of the skills required to progress within the engineering industry and competition of your master’s degree will give you a competitive edge thanks to the additional skills and knowledge you will acquire.

Our accreditation with the IMechE ensures that this course’s content is in-line with the latest developments within this sector, making our course highly valued by employers.

By completing this course you will have completed the academic requirement to become a Chartered Engineer, a status that is associated with improved employability and higher salaries.

Employability is embedded throughout all aspects of your course and you will leave with enhanced key skills such as communication, computing and teamwork.

Your Future

Mechanical Engineering overlaps with a number of engineering disciplines meaning there are many career paths available to you once you have completed this course.

Many graduates choose to pursue a career in the expansive engineering sector, in roles such as designers, analysts, project managers or consultants.

You may also wish to progress your knowledge to PhD level and this course will provide you with a solid foundation that you can easily build on and advance to an even higher level.

Engineering is a growth industry and currently there is a shortage of engineers. 90% of our graduates are in work or study within six months of graduating and, of those in work, 80% are employed in a professional or managerial job (Unistats 2015).

Read less
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE). Read more
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE).

The course covers topics such as photovoltaic, wind, thermo-mechanical energy conversion systems, hybrid renewable energy systems, energy efficiency, building energy modelling and engineering optimisation.

The University has a well-established reputation for renewable and sustainable energy technologies.

You’ll benefit from excellent technical facilities including specialist workshops. We also have a laboratory that’s dedicated to power networks, wind energy, photovoltaics and battery testing for electric vehicles.

For more information about the January start for this course, please view the website: https://www.northumbria.ac.uk/study-at-northumbria/courses/renewable-and-sustainable-energy-technologies-msc-ft-dtfrws6/

Learn From The Best

Our teaching team includes experts from Renewable and Sustainable Energy Research Group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a master’s project that will hone your skills in evaluating and applying research techniques and methodologies. The topic of the project will reflect your own unique interests.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

Module Overview
KB7003 - Building Energy and Environmental Modelling (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7040 - Sustainable Development for Engineering Practitioners (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)
KB7045 - Wind, Photovoltaic and Hybrid Renewable Energy Systems (Core, 20 Credits)
KB7052 - Research Project (Core, 60 Credits)

Learning Environment

Northumbria University provides outstanding facilities for renewable and sustainable energy technologies. For example our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the master’s project that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. One of Northumbria’s signature research themes is ‘Future Engineering’, which is about innovation in the engineering industry so that it’s fit for purpose in the 21st century. We also have particular interests in smart materials and sustainable technologies.

Give Your Career An Edge

MSc Renewable and Sustainable Technologies has been accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirements for registration as a Chartered Engineer. Chartered status is associated with improved employability and higher salaries.

The course will equip you with the expertise to design, optimise, apply and evaluate renewable and sustainable energy technologies. Your master’s project will extend your practical experience of industry-standard hardware and software tools. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in renewable and sustainable energy technologies. Renewable energy production could increase by up to 1,000% by 2050 compared to 2010, according to the UN Intergovernmental Panel on Climate Change, so there will be a pressing need for well-trained professionals.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
Renewable energy is an essential and vital resource for the world’s future, and future there is an urgent need for engineers capable of solving the industry’s complex challenges in this field. Read more

About the course

Renewable energy is an essential and vital resource for the world’s future, and future there is an urgent need for engineers capable of solving the industry’s complex challenges in this field.

Studying Renewable Energy Engineering at Brunel provides graduates with the knowledge and skills to make a strategic real-world impact in the resolution of the world’s energy problems.

Graduates from Brunel’s MSc in Renewable Energy Engineering will develop:

- The versatility and depth to deal with new, demanding and unusual challenges across a range of renewable energy issues, drawing on an understanding of all aspects of renewable energy principles including economic assessment.

- The imagination, initiative and creativity to enable them to follow a successful engineering career with national and international companies and organisations.

- Specialist knowledge and transferable skills for successful careers including, where appropriate, progression to Chartered Engineer status.

Aims

Huge business incentives, markets and a wide variety of employment opportunities throughout the world are expected with the development of renewable energy resources as a substitute for fossil fuel technology.

The purpose of the MSc programme is to help meet this demand by cultivating qualified and skilled professionals with specialist knowledge in relevant technologies within the renewable energy sector.

The primary aim is to create Master’s degree graduates with qualities and transferable skills ready for demanding employment in the renewable energy sector. These graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level, and the programme also establishes a strong foundation for those who expect to continue onto a PhD or industrial research and development.

Initial programme learning outcomes

The programme will provide opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas:

Knowledge and understanding of:

1.The principles and environmental impact of renewable energy technologies, including solar (thermal and electricity), wind, tidal, wave and hydro, geothermal, biomass and hydrogen.
3. The principles of energy conversion and appropriate thermodynamic machines.
4. The heat and mass transfer processes that relate to energy systems and equipment.
5. The principles, objectives, regulation, computational methods, economic procedures, emissions trading, operation and economic impact of energy systems.
6. The diversity of renewable energy system interactions and how they can be integrated into actual energy control systems and industrial processes.

At the cognitive thinking level, students will be able to:

1. Select, use and evaluate appropriate investigative techniques.
2. Assemble and critically analyse relevant primary and secondary data.
3. Recognise and assess the problems and critically evaluate solutions to challenges in managing renewable energy projects.
4. Evaluate the environmental and financial sustainability of current and potential renewable energy activities
5. Develop a thesis by establishing the basic principles and following a coherent argument.

In terms of practical, professional and transferable skills, students will be able to:

1. Define and organise a substantial advanced investigation.
2. Select and employ appropriate advanced research methods.
3. Organise technical information into a concise, coherent document.
4. Communicate effectively both orally and in writing.
5. Design and select renewable energy equipment and systems based on specific requirements/conditions.
6. Work as part of, and lead, a team.

Course Content

The taught element of the course (September to April) includes eight modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

Compulsory modules:

Renewable Energy Technologies I-Solar Thermal and electricity systems
Renewable Energy Technologies II-Wind, Tidal, Wave, Hydroelectricity
Renewable Energy Technologies III-Geothermal, Biomass, Hydrogen
Power Generation from Renewable Energy   
Renewable Energy Systems for the Built Environment
Energy Conversion Technologies
Environmental Legislation: Energy and Environmental Review and Audit
Advanced Heat and Mass Transfer
Dissertation

Teaching

Students are introduced to subject material, including key concepts, information and approaches, through a mixture of standard lectures and seminars, laboratory practical, field work, self-study and individual research reports. Supporting material isavailable online. The aim is to challenge students and inspire them to expand their own knowledge and understanding.

Preparation for work is achieved through the development of 'soft' skills such as communication, planning, management and team work. In addition, guest speakers from industries provide a valuable insight into the real world of renewable energy.

Many of the practical activities in which the students engage, develop into enjoyable experiences. For example, working in teams for laboratory and field work and site visits. We encourage students to develop personal responsibility and contribution throughout the course. Many elements of coursework involve, and reward, the use of initiative and imagination. Some of the projects may be linked with research in CEBER, CAPF and BIPS research centres.

1 Year Full-Time: The taught element of the course (September to April) is delivered by a combination of lectures, tutorials and group/seminar work. From May to September students undertake the dissertation.

3-5 Years Distance Learning: The programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace. Students are supplied with a study pack in the form of text books and CD-ROMs; cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations can be taken either at Brunel University London or in the country you are resident in. The dissertation is carried out in one year.

Modules are assessed either by formal examination, written assignments or a combination of the two.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of the academic year. Examinations are normally taken in May. The MSc dissertation project leading to submission of the MSc Dissertation is normally carried out over four months (FT students) or one year (DL students).

Special Features

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

About Mechanical Engineering at Brunel
Mechanical Engineering offers a number of MSc courses all accredited by professional institutes as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Accrediting professional institutes vary by course and include the Institute of Mechanical Engineers (IMechE), Energy Institute (EI) and Chartered Institute of Building Services Engineers (CIBSE).

Teaching in the courses is underpinned by research activities in aerospace engineering, automotive/motorsport engineering, solid and fluid mechanics, and energy & environment. Staff generate numerous publications, conference presentations and patents, and have links with a wide range of institutions both within and outside the UK. The discipline benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The requirement of UK-SPEC reinforces the need for a recent graduate with a Bachelor degree to take an appropriate postgraduate qualification in order to become a chartered engineer (currently, an accredited Bachelors degree does not enable the graduate to proceed to Chartered Engineer status without additional learning at M level).

This MSc program will be compliant with the further learning requirements of UK-SPEC. Accreditation will be sought from the Institute of Mechanical Engineering (IMechE) and Energy Institute. As a result, it will appeal to recent graduates who have not yet obtained the appropriate qualifications but intend to become Chartered Engineers. Most importantly, it will appeal to Mechanical, Chemical and Building Services Engineering graduates who wish to specialise in energy, or suitably experienced graduates of related subjects such as Physics.

Read less

Show 10 15 30 per page



Cookie Policy    X