• University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of York Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Southampton Solent University Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
University of Kent Featured Masters Courses
"energy" AND "business"×
0 miles

Masters Degrees (Energy Business)

  • "energy" AND "business" ×
  • clear all
Showing 1 to 15 of 550
Order by 
The MSc in Global Energy Management (GEM) is an intensive course aiming to produce future leaders in the energy sector. The global energy system is undergoing a process of rapid change including. Read more

Why this course?

The MSc in Global Energy Management (GEM) is an intensive course aiming to produce future leaders in the energy sector.

The global energy system is undergoing a process of rapid change including:
- escalating demand
- constraints on supplies
- increasing energy prices
- regulatory pressures to reduce carbon emissions
- changing demographics and patterns of energy use and supply

Industries, economies and societies face complex challenges and uncertainties that could become more extreme in the future. Both government and industry need to be able to understand and adapt to this changing context.

Through this course you’ll gain a rigorous analytical training and in-depth real-world knowledge of global energy systems. There’s also hands-on training in the management of energy-related issues. Your training will help to give you an unrivalled edge in the energy job market.

This Masters degree is delivered by the Department of Economics.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/globalenergymanagement/

You’ll study

Core classes are designed around the latest academic research on the issues facing energy managers today. You’ll also have the opportunity to pursue your own interests through a variety of optional courses.

We run a series of interactive seminars called the Global Energy Forum. Leading international energy experts in business, government and other organisations provide you with practical insights and inside knowledge.

There are also field trips, conferences and you will complete a summer project.

Core classes:
- Global Energy Issues, Industries & Markets
- Global Energy Technologies, Impacts & Implementation
- Global Energy Policy, Politics, Business Structures & Finance
- Global Energy Forum
- Energy Economics
- Microeconomics or Macroeconomics

Elective classes:
You’ll be able to choose from many postgraduate classes offered in:
- The Strathclyde Business School
- The Faculty of Engineering
- The Faculty of Humanities & Social Sciences

Facilities

The Strathclyde Business School is situated in a modern building in heart of Glasgow’s city centre. It’s designed to meet the demands of both corporate clients and students. Our school is equipped with up-to-date computing and technology facilities, study areas and its own café.

Accreditation

The MSc in Global Energy Management is accredited by the Energy Institute, the professional body for the energy industry. It is the first Masters course to hold academic accreditation for the professional status of Chartered Energy Manager.

The Strathclyde Business School is a triple accredited business school. It’s one of only a small percentage worldwide to hold this prestigious status, with full accreditation from the international bodies, AMBA, AACSB and EQUIS.

Energy Master Exchange Programme (EMEP)

Strathclyde Business School and Dauphine Université, Paris, have joined forces to bring future leading energy market professionals together by forming the Energy Master Exchange Programme (EMEP) Workshop.

Further information will be given when you enter the programme.

Pre-Masters Preparation Course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form , or to ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

You’ll be taught by highly committed and enthusiastic staff distinguished by their internationally-recognised research in energy and environmental related fields.
The course offers excellent opportunities to network with international energy specialists from a range of organisations.

Careers

Energy is the largest and most critical industry in the global economy today. It employs over 135,000 people directly and 500,000 in supporting roles.

Employers are seeking out skilled graduates to work in the energy industry and related fields. As a graduate in global energy management, you’ll be well placed to manage the complex challenges facing the global energy system in the 21st century.

We’ve designed this course to maximise the opportunities for industry engagement. You’ll take part in industry events such as the Scottish Oil Club.

While on the course you’ll become Learning Affiliates of the Energy Institute. You’re entitled to free Energy Institute membership. Membership includes:
- access to a wealth of energy related information
- significant discounts to attend conferences and seminars
- many opportunities to meet professionals across the energy sector

How much will I earn?

The range of typical starting salaries for an energy manager is £22,000 to £33,000 depending on the work sector and geographical area. Starting salaries may be higher for those with postgraduate qualifications and experience.*

*information is intended only as a guide.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
This is a 12 month full-time Masters degree (See http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/ ) course taught at our Orkney Campus. Read more

Overview

This is a 12 month full-time Masters degree (See http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/ ) course taught at our Orkney Campus. It involves studying 8 taught courses and completing a research dissertation equivalent to 4 taught courses. If you can demonstrate that you have already mastered the subject, you may apply for an exemption from one of the taught courses and undertake a Design Project instead.

For more information visit http://www.hw.ac.uk/schools/life-sciences/research/icit.htm

Distance learning

The Renewable Energy Development MSc/Diploma is also available for independent distance learning. For distance learners, the main difference is that you will undertake the Development Project alone rather than as part of a group. You can still obtain the full MSc in Renewable Energy Development, or you can opt to study fewer courses, depending on your needs.

Programme content

- Energy in the 21st Century
This course is designed to give you a broad understanding of the environmental, political and socio-economic context for current developments in renewable energy. The course examines the extent of current energy resources and how energy markets function. It covers some energy basics you will need for the rest of the programme (e.g. thermodynamics, efficiency conversions) as well as environmental issues associated with energy use, climate change and the political and policy challenges involved in managing energy supply and achieving energy security.

- Economics of renewable energy
This course gives an understanding of the economic principles and mechanisms which affect energy markets today. It covers price mechanisms, the economics of extracting energy and the cost-efficiency of renewable energy technologies. You will learn about economic instruments used by policy-makers to address environment and energy issues, economic incentives to stimulate renewable energy development and about environmental valuation.

- Environmental Policy & Risk
This course explores the legal and policy context in which renewable energy is being exploited. You will gain an understanding of international law, particularly the Law of the Sea, property rights and how these relate to different energy resources. The course also looks at regulatory issues at the international, European and UK level, which affect how energy developments are taken forward, as well as risk assessment and management in the context of renewable energy developments.

- Environmental Processes
Particularly for those without a natural science background, this course provides a broad overview of the environmental processes which are fundamental to an understanding of renewable energy resources and their exploitation. You will study energy flows in the environment, environmental disturbance associated with energy use, and an introduction to the science of climate change. You will also learn about ecosystems and ecological processes including population dynamics and how ecosystems affect and interact with energy generation.

- Renewable Technology I: Generation
This course explores how energy is extracted from natural resources: solar, biomass, hydro, wind, wave and tide. It examines how to assess and measure the resources, and the engineering solutions which have been developed to extract energy from them. You will develop an understanding of the technical challenges and current issues affecting the future development of the renewable energy sector.

- Renewable Technology II: Integration
This course explores the technical aspects of generating renewable energy and integrating it into distribution networks. You will learn about the electricity grid and how electrical power and distribution systems work. You will find out about different renewable fuel sources and end uses, and the challenges of energy storage.

- Development Appraisal
Looking at what happens when renewable energy technologies are deployed, this course examines development constraints and opportunities: policy and regulatory issues (including strategic environmental assessment, environmental impact assessment, landscape assessment, capacity issues and the planning system). It also looks at the financial aspects (valuation of capital assets, financing projects and the costs of generating electricity) and at project management.

- Development Project
This is a team project, where students have the opportunity to apply what they have learned through the other courses in relation to a hypothetical project. You have to look at a range of issues including resource assessment, site selection, development layout, consents, planning and economic appraisal, applying the knowledge and tools you have studied.

- Optional design project
For students who can demonstrate existing knowledge covered by one of the courses, there is the option of understanding a design project supervised by one of our engineers.

- Dissertation
This research project (equivalent in assessment to 4 taught courses) allows you to focus on a specific area of interest, with opportunities to collaborate with businesses and other stakeholders. You choose your dissertation subject, in discussion with your supervisor.

- Additional information
If you study at our Orkney Campus, you will also benefit from a number of activities including guest lectures and practical sessions, which help to develop your skills and knowledge in your field of study, and offer opportunities to meet developers and others involved in the renewable energy industry.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Renewable Energy Development (RED) MSc. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Distance learning students

Please note that independent distance learning students who access their studies online will be expected to have access to a PC/laptop and internet.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/

Read less
This is a 12 month full-time MSc degree course (See http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview ) taught at our Orkney Campus. Read more

Overview

This is a 12 month full-time MSc degree course (See http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview ) taught at our Orkney Campus. It involves studying 8 taught courses. If you can demonstrate that you have already mastered the subject, you may apply for an exemption from one of the taught courses and undertake a Design Project instead. The MSc programme is completed with a research dissertation equivalent to 4 taught courses.

For more information visit http://www.hw.ac.uk/schools/life-sciences/research/icit.htm

Distance Learning

The Marine Renewable Energy MSc/Diploma is also available for independent distance learning. For distance learners, the main difference is that you will undertake the Development Project alone rather than as part of a group. You can still obtain the full MSc in Marine Renewable Energy, or you can opt to study fewer courses, depending on your needs.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Marine Renewable Energy. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

The Diploma and MSc degree course involves studying the 8 taught courses outlined below. If a student can demonstrate that they have already mastered the subject, they may undertake a Development Project instead of one of these courses.

- Energy in the 21st Century
This course is designed to give you a broad understanding of the environmental, political and socio-economic context for current developments in renewable energy. The course examines the extent of current energy resources and how energy markets function. It covers some energy basics you will need for the rest of the programme (e.g. thermodynamics, efficiency conversions) as well as environmental issues associated with energy use, climate change and the political and policy challenges involved in managing energy supply and achieving energy security.

- Economics of renewable energy
This course gives an understanding of the economic principles and mechanisms which affect energy markets today. It covers price mechanisms, the economics of extracting energy and the cost-efficiency of renewable energy technologies. You will learn about economic instruments used by policy-makers to address environment and energy issues, economic incentives to stimulate renewable energy development and about environmental valuation.

- Environmental Policy & Risk
This course explores the legal and policy context in which renewable energy is being exploited. You will gain an understanding of international law, particularly the Law of the Sea, property rights and how these relate to different energy resources. The course also looks at regulatory issues at the international, European and UK level, which affect how energy developments are taken forward, as well as risk assessment and management in the context of renewable energy developments.

- Oceanography & Marine Biology
This course is designed to give you an understanding of the science of waves and tides, and how this affects efforts to exploit energy from these resources. You will also learn about marine ecosystems and how these may be impacted by energy extraction and about the challenges and impacts associated with carrying out engineering operations in the marine environment.

- Marine Renewable Technologies
You will gain an understanding of renewable energy technologies which exploit wind, wave and tidal resources. The focus is on technical design issues which developers face operating in the marine environment, as well as the logistics of installation, operations and maintenance of marine energy converters.

- Renewable Technology: Integration
This course explores the technical aspects of generating renewable energy and integrating it into distribution networks. You will learn about the electricity grid and how electrical power and distribution systems work. You will find out about different renewable fuel sources and end uses, and the challenges of energy storage.

- Development Appraisal
Looking at what happens when renewable energy technologies are deployed, this course examines development constraints and opportunities: policy and regulatory issues (including strategic environmental assessment, environmental impact assessment, landscape assessment, capacity issues and the planning system). It also looks at the financial aspects (valuation of capital asses, financing projects and the costs of generating electricity) and at project management.

- Development Project
This is a team project, where students have the opportunity to apply what they have learned through the other courses in relation to a hypothetical project. You have to look at a range of issues including resource assessment, site selection, development layout, consents, planning and economic appraisal, applying the knowledge and tools you have studied.

- Dissertation
This research project (equivalent in assessment to 4 taught courses) allows you to focus on a specific area of interest, with opportunities to collaborate with businesses and other stakeholders. You choose your dissertation subject, in discussion with your supervisor.

- Additional information
If you study at our Orkney Campus, you will also benefit from a number of activities including guest lectures and practical sessions which help to develop your skills and knowledge in your field of study, and offer opportunities to meet developers and other involved in the renewable energy industry.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Distance learning students

Please note that independent distance learning students who access their studies online will be expected to have access to a PC/laptop and internet.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview

Visit the Marine Renewable Energy MSc/Diploma page on the Heriot-Watt University web site for more details!

Read less
The Global Energy Executive MBA program aims to transform the global energy industry by preparing the next generation of leaders for its complex and evolving challenges. Read more
The Global Energy Executive MBA program aims to transform the global energy industry by preparing the next generation of leaders for its complex and evolving challenges.

The global energy industry is at a critical juncture with escalating supply demand imbalances, political instability in key energy producing regions and ever-increasing scrutiny from a diverse array of stakeholders. This unique program combines academic excellence with deep energy industry expertise in six highly experiential modules with immersive experiences in key energy centres around the globe.

Extensive Support

Our team is committed to providing extensive support to allow you to get the most out of your learning experience. Resources for the Global Energy Executive MBA program include:
-Library resources: the dedicated MBA librarian helps you plan and execute your research either remotely or in person.
-Technology support: our team will assist you with setting up and troubleshooting your access to online sessions and the program student site. You will need to provide your own laptop computer.
-Tutorials: throughout the program faculty members and / or teaching assistants will provide additional support when needed to help practice challenging concepts and prepare for exams.
-Catering: lunch, snacks and some dinners are provided throughout the face-to-face sessions for your convenience; breakfast is included in the group’s preferred hotel rate.
-Transportation: transportation is provided within the face-to-face period to and from field visits and between program locations (where relevant).
-Career counselling: dedicated MBA career advisors are available to support you if you are looking to make a career transition during the program.

Industry Focus

The Global Energy Executive MBA program has been designed to prepare our students for the specific challenges faced by senior leaders in the energy industry.

The energy sector faces unique challenges due to its global, commodity-based and capital intensive nature, as well as its complex links with socio-economic and environmental policy. Therefore the program integrates a broad range of academic and real-life energy industry case studies in the classroom with experiential learning opportunities.

Global Delivery

The Global Energy Executive MBA program is unique in providing an immersive experience in a number of global energy centres. Students benefit from site visits to energy facilities, exposure to local energy industry leaders and introduction to diverse business cultures.

Diverse Cohort

The students in the Global Energy Executive MBA program represent top talent from major energy organizations from across the globe. They bring a diverse mix of functional and operational expertise from across energy value chains in gas, coal, oil, nuclear and renewable energy sources.

Students are typically senior professionals with an average of 13 years’ of progressive experience in the energy industry. Having been identified as high potential leaders within their organizations, many students are currently or expect to be promoted to an executive level position within the next five years.
-13 years’ average work experience
-15% female and 85% male
-Average age of participants is 39 years
-40-50% of participants are from outside of Canada, typically with representation from Asia-Pacific, sub-Saharan Africa and South/Central America
-90% of the class have undergraduate degrees, with engineering and business majors being most common
-40% of the class work for multi-national enterprise, 35% for large enterprise, 15% for government-owned enterprise and 10% for small / medium business
-30% of class work in general management, 30% in accounting / finance / planning, 20% in an operational function, 10% in HR and -10% in marketing / sales

Read less
The importance of well-functioning energy markets to the global economy cannot be exaggerated. As the energy mix employed by countries around the world becomes increasingly diversified, there also arises the need to develop academic curricula designed to educate a new workforce suited to this dynamic sector. Read more

Programme description

The importance of well-functioning energy markets to the global economy cannot be exaggerated. As the energy mix employed by countries around the world becomes increasingly diversified, there also arises the need to develop academic curricula designed to educate a new workforce suited to this dynamic sector.

MSc Energy Finance and Markets applies principles of financial and resource economics to prepare students for careers in old and new energy markets and industries, as well as the public sector.

Although the programme content relates to a wide array of energy sector career paths, the programme is specifically targeted at candidates who are interested in career opportunities in the finance departments of energy utilities, energy/commodity trading desks of financial and energy firms, energy consultancies, as well as relevant public, academic and third sector positions.

The programme incorporates significant input from energy industry and energy commodities trading executives. Students on the programme work with industry partners to develop cutting edge trading and project solutions within consultancy projects sponsored by energy firms and commodity trading desks of financial and oil and gas institutions.

MSc Energy Finance and Markets provides students with a vital understanding of how energy markets work and energy projects are appraised from both policy and financial economics perspectives. This is done through the delivery of a careful selection of academically grounded courses with significant practical elements.

The programme is designed for candidates who desire to pursue careers that require the understanding of the political economy and financial and resource economics issues in the energy industry. It is also suited to those who desire careers in the public sector and further study in the academia.

The courses offered provide strong academic conditioning for the students, but also offer relevant industry-facing applications. Given the importance of industry relevance, the programme regularly hosts key industry stakeholders as guest lecturers and master class leaders. Students are therefore readily exposed to practical application of financial modelling and analytical techniques widely employed in the execution of energy projects, as well as those used for trading execution in the wider energy markets.

Contemporaneous policy issues are also explored in great detail, underscoring the dynamic nature of the programme’s content.

Programme structure

Learning will primarily be through lectures, set reading, class discussions, exercises, group-work assignments, problem solving in tutorials and case studies. Assessment methods include examinations, assignments, presentations or continuous assessment.

Learning outcomes

By the conclusion of the programme, students should be able to:

demonstrate an advanced knowledge of key theoretical finance and economic concepts underpinning the operations in global and regional energy markets
demonstrate knowledge of how key regional and global energy markets (oil, gas, electricity etc) are structured and how they work
have in-depth understanding of the relationships existing among the key global energy markets; for example, how gas prices translate into less demand for coal and other energy commodities
conduct financial appraisal of energy projects within relevant regulatory contexts
trade energy commodities on global and regional markets’ exchanges/trading platforms by using state of the art software packages and harnessing the power of relevant real-time energy industry data
demonstrate an appreciation of the role played by global, regional and national policies in shaping the demand and supply of energy commodities, as well as relevant energy mixes
demonstrate an appreciation of the complex nature of global energy markets, especially the oil and gas markets, which incorporates supply from developing countries with varied market/operational structures

Read less
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Read more
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Process engineering, for example, with such fields as environmental- and energy engineering, is now seen as one of the key disciplines. It deals with the engineering required for a wide range of processes and the transformation of materials, in which raw materials are converted in a series of unit operations into salable intermediate and final products.

One focus of training within the discipline relates to the development and application of various environmental and energy technologies. Both environmental- and energy engineering are classified as green technologies, which have developed at an above-average rate in the last few years. That is due to growing social awareness for sustainability and the finite nature of our resources on the one hand and legal constraints on the other. The latter in particular call for innovative processes and technologies in response to today’s challenges. The Master program in Environmental, Process & Energy Engineering is designed to communicate the knowledge, methodology and problem-solving competence needed to tackle a very wide range of engineering problems in the above mentioned fields. With its commitment to bridge-building between the academic and the business worlds, Management Center Innsbruck also provides essential teaching in the increasingly important horizontal disciplines of law and economics, and the skills needed for today’s labor market.

Major Energy Engineering

In the light of dwindling energy resources and volatile energy prices, energy engineering has become an integral economic factor with enormous potential for growth, especially in such fields as energy generation from non-fossil primary energy sources, energy distribution and energy savings. MCI graduates with a specialization in Energy Engineering typically deal with a wide variety of processes, from conventional power plant engineering to the conversion of energy carriers and their various precursors, and decentral energy supply systems. The major in Energy Engineering caters for these market requirements by communicating the relevant knowledge and skills with a combination of in-depth teaching and practical applicability.

Given their interdisciplinary training and the program’s strong practical orientation, graduates are particularly well qualified to work as engineers at the interface with business and management with special reference to the following areas:

Energy trading, energy management & natural resources
Renewable energies
Glass industry
Oil industry
Consulting engineers, consulting & engineering
Paper and paper products
Chemicals
Gas and heating supply industries

Read less
The energy industries, which include power, oil and gas, mining and alternative energy, are among the few that are growing worldwide. Read more
The energy industries, which include power, oil and gas, mining and alternative energy, are among the few that are growing worldwide. Demand for managers with specific knowledge of these industries is high, so this course is aimed at developing those who seek to establish or further their careers in these industries achieve their ambitions.

Why study Managing in the Energy Industries at Dundee?

The Centre for Energy, Petroleum and Mineral Law and Policy (CEPMLP) is one of the few centres in UK universities with the background and specialist skills to offer such a course. Over the past few years it has been high successful in developing its teaching, research and industry contacts in management. Courses are designed in conjunction with industry specialists and industry related learning is a core element of all courses in the Centre.

What's great about Managing in the Energy Industries?

The course aims are to develop the required knowledge, skills and other attributes (KSAs) that employers in the energy industries consider essential for managers to pursue their career ambitions. Participants will learn about the fundamentals of different energy industries, generic and sector specific management KSAs through classroom and work-based learning, which is facilitated by specialist academics and industry specialists.

Who should study this course?

This course suits graduates in any discipline who wish to widen their subject knowledge and career aspirations in the energy industries world-wide. The course is open to full time, part time and flexible learners.

How you will be taught

Modules start at the beginning of the academic session in September. The course is taught predominantly in a student centred manner through seminars, workshops and work-based individual and group learning. This includes web-supported learning for full-time and part-time students.

What you will study

The course comprises core taught modules, optional modules plus a dissertation:

Compulsory modules:
Natural Resources Sectors: A multidisciplinary Introduction
Management in Natural Resources and Energy Industries
Energy Economics: The Issues
Business Strategy in Energy and Extractive Industries
Compulsory core choice - choose one from
Critical Business Analysis & Report
Internship Report
Dissertation

Compulsory core choice - choose at least two from the following Business & Management modules:
Foundation Accounting
Foundation Finance
Human Resource Management
Leadership and Decision Making
Stakeholder Management and Business Ethics
Financial and Project Analysis of Natural Resources and Energy Ventures
Risk and Crisis Management

Compulsory core choice - choose at least two from the following Specialist modules:
Energy Economics: The Tools
International Law of Natural Resources and Energy
Downstream Energy Law and Policy
Renewable Energy: Technology, Economics and Policy
Environmental Law and Policy for Natural Resources and Energy
Energy and Climate Change Law and Policy
International Developments in Energy Policy
Mineral and Petroleum Taxation
Petroleum Policy and Economics
Politics of the Environment and Climate Change

How you will be assessed

Each module is assessed through coursework, typically a research paper or project, and a final examination. It is also assessed by a individual business project

Careers

Graduates should be able to enter the energy industries as management trainees. Existing managers completing this course will have enhanced knowledge and skills in management.

Read less
As we improve existing technologies and transition to more sustainable energy systems, clean energy technologies will become increasingly vital to the world's energy mix. Read more
As we improve existing technologies and transition to more sustainable energy systems, clean energy technologies will become increasingly vital to the world's energy mix. Industry and government are critically dependent on hiring talented technical leaders who can develop innovative and practical solutions. There is a growing need across multiple industries for technical experts in clean energy engineering. Our planet needs viable energy solutions to minimize environmental impacts, promote geopolitical stability and enable economic diversification. The Master of Engineering Leadership (MEL) Clean Energy Engineering is an intensive one-year degree program for engineers and environmental science graduates who want to make their sustainable vision a reality and advance their careers in the in-demand field of clean energy.

The project-based curriculum covers all stages of the industry value chain and exposes you to alternative energy systems including hydro, wind, solar, tidal, geothermal and other emerging technologies. You will work in world-class facilities, including the Clean Energy Research Centre. This interdisciplinary research centre brings together engineers and industry partners who collaborate to develop practical solutions that can reduce the environmental impact of energy use and seek sustainable solutions.

While 60 per cent of your classes will focus on your technical specialization, the remaining 40 per cent are leadership development courses that will enhance your business, communication and people skills. Delivery of the management and leadership courses are in partnership with UBC's Sauder School of Business.

What Makes The Program Unique?

The MEL in Clean Energy Engineering degree was developed in close collaboration with industry partners, who told us they need to hire leaders with cross-functional technical and business skills to develop innovative solutions, manage teams and direct projects. The combination of technical expertise and leadership development makes the MEL in Clean Energy Engineering program unique and highly relevant in today's business environment. The MEL in Clean Energy Engineering degree is a unique graduate program that empowers you to develop the sector-relevant cross-disciplinary technical skills required by top employers. As a graduate of this program, you will have the skills to take your career in clean energy to the next level; tackling complex engineering challenges in this in-demand field while confidently leading collaborative teams.

To complement your academic studies, professional development workshops, delivered by industry leaders, are offered throughout the year-long program. These extra-curricular sessions cover a range of topics such as:
-Leadership fundamentals
-Giving and receiving feedback
-Learning how to deliver a successful pitch
-Effective presenting

The workshops also provide opportunities to network with professionals from a wide range of industries, UBC faculty and students in the MEL and MHLP programs.

Funding Sources

The Faculty of Applied Science offers a limited number of $5,000 merit-based awards to MEL students. All applicants who submitted their application before July 1 are automatically considered for this award. You do not need to submit a separate application. The merit-based awards are given to selected applicants and only the successful recipients will be notified before the program starts in January. Aside from the merit-based award, there no other scholarships, grants or funding offered by UBC for MEL students.

Career Options

Our graduates will be in high demand locally, nationally and internationally, with government and industry employers constantly seeking experts in the field who can develop new processes and systems. Typical job roles of CEEN students are Renewable Energy Consultant, Renewable Energy Engineer, Energy Analyst, Energy & Building Consultant, Energy Efficiency Engineer, Energy Management Engineer, Energy Manager, Project Engineer and Project Manager.

Read less
The MPhil in Nuclear Energy, provided by the Department in collaboration with the Cambridge Nuclear Energy Centre, is a one year full-time nuclear technology and business masters for engineers, mathematicians and scientists who wish to make a difference to the problems of climate change and energy security by developing nuclear power generation. Read more
The MPhil in Nuclear Energy, provided by the Department in collaboration with the Cambridge Nuclear Energy Centre, is a one year full-time nuclear technology and business masters for engineers, mathematicians and scientists who wish to make a difference to the problems of climate change and energy security by developing nuclear power generation. The combination of nuclear technology with nuclear policy and business makes the course highly relevant to the challenges of 21st century energy needs, whether in the UK or in countries across the globe.

The MPhil is part of the University of Cambridge's Strategic Energy Initiative in response to the prospect of a nuclear renaissance in the UK and around the world. The aim is to provide a masters-level degree course in Nuclear Energy which will combined nuclear science and technology topics with business, management and policy teaching. Students will be equipped with the skills and information essential to responsible leadership of the international global nuclear industry.

The course recognises that, though the prospects for nuclear energy are now better than they have been for twenty years, the nuclear sector is situated within in a wider market for energy technologies, and has no special right to be developed. The political, economic and social contexts for nuclear power are as important as the technical merits of the designs of reactors and systems. The course therefore has a multi-disciplinary emphasis, aiming to be true to the reality of policy-making and business decision-making.

This course is for students who have a good degree in Engineering or related science subject and who wish to gain the knowledge and skills to build a career in the nuclear and energy sectors. Secondary career paths might include nuclear proliferation prevention, radiological protection, nuclear governance, nuclear medicine and health physics. While the prime focus of the course is to equip students for roles in industry, there is a path towards research through preparation for a PhD programme. The modular open architecture of the course allows students to tailor the degree to suit their background, needs and preferences.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/egegmpmne

Course detail

The course will equip its graduates with a wide range of skills and knowledge, enabling them to fully engage in the nuclear sector.

Graduates will have developed a knowledge and understanding of nuclear technology, policy, safety and allied business. They will have received a thorough technical grounding in nuclear power generation, beginning with fundamental concepts and extending to a range of specialist topics. They will also be equipped with an appreciation of the wider social, political and environmental contexts of electricity generation in the 21st century, with a firm grounding in considering issues such as climate change, energy policy and public acceptability.

The programme will cultivate intellectual skills allowing graduates to engage with the business, policy and technical issues that the development and deployment of nuclear energy poses. These include skills in the modelling, simulation and experimental evaluation of nuclear energy systems; critically evaluating and finding alternative solutions to technical problems; applying professional engineering judgment to balance technological, environmental, ethical, economic and public policy considerations; working within an organisation to manage change effectively and respond to changing demand; understanding business practice in the areas of technology management, transfer and exploitation.

The programme will also develop transferable skills enabling graduates to work and progress in teams within and across the nuclear sector, including the management of time and information, the preparation of formal reports in a variety of styles, the deployment of critical reasoning and independent thinking.

Finally, graduates will have research experience having planned, executed, and evaluated an original investigative piece of work through a major dissertation.

Format

The MPhil in Nuclear Energy is based in the Department of Engineering and is run in partnership with Cambridge Judge Business School and the Departments of Materials Science and Metallurgy, and Earth Sciences.

The programme consists of six compuslory courses in nuclear technology and business management, and four elective courses chosen from a broad range of technical and management courses. These elective courses enable the student to tailor the content of the programme to his career needs; they range from wholly management-oriented courses to technical courses in preparation for an engineering role or further research through a PhD. A long research project is required, with topics chosen from a list offered by members of staffed and Industry Club members, and linked to the principal areas of energy research in their respective departments and companies.

Students are also expected to attend field visits, a Distinguished Lecture Series and weekly seminars, and are able to benefit from research skills training offered by the Department.

Assessment

A large individual research project will be undertaken, which will be examined in two parts. The first part will include a report (of up to 4,000 words) and a five-minute oral presentation. The second part is assessed through the writing of a 15,000 word dissertation, including a fifteen minute oral presentation.

All students will be required to complete at least four items of coursework.

All students will take at least three written examinations, of 1.5 hours each.

Continuing

Students wishing to apply for continuation to the PhD would normally be expected to attain an overall mark of 70%.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

UK applicants are eligible to apply for scholarships of £7,000; these scholarships are funded by the MPhil's industrial partners.

To apply for a scholarship, eligible applicants must list the Nuclear Energy Scholarship in Section B(4) of the online GRADSAF form. People wishing to be considered for a scholarship must submit their application before the end of May 2016.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
This programme is idea for graduates from engineering, science or other relevant backgrounds and who have an interest in pursuing a successful career in research, technological change and the commercialisation of renewable-energy systems. Read more
This programme is idea for graduates from engineering, science or other relevant backgrounds and who have an interest in pursuing a successful career in research, technological change and the commercialisation of renewable-energy systems.

This programme will give you opportunities to learn about major renewable-energy technologies, energy-sector economics, supply-chain management and sustainable development.

PROGRAMME OVERVIEW

Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies.

It is designed to build your competence and confidence in the R&D and engineering tasks that are demanded of scientific engineers in the renewable and sustainable-development sector.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Optimisation and Decision-Making
-Process Modelling and Simulation
-Technology, Business & Research Seminars
-Renewable Energy Technologies
-Refinery and Petrochemical Process
-Solar Energy Technology
-Advanced Process Control
-Energy Economics and Technology
-Process Systems Design
-Biomass Processing Technology
-Wind Energy Technology
-Process and Energy Integration
-Knowledge-based Systems and Artificial Intelligence
-Supply Chain Management
-Introduction to Petroleum Production
-Process Safety and Operation Integrity
-Economics of International Oil & Gas
-Dissertation

FACILITIES, EQUIPMENT AND ACADEMIC SUPPORT

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

CAREER PROSPECTS

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

EDUCATIONAL AIMS OF THE PROGRAMME

This programme investigates both renewable energy and systems technologies in order to produce scientific researchers and engineers who are competent in the R&D and engineering tasks applicable to the renewable energy and sustainable development sectors.

Its primary aims lie in developing a global understanding of the major types of renewable energy technologies, in-depth knowledge of the technology for biomass-based renewable energy, and knowledge and skills in systems modelling and optimisation.

A balanced curriculum will be provided with a core of renewable energy and systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-State-of- the-art knowledge in renewable energy technologies, in terms of: the sources, technologies, systems, performance, and applications of all the major types of renewable energy; approaches to the assessment of renewable energy technologies; the processes, equipment, products, and integration opportunities of biomass-based manufacturing
-State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems; mathematical optimization and decision making; process systems design
-Advanced level of understanding in technical topics of preference, in one or more of the following aspects: process and energy integration, economics of the energy sector, sustainable development, supply chain management

Intellectual / cognitive skills
-Select, define and focus upon an issue at an appropriate level
-Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
-Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills
-Assess the available renewable energy systems
-Design and select appropriate collection and storage, and optimise and evaluate system design
-Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of renewable energy technologies and systems

Key / transferable skills
-Preparation and delivery of communication and presentation
-Report and essay writing
-Use of general and professional computing tools
-Collaborative working with team members
-Organizing and planning of work
-Research into new areas, particularly in the aspect of literature review and skills acquisition

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This programme is appropriate for you if are seeking to develop the skills and confidence to address the critical global challenges of energy and diminishing natural resources. Read more
This programme is appropriate for you if are seeking to develop the skills and confidence to address the critical global challenges of energy and diminishing natural resources. Clean energy, optimal use of resources and the economics of climate change are the key issues facing society, and form the fundamental themes of this programme.

Course details

You explore the world’s dependency on hydrocarbon-based resources, together with strategies and technologies to decarbonise national economies. The course examines global best practice, government policies, industrial symbiosis and emerging risk management techniques. You also address the environmental, economic and sociological (risk and acceptability) impacts of renewable energy provision and waste exploitation as central elements.

The programme develops the problem-solvers and innovators needed to face the enormous challenges of the 21st century - those who can play key roles in driving energy and environmental policies, and in formulating forward-looking strategies on energy use and environmental sustainability at corporate, national and global scales.

What you study

For the PgDip award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete the 120 credits of taught modules and a 60-credit master's research project.

Energy, environment, risk managing projects, sustainability and integrated waste management are the main foci of the programme, but you also explore the financial aspects of energy and environmental management. Economics is integral to the development of policies and is often a key influencing factor.

This programme aims to develop a comprehensive knowledge and understanding of the role and place of energy in the 21st century and the way the environment impinges on the types of energy used and production methods. It also aims to investigate the environment as it is perceived, and contextualise its actual importance to mankind. Specific objectives for this course are to establish the financial validity for the pursuit of alternative energy forms and management of the environment.

You are encouraged to take up opportunities of voluntary placements with local industries to conduct real-world research projects. These placements are assessed in line with the assessment criteria and learning outcomes of the Project module.

Examples of past MSc research projects:
-The taxonomy of facilitated industrial symbioses
-Assessment of the climate change impacts of the Tees Valley
-Exploring the links between carbon disclosure and carbon performance
-Hydrothermal carbonisation of waste biomass
-Quantifying the impact of biochar on soil microbial ecology
-Potential for biochar utilisation in developing rural economies
-Carbon trading opportunities for renewable energy projects in developing countries
-Exploring the potential for wind energy in Libya
-Demand and supply potential of solar panel installations
-A feasibility study of the application of zero-carbon retrofit technologies in building communal areas
-Energy recovery from abandoned oil wells through geothermal processes

Core modules
-Concepts of Sustainability
-Economics of Climate Change
-Energy and Global Climate Change
-Global Energy Policy
-Integrated Waste Management and Exploitation
-Project
-Research Methods and Proposal

Modules offered may vary.

Teaching

The course provides a number of contact teaching and assessment hours (through lectures, tutorials, projects, assignments), but you are also expected to spend time on your own, called 'self-study' time, to review lecture notes, prepare course work assignments, work on projects and revise for assessments. For example, each 20-credit module typically has around 200 hours of learning time.

In most cases, around 60 hours are spent in lectures, tutorials and in practical exercises. The remaining learning time is for you to gain a deeper understanding of the subject. Each year of full-time study consists of modules totalling 180 credits; hence, during one year of full-time study a student can expect to have 1,800 hours of learning and assessment.

Modules are assessed by a variety of methods including examination and in-course assessment with some utilising other approaches such as group-work or verbal/poster presentations.

Employability

There may be short-term placement opportunities for some students, particularly during the project phase of the course. This University is also in the process of seeking accreditation for the Waste Management module from the Chartered Institution of Wastes Management.

Successful graduates from this course are well placed to find employment. As an energy and environmental manager, you might find yourself in a role responsible for overseeing the energy and environmental performance of private, public and voluntary sector organisations, as well as in a wide range of engineering industries.

Energy and environmental managers examine corporate activities to establish where improvements can be made and ensure compliance with environmental legislation across the organisation. You might be responsible for reviewing the whole operation, carrying out energy and environmental audits and assessments, identifying and resolving energy and environmental problems and acting as agents of change. Your role could include the training of the workforce to develop the ability to recognise their own contributions to improved energy and environmental performance.

Your role may also include the development, implementation and monitoring of energy and environmental strategies, policies and programmes that promote sustainable development at corporate, national or global levels.

Read less
Our Energy Management degree develops the knowledge and skills required for a successful career in the energy industry. Read more
Our Energy Management degree develops the knowledge and skills required for a successful career in the energy industry.

This Masters course has been developed to build on the links Robert Gordon University has with the energy industry and has received accreditation from the Energy Institute at the level of Chartered Energy Manager.

Our MSc is particularly suitable for:

•Technical specialists with no management experience who need a management education specific to their industry;

•Technical specialists from other industries with transferable skills that can be applied to the energy industry wishing to change career in the direction of energy;

•Those from the energy industry, but without the work experience required to study the MBA or Oil and Gas Management, who want to study a focused energy management degree;

•Those who have completed a general MBA and wish to gain an energy education through CPD.

Visit the website https://www.rgu.ac.uk/business-management-and-accounting/study-options/distance-and-flexible-learning/energy-management

Course detail

On this course students gain experience of key decision-making in a range of business functions. This knowledge can then be applied at a strategic level in the Strategic Management or the Energy Industry modules.

Specialist energy management modules provide the theory, policy and practice aspects of the energy industry. There is also the opportunity to study optional subject areas such as Health, Safety and Risk in an Organisational Context and Oil and Gas Contract Law. The project modules allow students to further synthesise and apply specialist knowledge to professional practice.

Some of the modules that will be studied are:
•Renewable Energy Management
•Energy Policy and the Environment
•Strategic Analysis for the Energy Sector
•Risk Management and Business Continuity
•Oil and Gas Economics
•Energy Project

Full-time Study

In full time mode, you will learn through a combination of lectures, seminars and workshop sessions. These comprise of a mix of group study, discussion, simulation and presentations of findings by teams and individuals. You will work as an individual and also as part of a team on case studies, team activities, presentations and discussions. Access to our virtual learning environment, CampusMoodle, is also provided giving you access from home to learning materials (including videos, e-books and journals).

Online Learning

Our supported Online learning mode of delivery allows you to study online from any location and is designed to fit in around your work commitments. You will be taught and supported by experienced industry professionals who will recreate the same challenging interactive format of the on-campus courses for those studying at a distance.

Our virtual learning environment, CampusMoodle offers students flexibility of where and when they can study, offering full and open access to tutors and other class members. Students have the benefit of being part of a group of learners with the invaluable opportunity to participate in active, group-related learning within a supportive online community setting. The online campus provides students with lectures and course materials and it also includes:
•Virtual tutorials
•Live chat
•Discussion forums - student and tutor led
•Up-to-date web technology for delivery methods
•User friendly material
•Access to our online library

As online learners, students are part of a 'virtual cohort' and the communication and interaction amongst members of the cohort is a significant aspect of the learning process.

How to apply

To find out how to apply, use the following link: http://www.rgu.ac.uk/applyonline

Funding

For information on funding, including loans, scholarships and Disabled Students Allowance (DSA) please click the following link: http://www.rgu.ac.uk/future-students/finance-and-scholarships/financial-support/uk-students/postgraduate-students/postgraduate-students/

Read less
This MSc is unique in the UK in focusing on five core areas which have risen rapidly up the public agenda – environment, climate and energy economics, modelling and policy – and for which there is a need for highly qualified practitioners with the skills to analyse the issues and relate the results to policy. Read more
This MSc is unique in the UK in focusing on five core areas which have risen rapidly up the public agenda – environment, climate and energy economics, modelling and policy – and for which there is a need for highly qualified practitioners with the skills to analyse the issues and relate the results to policy.

Degree information

Students will reach a deep understanding of different economic and policy approaches to the resource and environmental problems facing the global community and nation states, especially in respect to energy and climate change. They will learn how to apply a variety of analytical methods to resolve these problems in a broad range of practical contexts.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), three optional modules (45 credits) and a dissertation (60 credits).

Core modules
-Environmental and Resource Economics
-Evidence, Policy Assessment and Environmental Law
-Modelling, Methods and Scenarios
-Planetary Economics and the Political Economy of Energy and Climate Change
-Research Concepts and Methods

Optional modules
-Advanced Energy-Environment-Economy Modelling
-UK Energy and Environment Policy and Law
-Energy, Technology and Innovation
-Energy, People and Behaviour
-Business and Sustainability
-Advanced Environmental Economics
-Econometrics for Energy and the Environment

The list of optional modules is correct for the 2016-17 academic year. Enrollment on modules is subject to availability.

Dissertation/report
All students undertake an independent research project which culminates in a 10,000-word dissertation.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials and project work. Assessment is through examination, coursework and by dissertation.

Careers

Graduates of this programme will be equipped to become leaders and entrepreneurs in their chosen area of specialisation, whether in terms of policy-making, the business management of sustainable issues, energy system modelling or their understanding and application of innovative systems.

The skills that they will acquire will make them strong applicants for employment in a range of sectors in which sustainability has become an important consideration, including business, central and local government, think tanks and NGOs and universities and research institutes.

Employability
The uniquely interdisciplinary nature of this Master's provides students with practical skills which are highly sought by employers from a variety of fields. Students will have the opportunity to attend networking events, career workshops and exclusive seminars held at the UCL Energy Institute.

Why study this degree at UCL?

The UCL Energy Institute is world leader in a range of areas covered by the programme; for example, energy systems, energy economics, energy and environmental policy and law and behavioural aspects of energy use.

Our sister institute, the UCL Institute of Sustainable Resources, provides additional expertise on resource economics. These areas are increasingly important due to related challenges, such as climate change, resource exhaustion and energy affordability.

There is a definite need for quantitative, practical environment and resource economists who understand policy. The appeal of this MSc is two-fold: it offers those with quantitative first degrees the chance to acquire high-level, energy-environment-economy modelling skills, but in relaxing the level of mathematical skills required, it is also ideal for those with largely non-quantitative first degrees.

Read less
Gain in-depth knowledge of analytical and predictive modelling skills as well as management, communication and research skills. Read more
Gain in-depth knowledge of analytical and predictive modelling skills as well as management, communication and research skills.

In the era of Big Data, analytics is becoming a strategic necessity in virtually all areas of business and is an essential tool to drive real-time decisions, foster evidence-based decision-making and sustain competitive advantage. According to a recent ranking by US News and World Report, Market Research Analyst and Operations Research Analyst are in the top four Best Business Jobs of 2015, and Harvard Business Review claims Data Scientist is the 'sexiest job of the 21st century' with practitioners having rare and highly sought-after skills.

To meet the growing demand for graduates with analytics capabilities, the MSc in Business Analytics degree equips you with the latest analytics tools to analyse and interpret data, forecast future trends, automate and streamline decisions, and optimise courses of action. Emphasis is placed on learning fundamental analytics techniques, such as statistical analysis, data mining, forecasting and regression, optimisation, simulation and spreadsheet modelling among others.

You will learn how to apply descriptive, predictive and prescriptive modelling techniques to help organisations improve performance, explore alternatives, and anticipate and shape business outcomes in a rapidly changing environment. Upon graduation, you will be ready to start a fast-track career in a variety of industries and sectors including airlines, manufacturing companies, energy, healthcare delivery, banking, marketing and government.

Students enrolled in the programme have the opportunity to work for real organisations, improve their consultancy skills and enhance their employability through the Student Implant Scheme, which bridges the gap between classroom learning and the real world. Students are also involved in a variety of activities, including case studies, team project work, guest lectures and industry visits.

Software demonstration workshops supported by IBM/ILOG are regularly organised to support the teaching of state-of-the-art analytics packages including IBM Watson Analytics, R, SPSS, Weka, MS Excel and VBA, as well as optimisation packages including Optimization Programming Language, IBM/ILOG, CPLEX and Simul8.

This programme is ideal for graduates with a good background in a quantitative area who are seeking to gain an in-depth knowledge of analytical and predictive modelling skills as well as management, communication and research skills.

Visit the website https://www.kent.ac.uk/courses/postgraduate/292/business-analytics

About Kent Business School

Kent Business School has over 25 years’ experience delivering business education. Our portfolio of postgraduate programmes (http://www.kent.ac.uk/kbs/courses/msc/index.html) demonstrates the breadth and depth of our expertise. Academic research and links with global business inform our teaching, ensuring a curriculum that is relevant and current. We are ranked (http://www.kent.ac.uk/kbs/whychooseus/rank-accred.html) as a top 30 UK business school for the standard of our teaching and student satisfaction. We also hold a number of accreditations (http://www.kent.ac.uk/kbs/whychooseus/rank-accred.html?tab=accreditations-and-professional-bodies) by professional bodies.

Studying at Kent Business School (KBS) gives you the opportunity to increase your employability with real-life case studies, a student council and a business society. We have strong links to local and national organisations providing opportunities for projects, internships and graduate placements. The School attracts many high-profile speakers from industry and last year included visits and lectures from staff of the Bank of England, BAE Systems, Barclays, Lloyds Insurance, Cummins, Delphi and Kent County Council.

Careers

You gain much more than an academic qualification when you graduate from Kent Business School – we enhance your student experience and accelerate your career prospects.

From the moment you start with us, our efforts are focused on helping you gain the knowledge, skills and experience you need to thrive in an increasingly competitive workplace.

In today’s business climate employers are increasingly demanding more from new employees, we are therefore proud that they continually target our graduates for their organisations across the globe. Employers respect our robust teaching and reputation for delivering international business expertise, leading global research and an outstanding international learning experience.

Recent graduates have gone on to work for Barclays Capital, British Embassy, Gray Robinson PA and Holiday Extras.

To find out more about business analytics and future career prospects, see the following links.

- OR Society: British Society of Operational Research: http://www.theorsociety.com/

- What is OR? Video and success stories: http://www.learnaboutor.co.uk/

Professional recognition

Kent Business School is a member of the European Foundation for Management Development (EMFD), CIPD, CIM and the Association of Business Schools (ABS). In addition, KBS is accredited by the Association of MBAs (AMBA).

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Costs. Fees for 2016/17 TBC. 2015-2016 Irish/EU €8,500. Plus subsistence expenses (food etc.) associated with field trips, including the Tidal Energy module based at Queen’s Marine Laboratory, Portaferry, Northern Ireland. Read more
Costs: Fees for 2016/17 TBC. 2015-2016 Irish/EU €8,500. Plus subsistence expenses (food etc.) associated with field trips, including the Tidal Energy module based at Queen’s Marine Laboratory, Portaferry, Northern Ireland. Software necessary for assignments will be provided in UCC laboratories but may not be available for remote use. Optional sea safety training.

Overview

The programme covers a range of engineering and non-engineering topics relevant to the marine renewable energy industry, which is expected to grow rapidly in the coming decade. This will lead to a requirement for engineers with good knowledge of engineering fundamentals as well as detailed knowledge of how wind, wave and tidal devices will be designed, deployed and operated. A key aspect of the programme is the provision of specially-developed advanced modules in marine renewable energy which are not available in any other master’s course. This is an all-Ireland programme, hosted by UCC, delivered in partnership with the following academic institutions: Cork Institute of Technology, Dublin Institute of Technology, National University of Ireland, Maynooth, Queen’s University Belfast, University College Dublin and the University of Limerick.

Course Details

Students take 90 credits as follows:

In Part I students must take the five core modules (unless these or equivalent courses have already been taken), to a total of 25 credits. Students also choose electives from the list below, or may, with the approval of the Programme Director, choose other modules from the University’s Calendar.

NB: For the purposes of this programme it has been agreed that all non-UCC modules are treated as either 5 or 10 credits.

Part II consists of a Marine Renewable Energy Research Project (NE6020), to the value of 30 credits, completed over the summer months, either in industry or in an academic research laboratory in one of the partner institutions. Projects are offered subject to availability of suitable proposals from industry, and will be offered to students based on order of merit of results achieved in Part I. Students are also encouraged to make efforts to secure their own placement from suitable industrial hosts, outside of the list provided.

In every case, the final choice of modules is subject to the approval of the Programme Director of the MEngSc (Marine Renewable Energy). Students may take a maximum total of 15 credits only of undergraduate modules on this programme.

Part I
Core Modules
CE4020 Environmental Hydrodynamics (5 credits; UCC)
NE6003 Wind Energy (5 credits; UCC)
NE6005 Ocean Energy (5 credits; UCC)
NE6010 Advanced Topics in Marine Renewable Energy (5 credits; All institutions)
NE6906 Tidal Energy (5 credits; QUB; 1-week block)

Elective Modules

Students select modules to the value of 35 credits from the following list, (or from elsewhere in the UCC Calendar, subject to approval):

AC6301 Innovation Finance (5 credits) (UCC)
NE3003 Sustainable Energy (5 credits; UCC)
CE4013 Harbour & Coastal Engineering (5 credits; UCC)
CE6024 Finite Element Analysis (5 credits; UCC)
EE4001 Power Electronics, Drives & Energy Conversion (5 credits; UCC)
EE4010 Electrical Power Systems (5 credits; UCC)
EV4012 Environmental Impact Assessments (5 credits) (UCC)
GL6007 Practical Offshore Geological Exploration (5 credits; offered subject to availability of survey vessel time) (UCC)
IS6306 Technology Business Planning (5 credits) (UCC)
LW6104 Intellectual Property Law for High-Tech Entrepreneurs (5 credits) (UCC)
NE6007 Energy Systems Modelling (5 credits; UCC)
NE6901 Control Systems (5 credits; NUIM - EE612)
NE6902 Maintenance & Reliability (5 credits; CIT - MANU8003)

Part II
NE6020 Marine Renewable Energy Research Project (30 credits; All institutions; Summer)

Application Procedure

Application for this programme is on-line at http://www.pac.ie/ucc. Places on this programme are offered in rounds. The closing dates for each round can be found here (http://www.ucc.ie/en/study/postgrad/how/applicationclosingdates/). For full details of the application procedure click How to apply - http://www.ucc.ie/en/study/postgrad/how/

Course Practicalities

You will be studying a range of engineering and non-engineering topics relevant to a career in the marine renewable energy industry.

The programme will include modules in engineering topics such as Wind Energy, Wave Energy, Tidal Energy, Ocean-Structure Interactions; Ocean Energy Device Design; Control Engineering; Mechanical Engineering; Grid Integration and Storage; Marine Operations & Robotics.

The course content will be delivered via blended learning, with some modules presented in traditional lecture format, and some modules delivered remotely using e-learning technologies. All modules will have a significant element of continuous assessment throughout the year. The Tidal Energy module is delivered during a one-week field visit to the Portaferry research laboratory of Queen’s University Belfast.

A significant element of the programme is a R&D project carried out in conjunction with either an industry partner or an academic research group, with the final three months spent working on the project on placement with the partner.

Non-engineering topics available include Intellectual Property Law; Innovation Finance; Environmental Impact Assessment; Practical Offshore Geological Exploration.

Assessment

Taught modules (total >= 60 ECTS): will be assessed via a mixture of continuous assessment (assignments and mini design projects) and traditional examinations. This depends on the contributing institution, for example in NUIM, coursework and project-based learning is emphasised. The project module (30 ECTS) will be assessed by means of: oral presentation and seminar; logbook; written report, with input from the industrial placement supervisor.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X