• University of York Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
De Montfort University Featured Masters Courses
Coventry University Featured Masters Courses
Cass Business School Featured Masters Courses
Cardiff University Featured Masters Courses
University of London International Programmes Featured Masters Courses
"energy" AND "buildings"×
0 miles

Masters Degrees (Energy Buildings)

  • "energy" AND "buildings" ×
  • clear all
Showing 1 to 15 of 144
Order by 
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Read more

Mission and goals

Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc.
The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Professional opportunities

Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_MI.pdf
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are
systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc. The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.
Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas. The programme is taught in English.

Subjects

- Five tracks available: Power Production; Heating, Ventilation and Air-Conditioning; Oil and Gas Engineering; Energy Engineering for an Environmentally Sustainable World (offered on Piacenza campus, see separate leaflet); Energy for Development.

- Subjects and courses common to all the tracks: Heat and Mass Transfer; Fundamentals of Chemical Processes; Advanced Energy Engineering and Thermoeconomics;; Combustion and Safety; Energy Conversion or Refrigeration, Heat Pumps and Thermal Power Systems and Components; Energy Economics or Project Management or Management Control Systems; Graduation Thesis.

- Optional subjects according to the selected track: Development Economy; Engineering and Cooperation for Development; Power Production from Renewable Sources; Engineering of Solar Thermal Processes; Petroleum Reservoir Engineering; Petroleum Technology and Biofuel; Transport Phenomena in the Reservoirs; CFD for Energy Engineering Analysis; System and Electrical Machines; Advanced Energy Systems; Dynamic Behavior and Diagnostics of Machines; Materials for Energy; Turbomachinery; Internal Combustion Engines; Air Conditioning and Room Pollutant-Controlling Plants, Energy Savings and Renewable Energies in Buildings; Applied Acoustics and Lighting; Design of Thermal Systems; Energy Systems and Low-Carbon Technologies; Air Pollutions and Control Engineering; Operation and Control of Machines for Power Generation; Bio-energy and Waste-to-Energy Technologies; Smart Grids and Regulation for Renewable Energy Sources.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The School of Civil and Building Engineering at Loughborough has an outstanding research reputation, 75% or its research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework. Read more
The School of Civil and Building Engineering at Loughborough has an outstanding research reputation, 75% or its research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

This programme is aimed at students training for a research career in energy and related areas, in either academia or industry. It focuses on energy demand reduction in the built environment, examining technical solutions within the wider social and economic context.

The course is closely linked with the London-Loughborough Centre for Doctoral Research in Energy Demand (the ‘LoLo CDT’) and is led by internationally-leading research staff at Loughborough University and the Energy Institute at University College, London.

The programme capitalises on the world-class building energy modelling and monitoring expertise in the Building Energy Research Group and the Royal Academy of Engineering Centre of Excellence in Sustainable Building Design. Students make use of our extensive laboratory and full-scale testing facilities, enriched by site visits, conferences, workshops and seminars by external experts. The programme begins with an intensive residential week studying Energy Demand in Context. Students attend lectures from energy experts in different fields, while working to produce a pathway satisfying the goal of a national 80% emissions reduction by 2050.

This is an intensive but rewarding course for future leaders in energy demand research; we accept approximately ten high calibre students each year.

Key Facts

- Research-led teaching from international experts. This unique programme is taught by acknowledged world experts in the field.

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015.

- The MRes is an integral part of the London-Loughborough Centre for Doctoral Research in Energy Demand, which has just been funded by the Engineering and Physical Sciences Research Council for a further eight years.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/energy-demand-studies/

Programme modules

- Energy Demand in Context
The aim of this module is to provide an introduction into the many issues of energy demand in the built environment, setting them in the wider context of climate change policy and the history of energy use. Why is energy demand deduction complex? How did we get to where we are? What are the options for the future, and what is your possible role?

- Building Energy Systems and Models
This module will provide students with a thorough understanding of how systems and models of systems work at various levels, from heat transfer in materials and energy systems to the national building stock. They will understand approaches to modelling buildings, systems of energy demands and the influence of people. Students will be taught how to use building energy models and to interpret the results.

- Energy Theory, Measurement and Interpretation
The aims of this module are: to develop students understanding of the principles of measurement in the context of energy demand and associated factors; to explain how to interpret and represent the results accounting for uncertainties and limitations; and to apply this knowledge at different scales from individual components, to building, urban and national scale.

- Research Development and Dissemination
The module aims to provide students with the knowledge and skills needed to devise, plan and disseminate research projects. The module will provide skills in defining research questions and hypotheses; critically reviewing literature; planning a programme of research; communicating to different stakeholders including academia, industry and the public; preparing conference presentations and academic papers; engaging with the public; and producing an MRes Research Dissertation proposal. The module also includes project administration skills including, research ethics and confidentiality.

- Energy Demand: Society Economics and Policy
This module is delivered in the second semester in a series of weekly sessions at UCL. Its aim is to provide a broad understanding of the social, economic, and policy determinants of energy demand, taking into account areas such as pricing and demand, market structure, cost-benefit analysis, social environment and lifestyle, individual attitudes and behaviour, public-private goods, externalities and the policy cycle.

- Quantitative and Qualitative Research Methods
This module will provide students with the grounding in quantitative and qualitative research methods that they need to become effective researchers. The module will provide: skills in statistical analysis and use of the SPSS software; an ability to make informed choices about ways of handling data and to assess the appropriateness of particular analytical procedures; an understanding of questionnaire, interview and focus group design, delivery and analysis; and an ability to critically assess and evaluate the research of others. Whilst case-study applications will be relevant to building energy demand, the skills and knowledge acquired will be generic.

- Energy Demand Studies Research Dissertation
The aims of this module are to train students in the planning, execution and evaluation of a substantive research project; to train them in the art of persuading others of the importance of the research and outcomes and to project their work through academic writing. The dissertation enables students to explore a topic of interest in great depth.

Facilities

MRes students make use of the extensive laboratory facilities and test houses operated by the School of Civil and Building Engineering. The MRes combines measurements in buildings with modelling studies, allowing students to experience at first hand the ‘performance gap’ – the difference between modelling and real world behaviour.

Lectures at University College London provide access to world-class experts in energy economics and the societal context. Our staff pride themselves on their enthusiasm and availability to students, who often comment on this aspect of the course in their feedback.

How you will learn

The programme has a strong student-centred and research focus. Four taught modules set the context and provide subject-specific knowledge, whilst two further modules provide training in relevant research methods. A research dissertation forms half of the total credits and can lead to publishable work.

The MRes in Energy Demand Studies can be studied as a 1-year standalone programme and also forms the first year of the 4-year course for students accepted into the LoLo CDT, who then go on to study for a PhD. The opportunity exists for strong MRes students to join the LoLo Centre at the end of their MRes year.

- Assessment
The MRes is assessed entirely by coursework. A group presentation forms part of the assessment in the initial residential module; with the remainder assessed by an individual essay. Other modules include assessment by presentations and written work, including essays, reports and press releases.

The research project is assessed by a dissertation, an academic paper and a viva at which students present the work to an expert panel.

Careers and further study

Both the School of Civil and Building Engineering and the LoLo CDT have strong links with industry (e.g. Willmott Dixon, B&Q), policy makers (e.g. DECC), and the wider stake-holder community.
Dissertation projects are often linked to our industry sponsors’ interests, which provides a natural pathway to future employment and our visiting Royal Academy Professors and industry partners provide practice-based lectures and workshops.

Scholarships

This is a sought-after course, with a small intake, which ensures students’ access to highly qualified tuition. No scholarships are available for the standalone MRes.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/energy-demand-studies/

Read less
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Read more
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Candidates will be required to plan, design and manage energy systems blending creative solutions with up-to-date technologies relative to energy conversion and efficiency enhancement.

At the end of the course, engineers will be good at operating in the current technological/industrial environment - i.e. a dynamic and competitive one - and sensitive to the main industry, environment and security issues and standards.

The main aim of the course is to offer an in-depth theoretical and practical understanding of the most advanced energy conversion technologies, including renewable energy generation and energy storage.

Please visit http://www.en2.unige.it for any further information.

The Course is held at Savona Campus, in the city of Savona.

WHAT WILL YOU STUDY AND FUTURE PROSPECTS

The course consists of modules that include thermo-fluid dynamics and thermo-chemical dynamics, as well as fluid machinery and energy conversion systems (co-generation, fuel cells, power plants from renewable energy sources and smart grids), traditional energy and civil engineering plants, electric networks, economics, available and emerging technologies for reducing greenhouse gas emissions and environmental monitoring.

A rising interest in and increased urge for 20/20/20 policies in Europe has resulted in a growing industrial demand for highly qualified Energy Engineers with a sound knowledge and specific skills to analyze, design and develop effective solutions in a broad range of contexts. Furthermore, in the last few years both emerging industrial countries and developing ones have increased their awareness of environmental issues and energy production and started implementing large energy engineering projects thus boosting the job opportunities worldwide. The course is aimed at students seeking high qualification in the following main fields:

Energy conversion processes from chemical, bio-chemical, thermal sources into mechanical and electrical ones

Sustainable & Distributed Energy: renewable energy (solar, geothermal, wind, hydro), fuel cells, bio-fuels, smart power grids, low emission power plants Sustainable Development: C02 sequestration, LCA analysis, biomass exploitation, Energy Audit in buildings, energy from waste, recycling, modeling and experimental techniques devoted to optimum energy management.

The MSc course work in partnership with industries and research institutes in Liguria, in Italy and abroad.

WHAT DOES THE MASTER IN ENERGY ENGINEERING OFFER TO ITS STUDENTS

In the last years both industrialization and population growth have brought to a higher demand for sustainable energy, smart energy management with reduced environmental impact. As a result the MSc Energy Engineering was born out of the need to better cope with Sustainable Development issues and progress in energy conversion technologies, in including renewable energy generation and energy storage, NZE buildings, with an increasing attention devoted to greenhouse gas emissions reduction through a multidisciplinary approach.

This MSc course is taught in English and students are supported in achieving higher English language skills. The University of Genoa set its modern campus in Savona and in the last few years, public and private funds have been invested to improve its infrastructures, sport facilities, hall of residence, library and an auditorium.

The University of Genoa and Siemens jointly developed a smart polygeneration microgrid in Savona Campus – officially commissioned on February 2014.

Since then the campus has largely generated enough power to satisfy its own needs with the help of several networked energy producers, i.e. total capacity 250Kw of electricity and 300kW of heating.

The grid includes microgasturbines, absorption chillers, a photovoltaic plant, a solar power station and electrochemical and thermal storage systems.

This huge facility together with a series of laboratories located at the Campus (e.g. Combustion Lab, Energy Hub Lab) offer the students a unique opportunity for hands-on activities, e.g. to measure and investigate the performance of real scale innovative energy systems.

Read less
The world faces major challenges in meeting the current and future demand for sustainable and secure energy supply and use. Read more
The world faces major challenges in meeting the current and future demand for sustainable and secure energy supply and use. The one-year MPhil programme in Energy Technologies is designed for graduates who want to help tackle these problems by developing practical engineering solutions, and who want to learn more about the fundamental science and the technologies involved in energy utilization, electricity generation, energy efficiency, and alternative energy.

Energy is a huge topic, of very significant current scientific, technological, environmental, political and financial interest. The complexity and rapid change associated with energy technologies necessitates engineers with a very good grasp of the fundamentals, with exposure and good understanding of all main energy sources and technologies, but also with specialization in a few areas. This is the prevailing philosophy behind this MPhil, fully consistent with the prevailing philosophy and structure of the University of Cambridge Engineering Department as a whole.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/egegmpmet

Course detail

The educational target of the MPhil in Energy Technologies is to communicate the breadth of energy technologies and the underpinning science. The objectives of the course are:

1. To teach the fundamental sciences behind technologies involved in energy utilization, electricity generation, energy efficiency, and alternative energy.

2. To develop graduates with an overall view of energy engineering, while offering specialization in a selected area through a research project.

3. To prepare students for potential future PhD research.

Learning Outcomes

Students will be expected to have developed fundamental knwoledge on primary and secondary energy sources, on energy transformation, and on energy utilisation technologies. They will also have developed proficiencies in project management, in research skills, in team work, and in advanced calculation methods concerning energy technologies.

Graduates from this MPhil will be excellent candidates for doctoral study (at Cambridge and elsewhere) and for employment in a wide variety of jobs (for example: in industrial Research and Development departments; in policy-making bodies; in the utilities industry; in the manufacturing sector; in energy equipment manufacturing).

Format

The course is centred around taught courses in core areas, covering basic revision and skills needed (such as Communication and Organisational Skills, Mathematical and Computational Skills, Review of Basic Energy Concepts, and Research Topics), various energy technologies (such as Clean Fossil Fuels, Solar, Biofuels, Wind etc), and energy efficiency and systems level approaches.

Elective courses may be chosen from a broad range, which includes topics such as Turbulence, Acoustics, Turbomachinery, Nuclear Power Engineering, Solar Panels, and Energy Efficiency in Buildings. Elective courses are delivered mainly by the Department of Engineering with input from the Department of Chemical Engineering and other departments in Cambridge.

Research projects are chosen from a list offered by members of staff and are linked to the principal areas of energy research in the respective departments.

Students can expect to receive reports at least termly on the Cambridge Graduate Supervision Reporting System. They will receive comments on items of coursework, and will have access to a University supervisor for their dissertation. All students will also have personal access to the Course Director and the other staff delivering the course.

Assessment

Students taking 12 elective modules will write a short thesis (up to 10,000 words). Students taking 10 elective modules will write a long thesis (up to 20,000 words). In both cases, 10% of the marks will be assigned through a pre-submission presentation, and 10% of the marks will be assigned through a post-submission presentation.

Students will take 5 core modules, and then either 5 elective modules (and a long thesis) or 7 elective modules (and a short thesis). All core modules are examined purely by coursework. Some of the elective modules are also examined wholly or partly by coursework.

Some of the elective modules are examined wholly or partly by written examination.

At the discretion of the Examiners, candidates may be required to take an additional oral examination on the work submitted during the course, and on the general field of knowledge within which it falls.

Continuing

Students wishing to apply for continuation to the PhD would normally be expected to attain an overall mark of 70%.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
This course is for engineers who wish to develop their skills and knowledge in energy systems that will meet future energy needs. Read more
This course is for engineers who wish to develop their skills and knowledge in energy systems that will meet future energy needs. Such energy systems will need to be designed and implemented in accordance with principles of sustainability.

The course content is designed to be relevant to international, national and local government energy policies and strategies, and will be of value to anyone working in an energy related engineering discipline. The primary focus of the course is for graduates in building services, mechanical, electrical and chemical engineering.

The aims of the course are to:
- Present and take forward arguments for sustainability in the design and implementation of energy delivery systems

- Provide you with a broad basis of advanced understanding in the technologies that deliver high quality energy services with minimum environmental impact

- Design appropriate decentralised energy delivery systems, based on a range of criteria including environment, cost and engineering potential

- Develop your understanding of policy, market and institutional factors that promote or constrain innovation.

Excellent scholarship opportunity

Students who have accepted an offer for a full-time place on this course are encouraged to apply for LSBU's Kevin Herriott scholarship. Find out more about the Kevin Herriott scholarship.

Students on this course are also eligible to apply for a bursary from the Panasonic Trust fellowship scheme, worth £8,000.

See the website http://www.lsbu.ac.uk/courses/course-finder/sustainable-energy-systems-msc

Modules

An indicative list of topics covered on this course are:

- Renewable energy technologies 1
This module provides the necessary knowledge and skills to analyse the technical performance, environmental impact and economic feasibility of a variety of solar and wind powered systems. The module provides a systematic understanding of current knowledge, and a critical awareness of current problems and new insights at the forefront of professional practice; train students to evaluate critically current research and advanced scholarship in the field of solar and wind power; enables students to evaluate solar and wind power technologies, develop critiques of them and, where appropriate, to propose novel solutions.

- Renewable energy technologies 2
The module provides the necessary knowledge and skills to analyse the technical performance, environmental impact and economic feasibility of a number renewable energy technologies such as fuel cells, biofuels, geothermal, and micro-hydropower systems.

- Energy resource and use analysis
This module is designed to develop strategic and operational management skills in the fields of infrastructure asset management and project appraisal. It covers design life extensions, risk and asset management techniques for infrastructure, and techniques for physical appraisal of infrastructure, and their economic, environmental and social impacts.

- Electrical power
The module covers electrical power engineering as applied to the design of systems in buildings. In particular, this includes the connection of, and the effects of, small-scale embedded generation as might be employed to exploit renewable energy sources. The module aims to provide appreciation and understanding of electrical services design in buildings with particular reference to safety requirements and the effects of embedded generation on the supplier and the consumer.

- Sustainable refrigeration
The module introduces the principles of thermodynamics, and applies them to the study and design of energy efficient refrigeration systems. Vapour compression, absorption and other novel cycles are analysed and modelled Practical applications of sustainable refrigeration are investigated through case studies.

- Environmental management
The module is designed to develop understanding of the way in which human social and economic activities impact on the environment. The emphasis is on how managers can assess and influence the environmental impact of their particular organisation, with reference to key technologies and the political and legal constraints within which organisations must operate.

- Energy engineering project

Employability

The emergence of sustainable energy technologies, together with targets for implementation, mean that specialist engineers will increasingly be in demand to specify, design and install these systems. Many engineering consultancies and energy service companies are developing specialist sustainability teams, and already there is a shortage of skilled personnel.

Professional accreditation

The course provides the Masters level academic requirements leading to Chartered Engineer status when following on from an appropriate accredited BEng degree.

The course is accredited on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

Accreditation:
This course is accredited by the Chartered Institution of Building Services Engineers (CISBE) and the Energy Institute as masters further learning to meet the academic requirements of becoming a Chartered Engineer (with a suitable first degree).

The course is accredited on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

The Chartered Institution of Building Services Engineers (CIBSE) is the standard setter and authority on building services engineering in the UK and overseas. It speaks for the profession and supports career development.

The Energy Institute is the professional members' body for the energy industry, delivering good practice and professionalism across the sector. Its purpose is to develop and disseminate knowledge, skills and good practice towards a safer, more secure and sustainable energy system.

Read less
This course has been designed to equip the next generation of energy professionals with the multidisciplinary approach required to tackle climate change while improving energy supply and the built environment; developed in collaboration with industry and public sector energy specialists, the course is designed to enhance career paths and be of value to employers. Read more

Summary

This course has been designed to equip the next generation of energy professionals with the multidisciplinary approach required to tackle climate change while improving energy supply and the built environment; developed in collaboration with industry and public sector energy specialists, the course is designed to enhance career paths and be of value to employers.

Modules

Compulsory modules: Introduction to Energy Technologies, Environment and Sustainability; Climate Change, Energy and Settlements; Geographic Information Systems; Energy Resources and Engineering; Data Analysis and Experimental Methods for Civil and Environmental Engineering; Energy Performance Assessment of Buildings; Climatic Design of Buildings and Cities; MSc Research Project

Optional modules: one module from the Energy Resources and Climate Change programme.

Visit our website for further information...



Read less
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. Read more
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. This programme is open to Engineering graduates of all disciplines with an 8 month programme option leading to a Postgraduate Diploma in Sustainable Energy.

Visit the website: http://www.ucc.ie/en/ckr26/

Course Details

In Part I students take modules to the value of 50 credits and a Preliminary Research Report in Sustainable Energy (NE6008) to the value of 10 credits. Part II consists of a Dissertation in Sustainable Energy (NE6009) to the value of 30 credits which is completed over the summer months.

Part I

Students take 50 credits as follows:

NE3002 Energy in Buildings (5 credits)
EE3011 Power Electronic Systems (5 credits)
EE4010 Electrical Power Systems (5 credits)
NE3003 Sustainable Energy (5 credits)
NE4006 Energy Systems in Buildings (5 credits)
NE6003 Wind Energy (5 credits)
NE6004 Biomass Energy (5 credits)
NE6005 Ocean Energy (5 credits)
NE6006 Solar and Geothermal Energy (5 credits)
NE6007 Energy Systems Modelling (5 credits)

Depending on the background of the student, the Programme Coordinator may decide to replace some of the above taught modules from the following list of modules up to a maximum of 20 credits:

CE4001 The Engineer in Society (Law, Architecture and Planning) (5 credits)
EE3012 Electromechanical Energy Conversion (5 credits)
EE4001 Power Electronics, Drives and Energy Conversion (5 credits)
EE4002 Control Engineering (5 credits)
EE6107 Advanced Power Electronics and Electric Drives (5 credits)
ME6007 Mechanical Systems (5 credits)
NE4008 Photovoltaic Systems (5 credits)
PE6003 Process Validation and Quality (5 credits)

In addition, all students must take 10 credits as follows:

NE6008 Preliminary Research Report in Sustainable Energy (10 credits)

Part II

NE6009* Dissertation in Sustainable Energy (30 credits)

*must be submitted on a date in September as specified by the Department

Detailed Entry Requirements

Candidates must have a BE(Hons) or BEng (Hons) Degree or equivalent engineering qualification, with a minimum grade 2H2. However, candidates with equivalent academic qualifications and suitable experience may be accepted subject to the approval of College of Science, Engineering and Food Science. In all cases, the course of study for each candidate must be approved by the Programme Coordinator.
Candidates, for whom English is not their primary language, should possess an IELTS of 6.5 (or TOEFL equivalent) with no less than 6.0 in each individual category.

Candidates from Grandes Écoles Colleges are also eligible to apply if they are studying a cognate discipline in an ENSEA or EFREI Graduate School and are eligible to enter the final year (M2) of their programme.

Assessment

- Postgraduate Diploma in Sustainable Energy -

Students who pass but fail to achieve the requisite grade of 50% across the taught modules and the Preliminary Research Report will be eligible for the award of a Postgraduate Diploma in Sustainable Energy. Candidates passing Part I of the programme who do not wish to proceed to Part II may opt to be conferred with a Postgraduate Diploma in Sustainable Energy.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
This programme is aimed at graduates of building services engineering and other science and engineering disciplines who wish to extend their technical expertise in the field of building services engineering. Read more
This programme is aimed at graduates of building services engineering and other science and engineering disciplines who wish to extend their technical expertise in the field of building services engineering. With energy consumption within the design and operation of buildings becoming an ever increasingly important factor this programme is designed to combine building services engineering knowledge with specific energy considerations in their design.

The programme is accredited for further learning for CEng and professional membership by the Energy Institute and CIBSE. CIBSE has praised the programme as ‘one of the leading MSc courses of its kind in the UK’.

Areas studied include low energy building design, designing for suitable indoor air quality and thermal comfort, state-of-the-art control systems, and the design of building heating, ventilating, and air conditioning systems.

The course attracts students from all over the world, including countries such as Greece, Iran, China, France, Germany and Colombia. This is attractive to potential employers who often have international offices around the world.

Key Facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015
- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.
- The programme is accredited by the two main institutions representing energy and buildings – the Chartered Institution of Building Services Engineers and the Energy Institute. On successful completion of the course, students are deemed to meet the education requirements for both institutions and their applications can be endorsed by course tutors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-energy-building-services/

Programme modules

Compulsory Modules:
- Thermodynamics, Heat Transfer & Fluid Flow [70% exam, 10 credits]
The aim of this module is to provide students from related engineering backgrounds with an understanding of the fundamentals of heat transfer, fluid flow and thermodynamics for application to buildings and their engineering systems.

- Thermal Comfort & Indoor Air Quality [70% exam, 15 credits]
The aim of this module is for the student to understand the principles and practice involved in the design of indoor environments, with respect to occupant thermal comfort and air quality.

- Building Thermal Loads & Systems [70% exam, 15 credits]
The aim of this module is for the student to understand the principles of building thermal load analysis and required systems for medium to large buildings.

- Building Energy Supply Systems [70% exam, 15 credits]
The aim of this module is for the student to be provided with a practical foundation in system design and analysis, by developing the students' understanding of thermal plant in buildings including air conditioning systems and systems for heat recovery.

- Building Control & Commissioning [70% exam, 10 credits]
The aims of this module are for the student to understand the application of automatic control in energy monitoring and commissioning and to examine the control problems in buildings and develop control strategies that will improve thermal comfort and building energy use.

- Concept Design [0% exam, 15 credits]
The aims of this module are for the student to be introduced to the process within which buildings are conceived and designed by undertaking the architecture design of a major building using multi-disciplinary input. Students will develop team skills through working in design groups to generate schematic concepts before developing the best. They will apply previous knowledge of building services and low carbon design in the selection process and carry out performance analysis. Students will work with 3D architectural and 3D mechanical, electrical and plumbing (MEP) systems within BIM software to further develop their concepts.

- Low Carbon Building Design [50% exam, 15 credits]
The module aims to introduce the principles of low and zero carbon building with special attention to the process of design and decision-making.

- Advanced Thermal Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building thermal modelling and HVAC plant simulation, and be given a perspective on the applications of these techniques to the design process.

- Research Project [0% exam, 60 credits]
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Building Energy

- Research Methods in Building Performance [0% exam, 10 credits]
The aims of this module are for the student to become familiar with and comprehend the wide range of research methods and skills needed to investigate, understand and communicate building performance.

Facilities

All masters students have access to a wide range of building simulation codes which include commercial software, as well as bespoke codes developed in-house. Students can run these codes on their personal laptops or access any one of our computer laboratories, including access to our recently commissioned 2000-node high performance computer cluster.

One of our key strengths at Loughborough is our experimental facilities which enable us to validate computer models. Our masters students have access to a vast range of experimental facilities, some of which are used during the taught modules and all of which are available for use by students during their research dissertations.

These include: a fully controllable environmental chamber; sophisticated thermal and breathing manikins; an indoor solar simulator; a 'darkroom' facility to carry out optical and high dynamic range measurements; and full-scale houses for pressure testing and studying innovative heating and control strategies. A recent investment of £360k was made to purchase an extensive array of monitoring and measuring equipment for use during field studies.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling, field measurements and independent research. Students have access to a wide range of air flow and thermal modelling software as wells as extensive laboratory facilities. Following nine taught modules, students pursue a research dissertation of their choice which draws on the skills developed during the taught modules.

Students are assessed by a combination of traditional written exams, coursework and assignments. This split is typically 70/30 (exam/coursework) or 50/50, although some modules, such as research methods and concept design are assessed entirely based on coursework which comprises individual presentations and group work.

Careers and further study

Previous students have gone on to work for leading consulting engineering companies such as Arup, Pick Everad, Hoare Lea, Cundall, Foster & Partners, and Atkins. Some of these companies offer work placements for students to undertake their research dissertations. Many visit the university to deliver lectures to our MSc students providing ideal opportunities for students to discuss employment opportunities.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-energy-building-services/

Read less
A flexible Masters degree designed to develop a rigorous understanding of different energy technologies, exploring the subject through a combination of academic study, discussion and hands-on practical work. Read more

Masters in Renewable Technologies

A flexible Masters degree designed to develop a rigorous understanding of different energy technologies, exploring the subject through a combination of academic study, discussion and hands-on practical work.

How is the course taught?

Taught at the Centre for Alternative Technology (CAT), which pioneered sustainability practice and theory in the UK, the MSc course examines renewable energy provision, increased energy efficiency and intelligent management of energy resources. These topics are explored within the context of the ecological, social and economic impacts and the policy drivers at international, national and local scales. Our MSc programme is taught either by distance learning or through residential blocks in one of the most innovative environmental buildings in the UK, or via a mixture of the two.

Different energy technologies are examined alongside new advances in energy storage, smart grids and meters. Computer modelling, data collection and analysis give students practical experience in effective energy management. Students can choose modules from a wide range that covers environmental assessment and renewable energy, cities and communities, energy provision, energy in buildings, and politics and economics.
 
We give our MSc students the knowledge, skills and experience needed to develop a career in the environmental sector and make an impact. The programme draws on our expert staff (https://gse.cat.org.uk/index.php/postgraduate-courses/msc-sustainability-in-energy-provision-and-demand-management/sepdm-staff-profiles) and a wide selection of academics and specialist guest lecturers – people who have made exceptional contributions to environmental thinking and action.

What qualification will you receive?

Successful completion of the programme MSc Sustainable Energy Provision and Demand Management at the Centre for Alternative Technology leads to the award of Master of Science (MSc) by UEL (subject to validation by the University of East London).

Modules include

-          Sustainability and Adaptation Concepts and Planning
-          Environmental Politics and Economics
-          Adaptation Transformation Politics and Economics
-          Cities and Communities
-          Energy Flows in Buildings – Parts A and B
-          Energy Provision (Wind)
-          Energy Provision (Solar PV)
-          Energy Provision (Renewable Energy)
-          Building Performance Assessment and Evaluation
-          Built Environment Applied Project or Built Environment Practice Based Project

This course is subject to validation by the University of East London.

Why study at CAT?

Studying at the Centre for Alternative Technology (CAT) is a truly unique experience. For the past 40 years CAT has been at the forefront of the environmental movement, pioneering low-carbon living and renewable technology. At the Graduate School of the Environment (GSE), students benefit from our extensive practical and academic knowledge, graduating with the skills needed to become leading players in the sustainability sector. Find out more about our facilities here: https://gse.cat.org.uk/index.php/postgraduate-courses/msc-sustainability-and-adaptation/sa-site-and-facilities

Hands-on learning

At CAT, hands-on learning takes place side by side with academic study. Residential on-site block learning weeks are taught at the Centre for Alternative Technology (CAT), a truly unique and inspiring learning environment. Nestled in a disused slate quarry on the edge of the Snowdonia National Park, CAT is a living laboratory for paractical, sustainable solutions. It contains some of the most innovative and renowned environmentally conscious buildings in the country, as well as one of the most diverse range of installed renewable technologies, on site water and sewage treatment, sustainably managed woodland and acres of organic gardens.

Flexibility

It is a flexible degree, taught in blocks taken either with an intensive residential stay of five or six nights at the centre, or by distance learning. MSc students are free to choose between these teaching modes for every module. There is a choice of modules, taken over one year or two – meaning the degree can be part time. It is a masters degree designed to give you the best possible experience whilst also meshing neatly with the pressures of modern professional and family life.

Immersive learning environment

Optional residential module weeks include lectures, seminars, group work and practicals. Applied work tends to dominate later in the week once we have laid the theoretical groundwork. These module weeks provide a truly immersive environment to escape daily life and apply yourself to new learning. Many eminent experts give guest lectures or hold seminars during these modules, as it is a course which seeks to draw on the expertise and learning of the whole environmental sector.

Is this the course for you?

If you would like to visit for an overnight stay during a module, where you can attend lectures and workshops and meet staff and students, please contact Shereen Soliman:

Read less
A flexible Masters degree designed to develop a rigorous understanding of different energy technologies, exploring the subject through a combination of academic study, discussion and hands-on practical work. Read more

Masters in Renewable Technologies

A flexible Masters degree designed to develop a rigorous understanding of different energy technologies, exploring the subject through a combination of academic study, discussion and hands-on practical work.

How is the course taught?

Taught at the Centre for Alternative Technology (CAT), which pioneered sustainability practice and theory in the UK, the MSc course examines renewable energy provision, increased energy efficiency and intelligent management of energy resources. These topics are explored within the context of the ecological, social and economic impacts and the policy drivers at international, national and local scales. Our MSc programme is taught either by distance learning or through residential blocks in one of the most innovative environmental buildings in the UK, or via a mixture of the two.

Different energy technologies are examined alongside new advances in energy storage, smart grids and meters. Computer modelling, data collection and analysis give students practical experience in effective energy management. Students can choose modules from a wide range that covers environmental assessment and renewable energy, cities and communities, energy provision, energy in buildings, and politics and economics.
 
We give our MSc students the knowledge, skills and experience needed to develop a career in the environmental sector and make an impact. The programme draws on our expert staff (https://gse.cat.org.uk/index.php/postgraduate-courses/msc-sustainability-in-energy-provision-and-demand-management/sepdm-staff-profiles) and a wide selection of academics and specialist guest lecturers – people who have made exceptional contributions to environmental thinking and action.

What qualification will you receive?

Successful completion of the programme MSc Sustainable Energy Provision and Demand Management at the Centre for Alternative Technology leads to the award of Master of Science (MSc) by UEL (subject to validation by the University of East London).

Modules include

-          Sustainability and Adaptation Concepts and Planning
-          Environmental Politics and Economics
-          Adaptation Transformation Politics and Economics
-          Cities and Communities
-          Energy Flows in Buildings – Parts A and B
-          Energy Provision (Wind)
-          Energy Provision (Solar PV)
-          Energy Provision (Renewable Energy)
-          Building Performance Assessment and Evaluation
-          Built Environment Applied Project or Built Environment Practice Based Project

This course is subject to validation by the University of East London.

Why study at CAT?

Studying at the Centre for Alternative Technology (CAT) is a truly unique experience. For the past 40 years CAT has been at the forefront of the environmental movement, pioneering low-carbon living and renewable technology. At the Graduate School of the Environment (GSE), students benefit from our extensive practical and academic knowledge, graduating with the skills needed to become leading players in the sustainability sector. Find out more about our facilities here: https://gse.cat.org.uk/index.php/postgraduate-courses/msc-sustainability-and-adaptation/sa-site-and-facilities

Hands-on learning

At CAT, hands-on learning takes place side by side with academic study. Residential on-site block learning weeks are taught at the Centre for Alternative Technology (CAT), a truly unique and inspiring learning environment. Nestled in a disused slate quarry on the edge of the Snowdonia National Park, CAT is a living laboratory for paractical, sustainable solutions. It contains some of the most innovative and renowned environmentally conscious buildings in the country, as well as one of the most diverse range of installed renewable technologies, on site water and sewage treatment, sustainably managed woodland and acres of organic gardens.

Flexibility

It is a flexible degree, taught in blocks taken either with an intensive residential stay of five or six nights at the centre, or by distance learning. MSc students are free to choose between these teaching modes for every module. There is a choice of modules, taken over one year or two – meaning the degree can be part time. It is a masters degree designed to give you the best possible experience whilst also meshing neatly with the pressures of modern professional and family life.

Immersive learning environment

Optional residential module weeks include lectures, seminars, group work and practicals. Applied work tends to dominate later in the week once we have laid the theoretical groundwork. These module weeks provide a truly immersive environment to escape daily life and apply yourself to new learning. Many eminent experts give guest lectures or hold seminars during these modules, as it is a course which seeks to draw on the expertise and learning of the whole environmental sector.

Is this the course for you?

If you would like to visit for an overnight stay during a module, where you can attend lectures and workshops and meet staff and students, please contact Shereen Soliman:

Read less
The MRes in Energy Demand Studies is designed to equip students for careers as professional researchers. Technical work is highly topical, focusing on energy demand in the built environment, and is complemented by the development of research and transferable skills. Read more
The MRes in Energy Demand Studies is designed to equip students for careers as professional researchers. Technical work is highly topical, focusing on energy demand in the built environment, and is complemented by the development of research and transferable skills.

Degree information

The programme focuses on skills and knowledge required to undertake research in energy demand reduction in the built environment and comprises three strands: technical modules, transferable skills and research. Topics include thermodynamics, building physics, behaviour, energy systems, modelling, policy and economics. Transferable skills include writing, presenting and communicating with different stakeholders. Significant emphasis is placed on research and methodologies.

Students undertake modules to the value of 180 credits. The programme consists of four technical modules (two valued at 15 credits each, two audited), two transferable skills modules (15 credits each), a guided research project (30 credits) and a dissertation research project (90 credits).

Technical modules
-Energy Theory, Measurement and Interpretation
-Energy: Society, Economics and Policy
-Energy Demand in Context

Transferable skills modules
-Research Concepts
-Communication Skills

Dissertation/report
All students undertake a guided team research project, and an independent research project which culminates in a dissertation of 15,000 words.

Teaching and learning
Teaching sessions are highly interactive and led by experienced researchers. Students read key texts in advance of lectures and seminars to accelerate learning and focus sessions on research-oriented issues. Small group sizes, regular tutorials and supervision meetings combine to provide tailored support across a range of disciplines and research topics.

Placement
All students will attend a residential block week in Loughborough at the London-Loughborough Centre for Doctoral Research in Energy Demand at the start of term one. This will incur no additional costs for students.

Careers

The Energy Demand Studies MRes programme has been developed by experienced researchers to provide a superb grounding in the skills and knowledge required to pursue a research career in a range of sectors such as academia, government, consultancies, engineering companies and NGOs. To date, many of our students have gone on to gain funded PhD studentships at UCL-Energy and multinational organisations such as Parsons Brinckerhoff.

Top career destinations for this degree
-Teaching assistant on Undergraduate and MSc course at UCL, UCL (University College London) and studying MPhil/PhD Energy Demand Reduction and the Built Environment, University College London (UCL)
-PhD Built Environment, University College London (UCL)
-PhD Energy Demand in the Built Environment, University College London (UCL)
-PhD Energy Demand Studies, University College London (UCL)

Employability
Having undertaken a significant original research project, our graduates are well equipped to apply their skills to a career in a research environment. Their technical knowledge combined with transferable skills, such as communication skills, project management and problem solving, are highly sought after in a wide range of careers. Our students gain access to networking events, career workshops and exclusive seminars held at the UCL Energy Institute.

Why study this degree at UCL?

The UCL Energy Institute is a leading centre for research into energy demand and the built environment, a sector of increasing importance due to the challenges of climate change, energy affordability and energy security. Students undertaking the Energy Demand Studies MRes have the opportunity to undertake original research in a multidisciplinary environment and engage with top class researchers.

Research into demand and the built environment provides many challenges for researchers due to the complex interplay of people, buildings and economics. The unique multidisciplinary approach of the programme helps students develop into more complete individual researchers and effectively integrate into research teams.

Read less
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability. Read more
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability.

By the time you graduate, you will have a thorough understanding of sustainability standards, various renewable energies, smart grid and power electronics for renewable energy and energy use management in buildings, urban design and other areas. Research on sustainable energy technology has opened up many job opportunities in industry, government institutions and research centres.

What are benefits of the programme?

• studying at international university recognised throughout the world
• close cooperation with world-famous universities and research centres to solve major technical challenges including energy crises and environmental pollution
• excellent research opportunities, using advanced experimental equipment including a network analyser, power analyser, Dspace controller, wind turbine and PV testing system
• continuous development of core modules to meet the requirement of industrial innovation
• cutting-edge research in the intelligent and efficient utilisation of solar, wind energy and other renewable energy sources

Lab Facilities

Power electronics laboratory equipped with advanced experimental equipment
• Sustainable energy laboratory equipped with advanced experimental equipment including a 600W wind turbine, two 270W solar modules, batteries, an inverter with sinusoidal output and main controller
• Electric machine and power system laboratory

Modules

• Sustainable Energy and Environment
• Nuclear Energy Technology
• Power System Network and Smart Grid
• Integration of Energy Strategies in the Design of Buildings
• Photovoltaic Energy Technology
• Renewable Kinetic Energy Technologies
• Power Electronics and Applications for Renewable Energy
• Sustainable Urban Planning Strategies
• Msc Project

What are my career prospects?

Graduates of this programme will typically work on professional tasks including the implementation of sustainable energy technologies within existing or new systems, and modelling and evaluation of the impact on ecosystems, economics and society. Graduates may be employed as electric power system engineers, electric power system consultants, sustainable technology consultants, electric power projects managers, sustainable cities and building design consultants, managers and team leaders in government.

Read less
This innovative course is for people who wish to understand the ways new and renewable energy can be harnessed in buildings, who wish to gain the ability to undertake the simulation and modelling tasks which are essential for credible building performance analysis, and acquire the ability to work creatively within a multidisciplinary design team. Read more

About the course

This innovative course is for people who wish to understand the ways new and renewable energy can be harnessed in buildings, who wish to gain the ability to undertake the simulation and modelling tasks which are essential for credible building performance analysis, and acquire the ability to work creatively within a multidisciplinary design team.

The need for sustainable approaches to building design is universally acknowledged. As the effects of climate change are felt, the drive towards more energy efficient buildings is intensifying. Sustainable buildings need not be technologically complex but a high level of sophistication in design procedures and performance analysis is required.

The course has an interdisciplinary approach that gives a broad insight into energy and sustainability issues, and in-depth knowledge of the computer modelling techniques that are used in the design of modern sustainable buildings.

The course has been approved by both the Chartered Institute of Building Services Engineers (CIBSE) and the Energy Institute for completing the educational requirements for chartered engineer registration.

Reasons to Study;

• Flexible study options
the course is designed to be flexible and fit around you with on campus, part-time or full-time or distance learning options, and multiple exit awards from a full master’s to a single module

• Accredited by CIBSE and the Energy Institute
ensuring you will benefit from the highest quality teaching, and graduate with a recognised qualification

• Interdisciplinary teaching
develop a broad insight in to energy and sustainability issues, with in-depth knowledge of computer modelling techniques for the design of modern sustainable buildings

• Excellent graduate career prospects
graduates of the programme have gone on to work for the European Commission, Mott MacDonald, WSP Group, WYG, and Arup; as well as a variety of other energy and environmental consultancies, central and local government and multinational organisations

• Academic and research expertise
With more than 30-year’s research experience, our Institute of Energy and Sustainable Development (IESD) research and teaching staff provide students with a unique opportunity to learn from scientists actively involved in furthering knowledge and sharing expertise

Course Structure

Modules

The MSc has been designed to offer flexibility, with attended or distance learning study available and a range of possible awards from a full MSc to a single module. Modules studied:

• Sustainable Development
• Energy in Buildings
• Sustainable Energy
• Resource-Efficient Design
• Energy and Thermal Performance
• Ventilation and Daylight Modelling
• Energy Analysis Techniques
• Research Methods
• Design Project

Teaching and Assessment

Full-time students attend for two days each week and receive formal lectures from experienced researchers and teaching staff, complemented by informal seminars and group discussions. Part-time students attend one day per week. You will also be expected to undertake self-directed study. All teaching material is fully documented and available on the web-based virtual learning environment (VLE) before timetabled events take place.

Distance learning students follow a structured study plan provided on the VLE, supported by discussion forums with other students, and email and telephone conversations with the module leader. Our course has been commended in an academic quality review for its “innovative and sophisticated forms of e-based learning and teaching”.

All assessment is by coursework. Each taught module has two items of coursework. The first is a smaller assignment for which feedback is given while the module is being studied. A second, major assignment is due at a later date after the material has been assimilated.

As well as the eight taught modules, students complete either an individual dissertation or a team-based design project, and all students get to attend the annual MSc conference, where final year students present.

Contact and learning hours

You will normally attend two - four hours of timetabled taught sessions each week for each module undertaken during term time; for full time study this would be 12 hours per week during term time. You can also expect to typically undertake a further hours of six hours independent study and assignments as required per week.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
Global warming and fossil fuel depletion increasingly place the development of sustainable energy systems at the top of political agendas around the world. Read more
Global warming and fossil fuel depletion increasingly place the development of sustainable energy systems at the top of political agendas around the world. Major investments in new energy technologies and systems to improve energy efficiency and reduce greenhouse gas emissions will continue to grow the coming decades.

To meet this challenge this master’s programme provides a state of the art education lectured by world-leading researchers and industry professionals in combination with access to unique research facilities.

By acquiring deep technical knowledge in the main energy technologies and by understanding how they interact with economics and energy policies, our graduates become experts in identifying sustainable solutions to complex problems in the energy field.

Programme description

The future will most likely mainly be powered by renewable energy sources like hydropower, bioenergy, solar energy and wind power, but in the process of getting there; society needs a bridge between the technologies of today and the ones of the future.

At Chalmers, we are experts in the bridging technologies and systems that will characterize the professional careers of energy engineers in the coming decades.

Besides analysing the present and expected future energy systems and technologies, the programme covers the transition between them. With this, we offer world-leading education in technologies for clean and efficient heat and power generation, Carbon Capture and Storage (such as chemical looping and oxyfuel combustion), optimization and CO2 mitigation of chemical and industrial processes, efficient energy use in buildings, smart power grids for wind and solar power integration and bioenergy. At a system level, we specialize in energy systems modelling and planning and in environmental impact analysis of the energy sector trough life cycle analysis, ecological risk and environmental assessments.

Energy, is one of Chalmers Areas of Advance and tops the budget list for Chalmers strategic research and educational plan. Our faculty consists of world-renowned researchers like Christian Azar, Lina Bertling and Simon Harvey.

This unique, hands-on and state-of-the-art education in the area of advanced energy technologies and systems provides you with the proficiency needed to undertake energy engineering tasks that assess both technical, environmental and financial aspects.

You will be able to not only master current energy systems and technologies but also get a close insight to the ones of the future.

Educational methods

As we strive for a balance between individual and group assignments, you will take part in lectures, projects, case studies, problem-solving sessions, laboratories and seminars, providing you with an opportunity to train in team-work as well as both written and oral communication and presentation skills.

Read less
Management decisions in the energy sector require profound understanding of the sector’s technical, economic, legal, and entrepreneurial peculiarities. Read more
Management decisions in the energy sector require profound understanding of the sector’s technical, economic, legal, and entrepreneurial peculiarities. Climate change, economic changes, public opinion, technological progress and regulation shape and limit the entrepreneurial leeway, but also offer often unforseen chances and opportunities. The industry therefore requires broadly skilled individuals who are experts in the field.

The master programme is taught over a period of three semesters. The first semester covers the technical, economic, entrepreneurial and legal foundations for management decisions in the energy sector; the second semester deepens this view and looks at business practises, primarily of grid-based utilities, and investment; the third semester broadens the view while simultaneously focusing on practise according to student’s individual interests. All semesters include lectures, tutorials, seminars as well as excursions, online materials related to practice and extracurricular activities. The master thesis due in the third semester concludes the programme.

1. Technical Fundamentals
This module deepens student’s knowledge of energy technologies and systems in the framework of today’s changing world.
Prof. Dr.-Ing. Joachim Müller-Kirchenbauer

2. Economic Foundations
This module presents the economic basics for the understanding of energy markets and their regulation, the framework for operational Energy Management.
Prof. Dr. Georg Erdmann

3. Strategic Leadership and Global Management
This module presents the foundations of strategic management and discusses basic tools and applications in the context of the Energy industry.
Prof. Dr. Dodo zu Knyphausen-Aufseß

4. Energy Law
This module presents the legal framework of today’s Energy Markets on the global scale, the EU plane and Germany.
Prof. Dr. Dr. Dres. h.c. Franz Jürgen Säcker

5. Power Grids
This module deals with the technical and managerial challenges of grid management in a changing energy environment, with a focus on transformation processes between different forms and sources of energy and the novel developments in demand response, IT, and metering.
Prof. Dr. Kai Strunz

6. Energy Economy and Energy Business
This module looks at energetic aspects of enterprises and the implications of the changing energy landscape for industrial organisations. How to engineer efficiency and manage engineering efficiently, given changing energy markets and legal conditions?
Prof. Dr.-Ing. Joachim Müller-Kirchenbauer

7. Investments in Grids, Storage and Power Plants
This module looks at energy infrastructure from a financial point of view. Grids, storage facilities and power plants are large-scale long-term investments of national, if not international, scope and importance. How are such projects financed, how can they be insured, how can their risk be assessed, etc.
Prof. Dr. Christian von Hirschhausen

8a. Building Energy Efficiency (compulsory elective)
In this sub-module, students look at physical projects and products such as buildings, plants, city planning, etc. and apply the knowledge gained in prior modules in practise.
Prof. Dr.-Ing. Joachim Müller-Kirchenbauer

8b. Technology and Innovation Management (compulsory elective)
In this sub-module students look at innovations, team building, management processes, administrative, financial or theoretical issues in a specific practical context.
Prof. Dr. Jan Kratzer

Master thesis
Individual topics, individual supervisors.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X