• Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
King’s College London Featured Masters Courses
Staffordshire University Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
University of Leicester Featured Masters Courses
University of Portsmouth Featured Masters Courses
"energy" AND "sustainabil…×
0 miles

Masters Degrees (Energy And Sustainability)

We have 355 Masters Degrees (Energy And Sustainability)

  • "energy" AND "sustainability" ×
  • clear all
Showing 1 to 15 of 355
Order by 
Sustainable provision and energy use is a major international challenge of the twenty-first century. Read more

Sustainable provision and energy use is a major international challenge of the twenty-first century. Developed in collaboration with industry and public sector energy specialists, the course will give you a broad understanding of sustainable energy and aims to prepare aspiring energy professionals for a rewarding career in this fast-changing sector.

Introducing your degree

How do we balance economic, social and environmental perspectives to meet our energy needs? As fossil fuel resources are being depleted and carbon emissions regulation approaches reality there is a need to find new and cleaner sources of energy.

Studying the MSc in Energy and Sustainability (Energy, Resources and Climate Change) will enable you to study the impact of using fossil fuels on the environment and develop alternative sustainable energy solutions. Apply for our MSc in Energy and Sustainability and help shape the future of energy usage.

Overview

Our distinctive modules in bioenergy, waste and the interaction between energy and climate change will give you a key understanding of current issues. You will learn to use advanced Geographical Information Systems and develop a thorough, global perspective of climate change and energy. You will also study energy resources, technologies and waste resource management.

The last four months of the course will be dedicated to research. You will complete a significant research project and you may have the opportunity to work with one of our many industrial partners; ranging from large utility companies to small energy consultancies, to develop your professional experience.

View the specification document for this course



Read less
Sustainable provision and use of energy is a major international challenge of the twenty-first century. The industry-responsive course is designed to equip the next generation of energy professionals with the skills required to tackle climate change, ensure energy supply and manage efficiency in the built environment. Read more

Sustainable provision and use of energy is a major international challenge of the twenty-first century.

The industry-responsive course is designed to equip the next generation of energy professionals with the skills required to tackle climate change, ensure energy supply and manage efficiency in the built environment.

Introducing your degree

How do we create the spaces and places in which people wish to live and work? What is the impact of our current cities and buildings on the environment? What will the impact of urbanisation and climate change be? Apply for our MSc Energy and Sustainability course and link energy, environment and buildings to deliver sustainable solutions. Learn about climatic design of buildings and cities and adaptation for a future climate.

Overview

Developed in collaboration with industry and public sector energy specialists, this course will enhance your career path and value to employers.

On this one-year course, you will learn to assess and quantify the energy performance and climatic design of buildings and urban forms. You will also improve your knowledge of renewable energy technologies and geographical information systems. You have the opportunity to choose a module to suit your own interests.

The last four months of the course will be dedicated to research. You will complete a significant research project and may have the opportunity to work with one of our many industrial partners; typically a utility or energy consultancy, to develop your professional experience.

The degree will open the door to employment opportunities in large energy focused companies, consultancies and the public sector. Develop sustainable approaches to meeting our current and future energy challenges with the MSc Energy and Sustainability degree.

View the specification document for this course



Read less
Our MSc Energy and Sustainability with Electrical Power Engineering degree considers all aspects of sustainable energy generation, transmission and distribution engineering. Read more

Our MSc Energy and Sustainability with Electrical Power Engineering degree considers all aspects of sustainable energy generation, transmission and distribution engineering. This one year course provides highly sought after skills for those who are considering a career in the electrical power industry.

Introducing your degree

Develop the skills and knowledge to design and develop our future energy networks.

Overview

This course considers all aspects of sustainable energy generation and the issues concerned with bulk electrical energy transport to the ultimate user.

It will give you a solid grounding in generation, transmission and distribution engineering, in addition to considering the wider issues of:

  • energy
  • renewable generation
  • sustainability

This course is particularly relevant for students who are considering a career in the electrical power industry.

View the programme specification document for this course

Career Opportunities

This programme provides an excellent base for students considering a career in the electrical power industry. Graduates from our MSc programme are employed worldwide in leading companies at the forefront of technology. ECS runs a dedicated careers hub which is affiliated with over 100 renowned companies such as:

  • IBM
  • Arm
  • Microsoft Research
  • Imagination Technologies
  • Nvidia
  • Samsung Google 

Visit our careers hub for more information.



Read less
Climate change and limited fossil fuel reserves are creating an unprecedented demand for renewable energy and Hull, on the Humber - Britain's energy estuary, is the ideal location to study energy engineering. Read more

Climate change and limited fossil fuel reserves are creating an unprecedented demand for renewable energy and Hull, on the Humber - Britain's energy estuary, is the ideal location to study energy engineering.

This MSc will prepare you for specialised industry roles in energy engineering or allow you to advance to specialist PhD study in energy and sustainability engineering.

A strong emphasis is placed on the practical application of knowledge. The University has strong, direct links with industry, providing you with opportunities to work on real-world engineering projects.

There are two pathways leading to the following awards:

MSc Energy Engineering: Energy Technologies in Building

A mainly design-based programme, involving energy consumption analyses in building, building services (heating, ventilation, air conditioning and refrigeration) systems design, as well as renewable energy (solar, ground soil, wind, biomass and fuel cell) application in buildings. The projects are specifically tailored to solve practical problems.

MSc Energy Engineering: Renewable Energy Technologies

An opportunity to study a range of technologies from PV and solar thermal to biomass, wind and tidal. Students will have access to experimental facilities in all of these areas as well as the possibility to investigate resource modeling and design of novel harvesting devices.

Study information

This MSc will prepare specialists with advanced skills in distinct areas of energy engineering. A very strong emphasis is placed on the practical application of theory.

The programme comprises a combination of lectures, practical/design exercises, tutorials, computer-based process simulation and optimisation, and resource-based, problem-based and enquiry-led learning.

Semester one comprises core modules that will provide you with a general background knowledge of the energy industry, including economics, policy and impact assessment as well as a technical overview.

Core modules:

  • Energy Technologies
  • Environmental Management and Policy
  • Research Management and Research Skills

Students will then follow their specialist path, selecting three further modules from options including:

  • Renewable Energy in Buildings
  • Built Energy System Design and Practice
  • Power distribution, storage and control
  • Sustainable Waste Management
  • Energy in Buildings: Load Analysis

You will develop competence and confidence in the application of engineering knowledge and techniques to a range of industrial and real-world energy-related problems.

You will develop a good theoretical and practical understanding that balances the core fundamentals with the latest industry and research practice.

A final project and dissertation will enable you to identify and apply theory and practice to the analysis and solution of complex engineering problems.

* All modules are subject to availability.

Future prospects

The energy engineering industry is expanding rapidly and employment opportunities are high. An increased focus on renewable energy projects is creating demand for sector specialist engineers.

This programme provides you with the skills, competencies and knowledge to be successful in the workplace or will prepare you to advance to specialist PhD study in energy and sustainability engineering.

There are many opportunities to work with energy companies during the programme, enhancing your employability.

This MSc has a host of industry advisors from companies and organisations likely to offer employment opportunities to students completing the programme.

Our industry partners include Spencer Group and NPS Humber Limited. The Humber is the largest Renewable Enterprise Zone in the UK. Green Port Hull, a collaboration between Hull City Council, East Riding of Yorkshire Council and Associated British Ports, promotes investment and development of the renewable energy sector in the region.



Read less
Who is it for?. This course is for students who want to engage with different types of settings to research and establish the energy, environmental and technological implications that exist within them. Read more

Who is it for?

This course is for students who want to engage with different types of settings to research and establish the energy, environmental and technological implications that exist within them. Energy and Environmental Technology and Economics students will care for the environment as a sustainable system and ultimately have a desire to improve conditions for the wider population.

Students come from a range of backgrounds, including engineering, finance and economics – and from within the energy industry itself.

Objectives

This MSc degree has been designed to give you a wide perspective when it comes to analysing and forecasting the future for energy, environmental technology and economics.

The Energy and Environmental Technology and Economics MSc will help you:

  • Understand the technologies for energy production: fossil fuels, nuclear and renewable
  • Assess the economic factors affecting energy production and supply
  • Know the economics governing consumer use and purchase of energy
  • Analyse and forecast the future of energy, environmental technology and economics
  • Evaluate the environmental effects of energy and other industrial production
  • Gain a real-world understanding of the issues – from regulation and government funding, to behavioural psychology and emerging technologies
  • Understand the technologies for reducing environmental impact and their economics
  • Consider ethical responsibilities in relation to energy use
  • Rapidly assess the most important features of a new technology
  • Integrate information across a broad range of subject areas, from engineering
  • through economics to risk assessment
  • Identify a range of perspectives, and look at the influence of a myriad of other forces at play by engaging with practising businesses and trade associations
  • The discipline of auditing energy consumption
  • Monitoring performance and engaging with international energy management standards
  • Relate to professionals from a wide variety of backgrounds, academic, commercial and industrial, from professors in engineering and mathematics through to consulting engineers to senior managers and directors of large, publicly quoted companies.

Accreditation

The course is accredited by the Energy Institute and fulfils the learning requirement for Chartered Engineer status.

Placements

There is no formal requirement to do an industry-based placement as part of the programme. However, some students arrange to undertake their dissertation research within a company or within their part of the world. A recent student investigated the future of coal-fired generation in Turkey, and another student is combining a work placement at The World Energy Council with their dissertation.

Teaching and learning

Teaching is organised into modules comprising four consecutive day courses taken at a rate of one a month or so. This format makes the programme accessible for students who want to study part-time while working. Full-time students are also welcome.

Whether you choose to take the course as a part-time or full-time student, we will offer a great deal of support when it comes to helping you prepare for the modules and project work. You will be expected to devote a significant part of your non-taught hours to project work as well as private study.

Our course is led by an exceptional group of experts in energy, supply, demand management and policies. As an example, one of our module leaders leads the UK contribution to writing international energy management standards and informing policy through the European Sector Forum for Energy Management. This forum looks at methodologies across the continent.

There is also input to global standards development through the International Standards Organisation (ISO). At City we bring on board people with well-established academic careers, as well as leaders from the energy industry. The programme has strong links with industry and commerce and involves many visiting lecturers who hold senior positions in their fields.

You will be assessed by examination on the four core modules and you will need to complete a post modular assessment (a 2,000 to 3,000-word essay) on all of the eight modules.

Modules

You will take four core modules and have six elective modules from which you can choose four topics from diverse subjects relating to energy supply and demand.

Each course module is taught over four consecutive days of teaching with one module each month. Alongside the teaching, you will have coursework to complete for each module. The modules run from October to April, and in the remaining time, you will concentrate on your dissertation, which forms a significant part of the programme.

You are normally required to complete all the taught modules successfully before progressing to the dissertation.

The dissertation gives you the opportunity to create your own questions and to decide on your own area of interest. It should be a detailed investigation into a subject on energy supply and/or demand, with your own analysis and conclusions outlining the way forward. You may see the focus of your dissertation as a future career path, but whatever your area of study, these final few months of the degree should embody your vision of the future.

If you are interested in sustainability, you have the option of taking up to two elective modules from the MSc in Environmental Strategy offered by the University of Surrey.

Core modules

  • Introduction to energy and environmental issues (15 credits)
  • Energy policies and economic dimensions (15 credits)
  • The energy market from the purchaser's perspective (15 credits)
  • Corporate energy management (15 credits)

Elective modules

  • Energy, economics and finance (15 credits)
  • Transport energy and emissions (15 credits)
  • Energy in industry and the built environment (15 credits)
  • Renewable energy and sustainability (15 credits)
  • Risk management (15 credits)
  • Water supply and management (15 credits).


Read less
The Energy Systems and Data Analytics MSc provides an academically leading and industrially relevant study of energy systems through the lens of data analytics. Read more

The Energy Systems and Data Analytics MSc provides an academically leading and industrially relevant study of energy systems through the lens of data analytics. Advanced analytics, fuelled by big data and massive computational power, has the potential to transform how energy systems are designed, operated and maintained. You will gain the skills and knowledge to unlock the transformative potential of big energy data, and understand how it can reshape the energy sector.

About this degree

You will gain a broad understanding of energy systems as a whole, covering supply and demand, the interconnectedness and dependencies between different sectors and a multi-vector multi-sector approach to analysis. You will learn about the theory and practice of data analysis and will gain practical experience of the challenges of working with different data sets relating to energy throughout the programme and modules. 

The programme consists of five compulsory modules (75 credits), two optional modules (45 credits) and a dissertation (60 credits).

Core modules

  • Energy Systems
  • Energy Data Analytics
  • Statistics for Energy Analysis
  • Energy Analytics in the Built Environment
  • Energy and Transport Analytics

Optional modules

  • Spatial Analysis of Energy Data
  • Introduction to Systems Dynamics Modelling in the Built Environment
  • Econometrics for Energy and the Environment
  • Energy, Technology and Innovation
  • UK Energy and Environment Policy and Law
  • Smart Energy Systems: Theory, Practice and Implementation
  • Eco-innovation and Sustainable Entrepreneurship

The list of optional modules is correct for the 2018/19 academic year. Enrolment on modules is subject to availability.

Dissertation/report

All students undertake an independent research project whch culminates in a 10,000-word dissertation.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials, problem-based learning and project work. Assessment is through a combination of methods including problem sets, individual assignments and coursework, group based design tasks with a report and presentation, unseen examinations and a dissertation.

Further information on modules and degree structure is available on the department website: Energy Systems and Data Analytics MSc

Careers

Graduates of the ESDA MSc will be ideally placed to gain employment as energy analysts/ data scientists in consultancies, utilities, innovative start-ups and government institutions which value expertise in energy systems and have a need for data literate analysts.

Employability

There is a strong emphasis placed on innovation throughout the programme. Based on our market research and the trends in the industry (which is increasingly driven by data) there will be a healthy demand for our graduates.

Students will also benefit from a skill set in data analytics that will be highly transferable and applicable across a range of industries and domains.

The programme has been developed with input from industry leaders. You will gain exposure to real life energy and sustainability challenges.

Why study this degree at UCL?

The MSc in Energy Systems and Data Analytics is the first programme in the UK to combine the study of energy systems with data science. The MSc is delivered by leading researchers in the UCL Energy Institute and UCL Institute for Sustainable Resources. You will benefit from their specific expertise, research communities and industry contacts (including guest lecturers drawn from the energy industry), as well as our multidisciplinary and cross-domain approach.

The UCL Energy Institute has consulted across industry to identify key skills gaps for the energy analysts that will be required by utilities, consultancies and small and medium enterprises. There is a growing need in industry for graduates who combine an understanding of energy systems with the skills and abilities to extract insights from data through the use of advanced analytics.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Gain a robust understanding in renewable energy and sustainable technologies, as well as carbon management and energy use in the built environment. Read more

Gain a robust understanding in renewable energy and sustainable technologies, as well as carbon management and energy use in the built environment.

The MSc Renewable Energy: Technology and Sustainability deals with the applications of renewable energy and sustainable technology combined with the impact on the environment of using non-sustainable technologies. We focus on the technical and policy questions arising from global demands for secure, affordable and sustainable energy. We cover rapidly-evolving fields that are vitally relevant to how society develops in the 21st century. This course is accredited by the Energy Institute and the Chartered Institute of Building Services Engineers.

The distinctive focus is on renewable energy and sustainable technologies, as well as carbon management and energy use in the built environment.

There is international concern about the environmental damage associated with the conversion of energy from all sources. Renewable energy sources can make a significant contribution to the reduction of pollution, if used in a sustainable way. Renewable fuels and energy systems can also offer protection against future shortages and price increases of conventional energy, and can provide energy supplies in remote areas.

This course has been Labelled by Climate KIC - a knowledge and Innovation Community that works with existing and relevant Master's courses to enhance them with complementary learning

What will you study?

Sample modules

  • Energy carbon and the environment
  • Sustainable heat and power
  • Energy in buildings
  • Sustainable urban systems
  • Building information modelling

Please note that all modules are subject to change. Please see our modules disclaimer for more information.

Dissertation

The dissertation is a major individual research project. Guidance will be given on choosing a research topic, research techniques and the style and presentation of the finished document. Classes in research skills are provided as part of the dissertation module. Students will have their own carefully selected dissertation tutor whose role is to help them plan and successfully execute this key part of the programme.

Full-time

We offer a one-year, full-time modular course. It is taught with ten, one-week attendance periods at the University. The full-time programme starts in September each year.

Flexible part-time

We also offer a two-year, part-time modular course. It is taught with ten, one-week attendance periods at the University. The duration of the flexible route is strongly recommended as two years, but this is not fixed. The flexible course starts in September each year.

What career can you have?

The School has international alumni spread throughout the world. Many are in senior positions within governments, NGOs or the private sector. Graduates from the MSc in Renewable Energy: Technology and Sustainability are uniquely equipped to engage with the challenges of reducing the carbon footprint of energy generation and use. You will acquire the expertise and skills to significantly enhance your employability options in a wide range of energy and sustainability-related occupations. Particular attention is given to the development of research skills and critical thinking. The specific aim is to develop specialist skills. These arise from exposure to theory, research and methods of critical evaluation, while enabling career development.

Graduates will typically be employed in professional roles, such as:

  • Energy Officer
  • Sustainability Consultant
  • Sustainable Energy Consultant
  • Renewables Engineer
  • Renewables Consultant
  • Technical Director
  • Project Analyst
  • Researcher
  • Sales and Marketing Specialist
  • Design Engineer


Read less
This fresh, new programme for 2017 is a collaboration between the School of GeoSciences and the School of Social and Political Sciences. Read more

This fresh, new programme for 2017 is a collaboration between the School of GeoSciences and the School of Social and Political Sciences.

The world is facing an ‘energy trilemma’; how to achieve energy security, energy equity and environmental sustainability. Whilst equipping students with an active understanding of low carbon technologies, policies and markets, this new MSc programme is focused squarely on analysing the social, societal and environmental dimensions of energy transitions. You will examine how citizens are involved in and are affected by changes in energy systems.

On a more theoretical level, the programme will enable you to relate supply-side issues to geo-politics and political economy, whilst energy demand will be studied in relation to broader challenges of sustainable consumption.

On a more practical level you will explore the potential of ‘smart’ ICT to affect consumption and inform strategic choices in sustainable living at household and community level. With Scotland being a world leader in renewable electricity generation (especially wind and marine), but also being economically dependent on declining North Sea oil and gas and suffering from high levels of energy poverty, this interdisciplinary MSc. benefits from close access to a high number of insightful case studies, which will serve to examine links between global and local issues, explore international best practices and identify locally suited pathways to more sustainable energy management.

Applicants receiving an offer of admission, either unconditional or conditional, will be asked to pay a tuition fee deposit of £1,500. Please see the fees and costs section for more information.

Programme structure

The programme has been designed to develop transdisciplinary perspectives on the energy trilemma and integrative analytical skills (qualitative and quantitative) which are in short supply in the energy sector. The full-time programme is divided into two semesters of taught courses, followed by a field trip at Easter before the dissertation period over the summer. We are happy to accommodate different working patterns for part-time students, including a half day a week schedule for three-year part time study.

The programme consists of four core modules (20 credits each, two core courses per semester), two optional modules (20 credits, one for each semester) and a 60 credit dissertation.

Compulsory courses*

Semester 1:

  • Energy and Society I: Key themes and issues
  • Energy in the Global South

Semester 2:

  • Energy and Society II: Methods and applications
  • Energy Policy and Politics

Students will also undertake one 20 credit course per semester. The University of Edinburgh offers an unrivalled selection of relevant optional courses for the MSc in Energy, Society and Sustainability. Bearing in mind your particular background and interests, the Programme Director will assist you in your choice from a large menu of optional courses related to six potential specialisation pathways; sustainable technologies and economics, politics, development, environmental sustainability, science and technology and public policy.

Optional courses may include*:

  • Technologies for Sustainable Energy (10 credits) AND
  • Energy and Environmental Economics (10 credits)
  • Applications in Ecological Economics
  • Global Environment: Key issues
  • Global Environmental Politics
  • Resource Politics and Development
  • Governance, Development and Poverty in Africa
  • Principles of Sustainable Development
  • Human Dimensions of Environmental Sustainability
  • Climate Change Management
  • Case Studies in Sustainable Development
  • Science, Knowledge and Expertise
  • Development, Science and Technology
  • Controversies in Science and Technology
  • Economic Issues in Public Policy (Semester 1)
  • Political Issues in Public Policy (Semester 2)

**Please note, courses are offered subject to timetabling and availability and are subject to change.

Learning outcomes

The programme aims for students to develop transdisciplinary skills in the assessment of the transition potential of energy systems towards greater sustainability, focussing especially on the human dimension of technological change and working and experimenting with energy users to co-produce knowledge about pathways to change.

Upon successful completion of the programme, students will have gained:

  • Understanding of energy systems and the energy trilemma
  • Understanding of social theories that underpin human attitudes and behaviour in relation to energy use
  • Understanding the non-technical and more-than-technical aspects of energy transitions
  • Understanding how energy-related decisions are linked to other societal challenges and socio-technical developments
  • Understanding of energy literacy

Career opportunities

UK research councils cite a major skills gap in the energy sector, one of the biggest growth sectors within the UK economy in recent years. Demand has never been higher for sound evidence on behavioural change, public engagement with energy issues, and public support for community and commercial investments in low carbon energy generation. We train our graduates to translate complex science into effective policies and new business opportunities. We have strong links with government departments, energy relevant NGOs and key industry players who want to make use of these skills. Committed to helping you meet prospective employers and network with those active in the field, we organise careers events and encourage dissertations conducted in partnership with external organisations.



Read less
The. Master in Global Energy Transition and Governance. aims to give a. deep understanding of the complexity of the current energy transformations in Europe and worldwide. Read more

The Master in Global Energy Transition and Governance aims to give a deep understanding of the complexity of the current energy transformations in Europe and worldwide. The programme offers a unique, multidisciplinary approach which distinguishes it from other Master courses in the field of energy studies: It analyses the links between the different levels of energy governance, from an international to a local level, offering problem-focused learning at the crossroads of theory and practice. The one-year Master programme stretches over three terms and takes place in two study locations: Nice and Berlin. Working language is English.

Overview of the year

Nice

The first term in Nice encompasses classes on the basics of the four energy modules (International energy governance, Economic energy governance, the EU energy governance and Energy and territories). Each module is complemented by seminars dealing with current energy issues. An academic or professional expert is invited for each event.

Berlin

For their second term students move on to Berlin where teaching in the four modules continues in the form of workshops. Each module organises a half-ay workshop with an expert. Students prepare the workshops in group work delivering papers on themes linked to the topic of the seminar (climate negotiations, energy stock exchange, the role of the EU interconnections in the European energy market, the EU funds and the territorial energy policy). To better understand the local energy challenges in the framework of the German Energy Transition Field, visits will also be organised in co-peration with local institutions and companies. Another focus of this term will be put on the methodology classes, one dedicated to the research work and the Master'sthesis, the second one to project management.

Nice

In April students return to Nice. The third term aims at deepening their knowledge on the four energy modules. A special focus is also given to the methodological support for the students' work on their  thesis including individual meetings with the academic supervisors. In the two simulations the participants will forge their negotiation techniques with regard to the construction of wind farms at local level and work out of a strategy for an international energy cooperation. Written and oral exams in June will conclude this term.

During this term students will finalise their work on their thesis in close contact with their academic supervisors. The thesis will be delivered in mid-June and defended at the end of June.

Curriculum

International energy governance

This module delivers the theoretical knowledge on the main international energy related issues and conflicts (resource curse, neoinstitutionalism, developmentalism, weak/strong States etc.).

It also provides the participants with concrete examples of the emergence and regulation of energy conflicts worldwide in order to analyse better how they exert pressure on the security and diversification of the energy supply.

With their graduation, students become part of CIFE’s worldwide Alumni network.

Economic energy governance

Economic and market fundamentals are applied to the energy sector in order to understand the current multiple national, regional, and local low carbon energy pathways in the world.

The module examines how the different markets are regulated and how they influence the transitions from fossil fuels to renewable energies. The economic perspective will highlight the role of liberalisation, privatisation and regulation of the sector.

European energy governance

The aim of this module is to highlight the EU priorities and its decision-making process regarding clean energy transition in Europe, thus helping to understand political economy factors that both inhibit and accelerate it.

While focusing on how the different EU policies challenge institutional architectures and multilevel governance schemes, the module provides an insight into issues currently facing European policy makers such as social acceptance, sustainability of renewable energies as well as rapid advancement in clean energy technologies.

Energy and territories

Participants will examine how EU regions and cities and more generally territories develop their own low carbon strategy at the crossroads of many policies (housing, waste management, transport, fuel poverty, environment and energy) and in the framework of a multilevel governance system.

Concrete examples of local and regional strategies will be delivered in order to analyse the levers and obstacles for more decentralisation.

Methodology modules

Students will acquire skills in research methodology, energy project management and the elaboration of energy strategies. They will concretely experiment different methodological tools: first of all through the research work for their thesis, second thanks to the methodological tools of project management. Students will be involved in a simulation game in which they will have to decide on the construction of a wind park in a territory. In a negotiation game, participants will have to elaborate a common strategy in the perspective of international energy cooperation.

Thesis

For their thesis participants will carry out a profound research work on an energy issue, chosen and elaborated in regular coordination with their supervisor.

The thesis will require the application of the methodological tools which the students have acquired during the programme.

The academic work will involve in-depth desk research, possible interviews with external partners and the writing of a thesis of approximately 17,000 words. Candidates will defend their thesis in an oral exam.

Applications and Scholarships

Candidates can submit their application dossier by using the form available on the Institute's website : http://www.ie-ei.eu/en/11/Registration

They should also include all the relevant documents, or send them by post or email. An academic committee meets regularly in order to review complete applications.

A limited number of scholarship funds can be awarded to particularly qualified candidates to cover some of the costs related to studies or accommodation.

The deadline for applications is 22 July 2018.



Read less
Renewable energy is an essential and vital resource for the world’s future, and future there is an urgent need for engineers capable of solving the industry’s complex challenges in this field. Read more

About the course

Renewable energy is an essential and vital resource for the world’s future, and future there is an urgent need for engineers capable of solving the industry’s complex challenges in this field.

Studying Renewable Energy Engineering at Brunel provides graduates with the knowledge and skills to make a strategic real-world impact in the resolution of the world’s energy problems.

Graduates from Brunel’s MSc in Renewable Energy Engineering will develop:

- The versatility and depth to deal with new, demanding and unusual challenges across a range of renewable energy issues, drawing on an understanding of all aspects of renewable energy principles including economic assessment.

- The imagination, initiative and creativity to enable them to follow a successful engineering career with national and international companies and organisations.

- Specialist knowledge and transferable skills for successful careers including, where appropriate, progression to Chartered Engineer status.

Aims

Huge business incentives, markets and a wide variety of employment opportunities throughout the world are expected with the development of renewable energy resources as a substitute for fossil fuel technology.

The purpose of the MSc programme is to help meet this demand by cultivating qualified and skilled professionals with specialist knowledge in relevant technologies within the renewable energy sector.

The primary aim is to create Master’s degree graduates with qualities and transferable skills ready for demanding employment in the renewable energy sector. These graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level, and the programme also establishes a strong foundation for those who expect to continue onto a PhD or industrial research and development.

Initial programme learning outcomes

The programme will provide opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas:

Knowledge and understanding of:

1.The principles and environmental impact of renewable energy technologies, including solar (thermal and electricity), wind, tidal, wave and hydro, geothermal, biomass and hydrogen.
3. The principles of energy conversion and appropriate thermodynamic machines.
4. The heat and mass transfer processes that relate to energy systems and equipment.
5. The principles, objectives, regulation, computational methods, economic procedures, emissions trading, operation and economic impact of energy systems.
6. The diversity of renewable energy system interactions and how they can be integrated into actual energy control systems and industrial processes.

At the cognitive thinking level, students will be able to:

1. Select, use and evaluate appropriate investigative techniques.
2. Assemble and critically analyse relevant primary and secondary data.
3. Recognise and assess the problems and critically evaluate solutions to challenges in managing renewable energy projects.
4. Evaluate the environmental and financial sustainability of current and potential renewable energy activities
5. Develop a thesis by establishing the basic principles and following a coherent argument.

In terms of practical, professional and transferable skills, students will be able to:

1. Define and organise a substantial advanced investigation.
2. Select and employ appropriate advanced research methods.
3. Organise technical information into a concise, coherent document.
4. Communicate effectively both orally and in writing.
5. Design and select renewable energy equipment and systems based on specific requirements/conditions.
6. Work as part of, and lead, a team.

Course Content

The taught element of the course (September to April) includes eight modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

Compulsory modules:

Renewable Energy Technologies I-Solar Thermal and electricity systems
Renewable Energy Technologies II-Wind, Tidal, Wave, Hydroelectricity
Renewable Energy Technologies III-Geothermal, Biomass, Hydrogen
Power Generation from Renewable Energy   
Renewable Energy Systems for the Built Environment
Energy Conversion Technologies
Environmental Legislation: Energy and Environmental Review and Audit
Advanced Heat and Mass Transfer
Dissertation

Teaching

Students are introduced to subject material, including key concepts, information and approaches, through a mixture of standard lectures and seminars, laboratory practical, field work, self-study and individual research reports. Supporting material isavailable online. The aim is to challenge students and inspire them to expand their own knowledge and understanding.

Preparation for work is achieved through the development of 'soft' skills such as communication, planning, management and team work. In addition, guest speakers from industries provide a valuable insight into the real world of renewable energy.

Many of the practical activities in which the students engage, develop into enjoyable experiences. For example, working in teams for laboratory and field work and site visits. We encourage students to develop personal responsibility and contribution throughout the course. Many elements of coursework involve, and reward, the use of initiative and imagination. Some of the projects may be linked with research in CEBER, CAPF and BIPS research centres.

1 Year Full-Time: The taught element of the course (September to April) is delivered by a combination of lectures, tutorials and group/seminar work. From May to September students undertake the dissertation.

3-5 Years Distance Learning: The programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace. Students are supplied with a study pack in the form of text books and CD-ROMs; cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations can be taken either at Brunel University London or in the country you are resident in. The dissertation is carried out in one year.

Modules are assessed either by formal examination, written assignments or a combination of the two.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of the academic year. Examinations are normally taken in May. The MSc dissertation project leading to submission of the MSc Dissertation is normally carried out over four months (FT students) or one year (DL students).

Special Features

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

About Mechanical Engineering at Brunel
Mechanical Engineering offers a number of MSc courses all accredited by professional institutes as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Accrediting professional institutes vary by course and include the Institute of Mechanical Engineers (IMechE), Energy Institute (EI) and Chartered Institute of Building Services Engineers (CIBSE).

Teaching in the courses is underpinned by research activities in aerospace engineering, automotive/motorsport engineering, solid and fluid mechanics, and energy & environment. Staff generate numerous publications, conference presentations and patents, and have links with a wide range of institutions both within and outside the UK. The discipline benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The requirement of UK-SPEC reinforces the need for a recent graduate with a Bachelor degree to take an appropriate postgraduate qualification in order to become a chartered engineer (currently, an accredited Bachelors degree does not enable the graduate to proceed to Chartered Engineer status without additional learning at M level).

This MSc program will be compliant with the further learning requirements of UK-SPEC. Accreditation will be sought from the Institute of Mechanical Engineering (IMechE) and Energy Institute. As a result, it will appeal to recent graduates who have not yet obtained the appropriate qualifications but intend to become Chartered Engineers. Most importantly, it will appeal to Mechanical, Chemical and Building Services Engineering graduates who wish to specialise in energy, or suitably experienced graduates of related subjects such as Physics.

Read less
What are the solutions to the environmental issues on a global scale, like climate change, sustainable development and the greenhouse effect? What alternative sources of energy do we need to explore?. Read more
What are the solutions to the environmental issues on a global scale, like climate change, sustainable development and the greenhouse effect? What alternative sources of energy do we need to explore?

The Master's degree programme in Energy and Environmental Sciences focuses on the large-scale issues and tries to contribute to possible solutions to the energy and environmental challenges.

The programme is connected to the Energy and Sustainability Research Institute Groningen (ESRIG). Several research groups are joining forces in ESRIG resulting in a variety of research subjects, such as:

* Polymer and organic solar cells

* Climate and atmosphere

* Geo-energy

* Combustion technology

* Bio-fuels technology, land and ocean-based

* Renewable energy

* Energy and land use scenario's and modeling


The Master's programme is accessible for several Bachelor degrees in Natural Sciences.

Why in Groningen?

- Energy and Sustainability are main research focus areas
- Accessible for several Bachelor's degrees in Natural Sciences
- Excellent career prospects
- Offering interdisciplinary system and several experimental specialisations

Job perspectives

Energy and Environmental scientists from the University of Groningen are renown for their interdisciplinary systems-approach and/or specialised experimental skills. In general they easily obtain jobs in their field of study at or in:
- Research institutes or universities
- Industry
- Companies like major consultancy firms
- Governmental agencies

Read less
A flexible Masters degree designed to develop a rigorous understanding of different energy technologies, exploring the subject through a combination of academic study, discussion and hands-on practical work. Read more

Masters in Renewable Technologies

A flexible Masters degree designed to develop a rigorous understanding of different energy technologies, exploring the subject through a combination of academic study, discussion and hands-on practical work.

How is the course taught?

Taught at the Centre for Alternative Technology (CAT), which pioneered sustainability practice and theory in the UK, the MSc course examines renewable energy provision, increased energy efficiency and intelligent management of energy resources. These topics are explored within the context of the ecological, social and economic impacts and the policy drivers at international, national and local scales. Our MSc programme is taught either by distance learning or through residential blocks in one of the most innovative environmental buildings in the UK, or via a mixture of the two.

Different energy technologies are examined alongside new advances in energy storage, smart grids and meters. Computer modelling, data collection and analysis give students practical experience in effective energy management. Students can choose modules from a wide range that covers environmental assessment and renewable energy, cities and communities, energy provision, energy in buildings, and politics and economics.
 
We give our MSc students the knowledge, skills and experience needed to develop a career in the environmental sector and make an impact. The programme draws on our expert staff (https://gse.cat.org.uk/index.php/postgraduate-courses/msc-sustainability-in-energy-provision-and-demand-management/sepdm-staff-profiles) and a wide selection of academics and specialist guest lecturers – people who have made exceptional contributions to environmental thinking and action.

What qualification will you receive?

Successful completion of the programme MSc Sustainable Energy Provision and Demand Management at the Centre for Alternative Technology leads to the award of Master of Science (MSc) by UEL.

Modules include

-          Sustainability and Adaptation Concepts and Planning
-          Environmental Politics and Economics
-          Adaptation Transformation Politics and Economics
-          Cities and Communities
-          Energy Flows in Buildings – Parts A and B
-          Energy Provision (Wind)
-          Energy Provision (Solar PV)
-          Energy Provision (Renewable Energy)
-          Building Performance Assessment and Evaluation
-          Built Environment Applied Project or Built Environment Practice Based Project

Why study at CAT?

Studying at the Centre for Alternative Technology (CAT) is a truly unique experience. For the past 40 years CAT has been at the forefront of the environmental movement, pioneering low-carbon living and renewable technology. At the Graduate School of the Environment (GSE), students benefit from our extensive practical and academic knowledge, graduating with the skills needed to become leading players in the sustainability sector. Find out more about our facilities here: https://gse.cat.org.uk/index.php/postgraduate-courses/msc-sustainability-and-adaptation/sa-site-and-facilities

Hands-on learning

At CAT, hands-on learning takes place side by side with academic study. Residential on-site block learning weeks are taught at the Centre for Alternative Technology (CAT), a truly unique and inspiring learning environment. Nestled in a disused slate quarry on the edge of the Snowdonia National Park, CAT is a living laboratory for paractical, sustainable solutions. It contains some of the most innovative and renowned environmentally conscious buildings in the country, as well as one of the most diverse range of installed renewable technologies, on site water and sewage treatment, sustainably managed woodland and acres of organic gardens.

Flexibility

It is a flexible degree, taught in blocks taken either with an intensive residential stay of five or six nights at the centre, or by distance learning. MSc students are free to choose between these teaching modes for every module. There is a choice of modules, taken over one year or two – meaning the degree can be part time. It is a masters degree designed to give you the best possible experience whilst also meshing neatly with the pressures of modern professional and family life.

Immersive learning environment

Optional residential module weeks include lectures, seminars, group work and practicals. Applied work tends to dominate later in the week once we have laid the theoretical groundwork. These module weeks provide a truly immersive environment to escape daily life and apply yourself to new learning. Many eminent experts give guest lectures or hold seminars during these modules, as it is a course which seeks to draw on the expertise and learning of the whole environmental sector.

Is this the course for you?

If you would like to visit for an overnight stay during a module, where you can attend lectures and workshops and meet staff and students, please contact Shereen Soliman:

Read less
A flexible Masters degree designed to develop a rigorous understanding of different energy technologies, exploring the subject through a combination of academic study, discussion and hands-on practical work. Read more

Masters in Renewable Technologies

A flexible Masters degree designed to develop a rigorous understanding of different energy technologies, exploring the subject through a combination of academic study, discussion and hands-on practical work.

How is the course taught?

Taught at the Centre for Alternative Technology (CAT), which pioneered sustainability practice and theory in the UK, the MSc course examines renewable energy provision, increased energy efficiency and intelligent management of energy resources. These topics are explored within the context of the ecological, social and economic impacts and the policy drivers at international, national and local scales. Our MSc programme is taught either by distance learning or through residential blocks in one of the most innovative environmental buildings in the UK, or via a mixture of the two.

Different energy technologies are examined alongside new advances in energy storage, smart grids and meters. Computer modelling, data collection and analysis give students practical experience in effective energy management. Students can choose modules from a wide range that covers environmental assessment and renewable energy, cities and communities, energy provision, energy in buildings, and politics and economics.
 
We give our MSc students the knowledge, skills and experience needed to develop a career in the environmental sector and make an impact. The programme draws on our expert staff (https://gse.cat.org.uk/index.php/postgraduate-courses/msc-sustainability-in-energy-provision-and-demand-management/sepdm-staff-profiles) and a wide selection of academics and specialist guest lecturers – people who have made exceptional contributions to environmental thinking and action.

What qualification will you receive?

Successful completion of the programme MSc Sustainable Energy Provision and Demand Management at the Centre for Alternative Technology leads to the award of Master of Science (MSc) by UEL.

Modules include

-          Sustainability and Adaptation Concepts and Planning
-          Environmental Politics and Economics
-          Adaptation Transformation Politics and Economics
-          Cities and Communities
-          Energy Flows in Buildings – Parts A and B
-          Energy Provision (Wind)
-          Energy Provision (Solar PV)
-          Energy Provision (Renewable Energy)
-          Building Performance Assessment and Evaluation
-          Built Environment Applied Project or Built Environment Practice Based Project

Why study at CAT?

Studying at the Centre for Alternative Technology (CAT) is a truly unique experience. For the past 40 years CAT has been at the forefront of the environmental movement, pioneering low-carbon living and renewable technology. At the Graduate School of the Environment (GSE), students benefit from our extensive practical and academic knowledge, graduating with the skills needed to become leading players in the sustainability sector. Find out more about our facilities here: https://gse.cat.org.uk/index.php/postgraduate-courses/msc-sustainability-and-adaptation/sa-site-and-facilities

Hands-on learning

At CAT, hands-on learning takes place side by side with academic study. Residential on-site block learning weeks are taught at the Centre for Alternative Technology (CAT), a truly unique and inspiring learning environment. Nestled in a disused slate quarry on the edge of the Snowdonia National Park, CAT is a living laboratory for paractical, sustainable solutions. It contains some of the most innovative and renowned environmentally conscious buildings in the country, as well as one of the most diverse range of installed renewable technologies, on site water and sewage treatment, sustainably managed woodland and acres of organic gardens.

Flexibility

It is a flexible degree, taught in blocks taken either with an intensive residential stay of five or six nights at the centre, or by distance learning. MSc students are free to choose between these teaching modes for every module. There is a choice of modules, taken over one year or two – meaning the degree can be part time. It is a masters degree designed to give you the best possible experience whilst also meshing neatly with the pressures of modern professional and family life.

Immersive learning environment

Optional residential module weeks include lectures, seminars, group work and practicals. Applied work tends to dominate later in the week once we have laid the theoretical groundwork. These module weeks provide a truly immersive environment to escape daily life and apply yourself to new learning. Many eminent experts give guest lectures or hold seminars during these modules, as it is a course which seeks to draw on the expertise and learning of the whole environmental sector.

Is this the course for you?

If you would like to visit for an overnight stay during a module, where you can attend lectures and workshops and meet staff and students, please contact Shereen Soliman:

Read less
The MSc Global Energy and Climate Policy (GECP) is the first Masters programme to jointly address the issues of climate and energy policy in an interdisciplinary fashion. Read more

Who is this programme for?:

The MSc Global Energy and Climate Policy (GECP) is the first Masters programme to jointly address the issues of climate and energy policy in an interdisciplinary fashion. It tackles policy and regulatory change, the historical and technological evolution of energy sources, energy markets and their participants, the global governance of climate change as well as the challenges associated with transitioning to a low-carbon economy.

The programme specifically addresses the requirements of those wishing to deepen their theoretical and practical understanding of how energy and climate policies are designed, shaped, advocated and implemented and by whom across a multitude of cases drawn from the Global North and South and across multiple levels of political organisation from global to local arenas.

The MSc is designed for those engaged with or planning a career in professional contexts relating to energy and/or climate policy. It prepares for a multitude of careers in public and private contexts, including in public administration and government departments, strategic policy and risk advisory, government relations and public affairs, policy advocacy, think tanks and academia.

Guest speakers on the programme's modules have included Angus Miller (Energy Advisor, UK Foreign Office), Tom Burke (Founding Director, E3G and Environmental Policy Advisor, Rio Tinto), Jonathan Grant (Asst. Director Sustainability and Climate Change, PwC), Kash Burchett (European Energy Analyst, IHS Global Insight), Chris Dodwell (AEA Technology, former Head of International Climate Policy, UK Department of Energy and Climate Change) and Andrew Pendleton (Head of Campaigns, Friends of the Earth).

The programme draws on the teaching and research strengths of CISD and of the SOAS departments of International Politics, Law, Economics and area studies (especially of Asia, Africa and the Middle East) as well as a wide range of languages. In particular, students will be able to benefit from the expertise located at the Centre for Environment, Development and Policy (CEDEP), the Law School's Law, Environment and Development Centre (LEDC), the Centre on the Politics of Energy Security (CEPES), the Centre for Water and Development, and the SOAS Food Studies Centre.

In addition to the three core modules of Global Energy and Climate Policy (1 unit), Applied Energy and Climate Studies (0.5 units) and Global Public Policy (0.5 units) students choose a fourth module to meet their specific professional needs and personal interests.

Students on this course will have the opportunity to participate in CISD's Study Tour of Paris and Brussels.

Programme objectives

- Excellent understanding of the nature and development of global energy and climate policy, drawing on a variety of contributing disciplines

- Excellent knowledge of regulatory challenges and their impact on public and private stakeholders in both the Global South and North

- Ability to critically contribute to contemporary policy debates about reforms of international energy and climate governance architectures and their interaction with national and sub-national policy and regulatory frameworks

- Development of practical skills including policy analysis and policy advocacy, risk analysis, strategic communication and media

We welcome applications from a wide variety of fields and backgrounds. It is not necessary to have a degree in a discipline directly related to global energy and climate policy.

Each application is assessed on its individual merits and entry requirements may be modified in light of relevant professional experience and where the applicant can demonstrate a sustained practical interest in the international field.

Listen to the MSc Global Energy and Climate Policy and CISD's 1st Annual Energy and Climate Change Conference (May 2011) podcast (http://www.4shared.com/mp3/EdRUc-qq/CISD_Energy_and_Climate_Change.html), organised by students.

Visit the website http://www.soas.ac.uk/cisd/programmes/msc-global-energy-and-climate-policy/

Programme Specification

Programme Specification 2015/2016 (pdf; 172kb) - http://www.soas.ac.uk/cisd/programmes/msc-global-energy-and-climate-policy/file80890.pdf

Teaching & Learning

The programme may be taken in one year (full time) or in two or three years part time with the schedule designed to allow participation by those in full time employment. Participants may choose a combination of courses to meet their professional needs and personal interests. The programme is convened on a multi-disciplinary basis, and teaching is through lectures, tutorials and workshops conducted by SOAS faculty and visiting specialists.

The Centre endeavours to make as many of the courses for Global Energy and Climate Policy (GECP) accessible to part time students. The majority of CISD lectures are at 18.00 where possible however lecture times will be rotated on a yearly basis for some courses (between evening and daytime slots) so that part time students will have access to as many courses as possible over the duration of their degree. Associated tutorials are repeated in hourly slots with the latest taking place at 20.00. Students sign up for tutorial groups at the start of term and stay in the same group throughout the academic year. There is a minimum of two and a half hours formal teaching a week (lecture and tutorial) for each GECP course taken. Practical exercises may take place at weekends.

Teaching includes:

- Theory and practice of global energy and climate change policy as intertwined global issues

- Practical toolkit including policy analysis and planning, risk analysis, strategic communication, policy advocacy and negotiation skills

- Interaction with policymakers and government officials, energy industry and NGO representatives, and other practitioners

- An elective from a wide range: International Relations, International Law, International Economics, International Security, Multinational Enterprises in a Globalising World or a course offered by other SOAS departments (e.g. Development Studies, Politics, Economics, Law)

Further activities:

Also included in the degree programme:

- Week-long study trip to energy and climate change related organisations in Brussels and Paris
- Advanced media and communication skills training by current and former BBC staff
- Participation in workshops attended by public and private sector stakeholders
- Opportunity to organize and run the Centre’s annual Energy and Climate Policy conference
- Guest lectures by leading scholars and senior practitioners (visit the CISD website (http://www.cisd.soas.ac.uk/all-audios/1) to listen to the podcasts)

This course is also available online and is designed for those engaged with or planning a career in professional contexts relating to energy and/or climate policy and who wish to study in a flexible way. Please click here to view more information http://www.soas.ac.uk/cisd/programmes/msc-global-energy-and-climate-policy-online/

Find out how to apply here - http://www.soas.ac.uk/admissions/pg/howtoapply/

Read less
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Read more
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Process engineering, for example, with such fields as environmental- and energy engineering, is now seen as one of the key disciplines. It deals with the engineering required for a wide range of processes and the transformation of materials, in which raw materials are converted in a series of unit operations into salable intermediate and final products.

One focus of training within the discipline relates to the development and application of various environmental and energy technologies. Both environmental- and energy engineering are classified as green technologies, which have developed at an above-average rate in the last few years. That is due to growing social awareness for sustainability and the finite nature of our resources on the one hand and legal constraints on the other. The latter in particular call for innovative processes and technologies in response to today’s challenges. The Master program in Environmental, Process & Energy Engineering is designed to communicate the knowledge, methodology and problem-solving competence needed to tackle a very wide range of engineering problems in the above mentioned fields. With its commitment to bridge-building between the academic and the business worlds, Management Center Innsbruck also provides essential teaching in the increasingly important horizontal disciplines of law and economics, and the skills needed for today’s labor market.

Major Energy Engineering

In the light of dwindling energy resources and volatile energy prices, energy engineering has become an integral economic factor with enormous potential for growth, especially in such fields as energy generation from non-fossil primary energy sources, energy distribution and energy savings. MCI graduates with a specialization in Energy Engineering typically deal with a wide variety of processes, from conventional power plant engineering to the conversion of energy carriers and their various precursors, and decentral energy supply systems. The major in Energy Engineering caters for these market requirements by communicating the relevant knowledge and skills with a combination of in-depth teaching and practical applicability.

Given their interdisciplinary training and the program’s strong practical orientation, graduates are particularly well qualified to work as engineers at the interface with business and management with special reference to the following areas:

Energy trading, energy management & natural resources
Renewable energies
Glass industry
Oil industry
Consulting engineers, consulting & engineering
Paper and paper products
Chemicals
Gas and heating supply industries

Read less

Show 10 15 30 per page



Cookie Policy    X