• Coventry University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
De Montfort University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University of Reading Featured Masters Courses
Northumbria University Featured Masters Courses
"endoplasmic" AND "reticu…×
0 miles

Masters Degrees (Endoplasmic Reticulum)

  • "endoplasmic" AND "reticulum" ×
  • clear all
Showing 1 to 1 of 1
Order by 
A Masters’ studentship is available in the group of Dr. Martin Schröder in the School of Biological and Biomedical Sciences at Durham University to study stress signaling mechanisms originating from the endoplasmic reticulum. Read more
A Masters’ studentship is available in the group of Dr. Martin Schröder in the School of Biological and Biomedical Sciences at Durham University to study stress signaling mechanisms originating from the endoplasmic reticulum. Endoplasmic reticulum (ER) stress contributes to the development and progression of many diverse diseases affecting secretory tissues, such as diabetes and neurodegenerative diseases. The successful candidate will employ modern genetic and molecular techniques to understand the underlying cell biological mechanisms in endoplasmic reticulum stress signaling that maintain the homeostasis of the endoplasmic reticulum.

The MRes student will investigate control of ER stress signaling specificity by the dosage of ER stress. You will use a range of molecular biology and biochemical techniques to study (a) how the severity of ER stress alters the signaling outputs of the ER stress sensing protein kinase-endoribonuclease IRE1 or (b) how ER stress regulates transcriptional responses through the Rpd3-Sin3 histone/lysine deacetylase (see for example Schröder et al., 2000; Schröder et al., 2004). These techniques include protein expression and purification, immunoprecipitation, chromatin immunoprecipitation, cloning, transfection, and RNA analysis by real-time PCR or Northern blotting.

Overall, the studentship will provide interdisciplinary training in molecular biology, genetics, and cell biology.

References

M. Schröder, Cell. Mol. Life Sci. 65 (2008) 862-894: Endoplasmic reticulum stress responses.
M. Schröder, C. Y. Liu, R. Clark, and R. J. Kaufman, EMBO J. 23 (2004) 2281-2292: The unfolded protein response represses differentiation through the RPD3-SIN3 histone deacetylase.
M. Schröder, J. S. Chang, and R. J. Kaufman, Genes Dev. 14 (2000) 2962-2975: The unfolded protein response represses nitrogen-starvation induced developmental differentiation in yeast.

To apply

To apply: send a CV including the names of two references and a one page personal statement describing clearly your background, interest and experience in scientific research to . In your cover letter you should clearly identify the funding source to cover living expenses, tuition fees and bench fees. Further information can be found at https://www.dur.ac.uk/martin.schroeder or by contacting Dr. Martin Schroeder.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X