• University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Cardiff University Featured Masters Courses
University of Leeds Featured Masters Courses
Cardiff University Featured Masters Courses
Swansea University Featured Masters Courses
"emissions"×
0 miles

Masters Degrees (Emissions)

  • "emissions" ×
  • clear all
Showing 1 to 15 of 94
Order by 
The course combines taught modules with an independent major research project. Read more
The course combines taught modules with an independent major research project. The taught modules introduce the nature of our atmosphere, its composition and meteorology, air pollutant emissions, air pollution chemistry and climate change / carbon management, together with the practical measures used to limit emissions from sources ranging from power stations to vehicles and the legislative and policy framework used by national and local authorities to enforce air quality objectives. The research project allows students to undertake an in-depth investigation of a particular aspect of air pollution of interest to them, and further their level of understanding.

This programme is run by the Division of Environmental Health and Risk Management.

About the Division of Environmental Health and Risk Management
The Division is based in the well-equipped, purpose-built facilities of the University's Public Health Building. Research attracts extensive funding from many sources, including the Department of Transport; the Department for Environment, Food and Rural Affairs (DEFRA); the Environment Agency; the Department of Health; the Natural Environment Research Council (NERC) and European Union. The collaborative nature of much of this work, together with the mix of pure, strategic and applied research, often involving interdisciplinary teams spanning physical, biological, chemical, medical and social sciences, provides a dynamic and internationally recognised research environment.

The Division is led by Professor Roy Harrison who is a member of the U.K. government’s Air Quality Expert Group, Committee on the Medical Effects of Air Pollutants, and Committee on Toxicity. He often gives media interviews on subjects including the Volkswagen emissions scandal.

About the School of Geography, Earth and Environmental Sciences

The School of Geography, Earth and Environmental Sciences has a renowned history for international excellence in research and teaching.
Our postgraduate programmes are shaped by research that addresses global grand challenges across the fields of geography, planning, earth sciences, environmental science, occupational health and safety, and environmental and public health. With policy- and practice-focused teaching, all our programmes have high employability outcomes.
We offer excellent facilities for postgraduate study including extensive map and archive facilities, earth imaging laboratory, stable-isotope laboratory (SILLA), environmental library, fully digital drawing office, and state-of-the-art laboratories for environmental chemistry, sedimentology, ecology, groundwater and palaeobiology. Our diverse range of programmes will provide you with a thorough understanding of the discipline, high-quality training and skills development, and access to our expert staff and extensive facilities.
Our graduates go on to forge careers in areas that matter – from environmental consultancies and the hydrocarbon industries, to urban planning, policy roles in NGOs and government regulatory services – and make a real contribution to global challenges. Many graduates also go on to study for PhDs.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Our Transport and Operations Research Group is a leading centre of transport technology in Europe. We conduct world leading research that has commercial impact. Read more

Course Overview

Our Transport and Operations Research Group is a leading centre of transport technology in Europe. We conduct world leading research that has commercial impact. You will be able to develop your work into ground breaking research through working with our experts.

By pursuing research in the School of Civil Engineering and Geosciences you will join an extremely successful research group focussing on transport and civil engineering. Our mission is to foster, promote and conduct research of international quality. This means that we attract high quality graduates and researchers and train them to international standards.

Research into transport and civil engineering is conducted by our Transport Operations Research Group (TORG), one of the leading centres of transport technology in Europe. We are central to key research in areas such as road user charging and smartcards, developing both the policy ideas and the underlying technologies.

We are currently running a world-leading trial in electric vehicles and public charging infrastructure in the north east of England. This research is informing policy, international standards development and its impact on energy demand and environmental emissions. We have also developed a low-cost wireless sensing technology, Motes, which is being used to monitor traffic pollution, help develop strategies to manage traffic demand and reduce emissions. This world-leading technology is being used commercially by several local authorities and it is being assessed for deployment in a number of high profile international cities.

Our main research areas are: land use and network models; passenger transport and policy; transport and the environment; infrastructure design and telematics

We supervise MPhil students in the following areas: freight and traffic loading; public transport management and operations; traffic management and control; road traffic safety and accident analysis; transport emissions and the environment; transport telematics and image processing; intelligent transport systems (ITS); travel behaviour; highway design and engineeringl; operating speed models; environmental impact and monitoring of transport activities

Training and Skills

As a research student you will receive a tailored package of academic and support elements to ensure you maximise your research and future career. The academic information is in the programme profile and you will be supported by our Postgraduate Researcher Development Programme, doctoral training centres and Research Student Support Team.

For further information see http://www.ncl.ac.uk/postgraduate/courses/degrees/civil-engineering-transport-mphil-phd/#profile

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/civil-engineering-transport-mphil-phd/#howtoapply

Read less
The Transport Planning and the Environment MSc is designed for those who wish to work in the transport profession and have an understanding of transport, environmental intrusion, its measurement and mitigation. Read more

Course Overview

The Transport Planning and the Environment MSc is designed for those who wish to work in the transport profession and have an understanding of transport, environmental intrusion, its measurement and mitigation.

The course draws on the latest research in the area of transport and the environment, some of which is being carried out by Newcastle's Transport Operations Research Group. It will provide you with a sound overview of the transport profession, with specific teaching about air pollution and the modelling of emissions.

Transport Operations Research Group

As one of the leading centres of transport technology in Europe, the Transport Operations Research Group (TORG) is central to key research areas including road user charging and smartcards, developing both the policy ideas and the underlying technologies. We have two central research themes: technologies for transport monitoring and systems management; travel behaviour and transport planning

TORG is currently running a world-leading trial in electric vehicles and public charging infrastructure in the north east of England. This research is informing policy, international standards development and its impact on energy demand and environmental emissions. Recently TORG have also developed a low-cost wireless sensing technology called Motes, which is being deployed commercially by several local authorities to monitor traffic pollution and help develop strategies to manage traffic demand and reduce emissions. This world leading technology is being assessed for deployment in a number of high profile international cities.

Modules

For detailed module information see http://www.ncl.ac.uk/postgraduate/courses/degrees/transport-planning-environment-msc/#modules

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/transport-planning-environment-msc/#howtoapply

Read less
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Read more
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Candidates will be required to plan, design and manage energy systems blending creative solutions with up-to-date technologies relative to energy conversion and efficiency enhancement.

At the end of the course, engineers will be good at operating in the current technological/industrial environment - i.e. a dynamic and competitive one - and sensitive to the main industry, environment and security issues and standards.

The main aim of the course is to offer an in-depth theoretical and practical understanding of the most advanced energy conversion technologies, including renewable energy generation and energy storage.

Please visit http://www.en2.unige.it for any further information.

The Course is held at Savona Campus, in the city of Savona.

WHAT WILL YOU STUDY AND FUTURE PROSPECTS

The course consists of modules that include thermo-fluid dynamics and thermo-chemical dynamics, as well as fluid machinery and energy conversion systems (co-generation, fuel cells, power plants from renewable energy sources and smart grids), traditional energy and civil engineering plants, electric networks, economics, available and emerging technologies for reducing greenhouse gas emissions and environmental monitoring.

A rising interest in and increased urge for 20/20/20 policies in Europe has resulted in a growing industrial demand for highly qualified Energy Engineers with a sound knowledge and specific skills to analyze, design and develop effective solutions in a broad range of contexts. Furthermore, in the last few years both emerging industrial countries and developing ones have increased their awareness of environmental issues and energy production and started implementing large energy engineering projects thus boosting the job opportunities worldwide. The course is aimed at students seeking high qualification in the following main fields:

Energy conversion processes from chemical, bio-chemical, thermal sources into mechanical and electrical ones

Sustainable & Distributed Energy: renewable energy (solar, geothermal, wind, hydro), fuel cells, bio-fuels, smart power grids, low emission power plants Sustainable Development: C02 sequestration, LCA analysis, biomass exploitation, Energy Audit in buildings, energy from waste, recycling, modeling and experimental techniques devoted to optimum energy management.

The MSc course work in partnership with industries and research institutes in Liguria, in Italy and abroad.

WHAT DOES THE MASTER IN ENERGY ENGINEERING OFFER TO ITS STUDENTS

In the last years both industrialization and population growth have brought to a higher demand for sustainable energy, smart energy management with reduced environmental impact. As a result the MSc Energy Engineering was born out of the need to better cope with Sustainable Development issues and progress in energy conversion technologies, in including renewable energy generation and energy storage, NZE buildings, with an increasing attention devoted to greenhouse gas emissions reduction through a multidisciplinary approach.

This MSc course is taught in English and students are supported in achieving higher English language skills. The University of Genoa set its modern campus in Savona and in the last few years, public and private funds have been invested to improve its infrastructures, sport facilities, hall of residence, library and an auditorium.

The University of Genoa and Siemens jointly developed a smart polygeneration microgrid in Savona Campus – officially commissioned on February 2014.

Since then the campus has largely generated enough power to satisfy its own needs with the help of several networked energy producers, i.e. total capacity 250Kw of electricity and 300kW of heating.

The grid includes microgasturbines, absorption chillers, a photovoltaic plant, a solar power station and electrochemical and thermal storage systems.

This huge facility together with a series of laboratories located at the Campus (e.g. Combustion Lab, Energy Hub Lab) offer the students a unique opportunity for hands-on activities, e.g. to measure and investigate the performance of real scale innovative energy systems.

Read less
Management of environmental, health and safety issues has changed significantly in the past twenty years. The emergence of voluntary standards and codes of conduct, including international standards, coupled with the need to manage costs and limited resources has resulted in a trend to move beyond regulatory compliance. Read more

Program overview

Management of environmental, health and safety issues has changed significantly in the past twenty years. The emergence of voluntary standards and codes of conduct, including international standards, coupled with the need to manage costs and limited resources has resulted in a trend to move beyond regulatory compliance. Now, companies work toward sustainability through the use of integrated environmental, health and safety management systems, which are woven into key business processes. Although they are distinct disciplines, environmental management, occupational health, and workplace safety share many technical, regulatory, and organizational characteristics. Today's professionals now need to be educated in all three areas.

Graduates are employed by Fortune 100 companies, environmental, health and safety consultancies, universities, and government agencies such as the EPA, OSHA, and NYSDEC.

Plan of study

The MS degree in environmental, health and safety management provides students with a solid foundation in the managerial aspects of developing and implementing environmental, health and safety management systems that can move organizations toward a more sustainable and socially responsible future. In addition, students gain a solid technical foundation in air emissions, wastewater, solid and hazardous waste, occupational safety and occupational health (industrial hygiene). Elements of sustainability are integrated into most of the core courses and some electives

The program consists of 33 credit hours and may be completed entirely through online learning, or via a combination of online and traditional on-campus courses. The curriculum consists of core courses, professional electives, and a choice of a graduate thesis, project, or exam.

Professional electives

Professional electives are subject to availability and include Fire Protection, Occupational Health, Solid and Hazardous Waste Management, Industrial Wastewater Management, Air Emissions Management, Occupational Safety, Mechanical and Electrical Controls and Standards, EHS Law, EHS Accounting and Finance, EHS Project Management, and Organizational Behavior and Leadership. Additional professional electives are available in topics such as business management, quality, sustainability, and other areas.

Curriculum

Course sequences differs according to thesis/project/exam option, see website for a particular option's module details: http://www.rit.edu/programs/environmental-health-and-safety-management-ms

Other admission requirements

-Have completed at least 9 semester hours of college-level course work in the sciences, with at least 3 semester credit hours in each of the following categories: chemistry, biology, and physics.
-Submit two professional recommendations.
-Submit two writing samples to demonstrate written communication skills.
-Submit official transcripts (in English) of all previously completed undergraduate and graduate course work.
-Submit a clearly written one-page statement of purpose.
-Submit a current resume or curriculum vitae.
-Complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). A minimum score of 570 (paper-based) or 88 (Internet-based) is required. Scores from the International English Language Testing System (IELTS) will be accepted in place of the TOEFL exam. Minimum acceptable scores will vary; however, the absolute minimum score for an unconditional acceptance is 6.5. It is recommended that international students begin the program in the fall semester.

Applicants with acceptable professional certification(s) and/or work experience may have pre-requisite science course work waived.

Applicants without formal academic training or documented experience in air emmisions, waste water, solid and hazardous waste, occupational health, or occupational safety may be required to take professional electives in these areas.

Students without related work experience may complete a graduate cooperative education placement during their program of study. Graduate Record Examination (GRE) scores are not required; however, applicants may submit test scores to support their candidacy.

Additional information

Transfer credit:
With the permission of the department, relevant graduate course work may be transferred into the program, per the maximum number of credit hours allowed.

International students:
International students enrolled in courses at the RIT campus are required to take at least two traditional classroom courses and one or two online courses per semester. In addition, international students are solely responsible for meeting the requirements of their government and other sponsors, as applicable.

Read less
The course has a very distinct ethos based around the theme of environmentally sensitive building design. The aim is to provide you with skills and understanding that would enable you to take a leading professional and specialist role. Read more
The course has a very distinct ethos based around the theme of environmentally sensitive building design. The aim is to provide you with skills and understanding that would enable you to take a leading professional and specialist role. It is also driven by the following key underlying themes that apply across all our architecture courses:

• Critical regionalism;

• Sustainability;

• User Centred Design; and

• Professional Development

Environmental issues rank at the very highest levels in the concerns of the general public and are particularly affected by the impact of the design and construction industry. The scale of influence ranges from building to urban dimensions. These are global problems requiring global and interconnected solutions and the course is designed to address issues from a world perspective. Issues are considered for different climate types and locations, giving a strong international dimension as well as providing opportunities to develop solutions that address local circumstances. The course is designed to give you the chance to acquire a mixture of skills and knowledge that would support roles as integrated and important members of design and construction teams. The course also provides opportunities to understand the specific needs of progression onto research degrees in the subject area.

Buildings consume vast amounts of natural resources during their construction and subsequent operation, accounting for around a third of the total energy used globally, and demand exploitation of natural resources to supply the materials. In use, building emissions add to global warming, damage the environment and create waste disposal problems. Buildings can also cause ill health and discomfort for their occupants due to poor air quality and inadequate internal conditions. This course considers the full range of issues associated with sustainable architecture including:

• Energy You will have the opportunity to understand human comfort and energy use and to examine critically the links between energy consumption and emissions of carbon dioxide. This includes an exploration of energy assessment methods for both domestic and non-domestic buildings in a variety of cultural and climatic contexts.

• Materials and resources You will have the opportunity to be able to examine the relationships between resource use and the design of building fabric, and both passive and active mechanisms for human control of the environment and environmental services.

• Global environment The course is suitable for students from a variety of cultural backgrounds and from different climatic regions. You will have the opportunity to consider the differences and similarities of built environments around the globe and to seek innovative approaches to the development of appropriate architecture in widely different contexts.

• Health and well being Central to the course ethos is the notion of user-centred design. All design aims to improve life. But in complex scenarios of construction the user, as the primary beneficiary of architecture, can become overlooked. The course aims to ask you to question the needs of the user and examine human comfort in relation to the quality of the built environment.

In all of these aspects you are asked to develop your own perspective and attitude, as part of your own continuing professional development. A key aspect of the course is that we ask you to become pro-active researchers in a complex field, making connections between a huge range of information and responding innovatively and with enterprise. At the heart of the student experience lie the shared experience of personal growth and development and the acquisition of knowledge, skills and understanding pertinent to the individual in developing their own careers in the field.

Read less
If you are a numerate graduate who wants a smart track to employment in the rapidly expanding field of environmental transport studies, or a practitioner who wants insight into best-practice research to accelerate your career, this Masters is for you. Read more

Overview

If you are a numerate graduate who wants a smart track to employment in the rapidly expanding field of environmental transport studies, or a practitioner who wants insight into best-practice research to accelerate your career, this Masters is for you.

Learn the cutting edge data collection and analytical skills to translate your passion for improving the air quality of our cities and the wellbeing of your fellow citizens into a reality.

Be taught by researchers who are shaping the national and international environmental transport agenda – members of our team advise European and national governments on emissions control.

Study on a course that is designed in collaboration with industry, and covers transport and urban pollution; transport and public health; road safety management; green logistics; traffic network modelling; system dynamics: modelling policy; and global transferability in policy-making. In particular gain:
• Inside knowledge of how diverse data sources can be used to improve government policy making
• Hands on experience, using state-of-the-art monitoring tools:
• Measuring vehicle emissions and evaluating the data
• Measuring, analysing and shaping policies to reduce air pollution
• Fluency in the design of sophisticated models to design traffic systems and pollution controls to reduce harm to people and the environment.

And experience what it is like to be part of a project team working across numerous subject boundaries relevant to the transport sector. Through this, gain insights into how transport planning, social science, economics, environmental science, modelling and engineering can work together to design transport solutions to global challenges. This industry-inspired initiative will enable you to apply your knowledge to real world transport issues in the field.

Your colleagues will be among the best and brightest from Latin America to the Far East, from Africa to Europe and the UK. Together you will learn environmental research techniques that will help you develop transport networks that are founded on robust evidence, sustainable and equitable principles, state-of-the-art modeling, accurate data analysis, and a profound understanding of human psychology.

You can also study this subject at Postgraduate Diploma level, part time or full time.

Read less
The MSc in Advanced Process Integration and Design started in the Department of Chemical Engineering (UMIST) over twenty years ago. Read more
The MSc in Advanced Process Integration and Design started in the Department of Chemical Engineering (UMIST) over twenty years ago. The programme was a result of emerging research from the Centre for Process Integration, initially focused on energy efficiency, but expanded to include efficient use of raw materials and emissions reduction. Much of the content of the course stems from research related to energy production, including oil and gas processing.

The MSc in Advanced Process Integration and Design aims to enable students with a prior qualification in chemical engineering to acquire a deep and systematic conceptual understanding of the principles of process design and integration in relation to the petroleum, gas and chemicals sectors of the process industries.

Overview of course structure and content
In the first trimester, all students take course units on energy systems, utility systems and computer aided process design. Energy Systems develops systematic methods for designing heat recovery systems, while Utility Systems focuses on provision of heat and power in the process industries. Computer Aided Process Design develops skills for modelling and optimisation of chemical processes.

In the second trimester, the students choose three elective units from a range covering reaction systems, distillation systems, distributed and renewable energy systems, biorefining, and oil and gas processing. These units focus on design, optimisation and integration of process technologies and their associated heat and power supply systems.

In two research-related units, students develop their research skills and prepare a proposal for their research project. These units develop students skills in critical assessment of research literature, group work, written and oral communication, time management and research planning.

Students then carry out the research project during the third trimester. In these projects, students apply their knowledge and skills in process design and integration to investigate a wide range of process technologies and design methodologies. Recent projects have addressed modelling, assessment and optimisation of petroleum refinery hydrotreating processes, crude oil distillation systems, power plants, waste heat recovery systems, refrigeration cycles with mixed refrigerants, heat recovery steam generators, biorefining and biocatalytic processes and waste-to-energy technologies.

The course also aims to develop students' skills in implementing engineering models, optimisation and process simulation, in the context of chemical processes, using bespoke and commercially available software.

Industrial relevance of the course
A key feature of the course is the applicability and relevance of the learning to the process industries. The programme is underpinned by research activities in the Centre for Process Integration within the School. This research focuses on energy efficiency, the efficient use of raw materials, the reduction of emissions reduction and operability in the process industries. Much of this research has been supported financially by the Process Integration Research Consortium for over 30 years. Course units are updated regularly to reflect emerging research and design technologies developed at the University of Manchester and also from other research groups worldwide contributing to the field.

The research results have been transferred to industry via research communications, training and software leading to successful industrial application of the new methodologies. The Research Consortium continues to support research in process integration and design in Manchester, identifying industrial needs and challenges requiring further research and investigation and providing valuable feedback on practical application of the methodologies. In addition, the Centre for Process Integration has long history of delivering material in the form of continuing professional development courses, for example in Japan, China, Malaysia, Australia, India, Saudi Arabia, Libya, Europe, the United States, Brazil and Colombia.

Career opportunities

The MSc course in Advanced Process Design and Integration typically attracts 40 students; our graduates have found employment with major international oil and petrochemical companies (e.g. Shell, BP, Reliance and Petrobras and Saudi Aramco), chemical and process companies (e.g. Air Products), engineering, consultancy and software companies (e.g. Jacobs and Aspen Tech) and academia.

Accrediting organisations

This programme is accredited by the IChemE (Institution of Chemical Engineers).

Read less
This programme is run by the Centre for Environmental Strategy (CES), which is a leading centre for environmental and sustainability-related research and postgraduate teaching. Read more
This programme is run by the Centre for Environmental Strategy (CES), which is a leading centre for environmental and sustainability-related research and postgraduate teaching.

CES accommodates a wide range of disciplines dedicated to resolving environmental problems, and this Masters programme prepares future environmental and sustainability professionals for the challenges faced by the corporate world.

PROGRAMME OVERVIEW

This programme gives you a solid grounding in issues key to the sustainable development debate. The views of stakeholders such as business groups, environmentalists, government agencies and development institutions will be considered.

You will acquire the necessary skills to evaluate existing frameworks, inquire into environmental issues in organisations and industries, and develop sensitive business practices.

The programme provides excellent preparation for any corporate-focused environmental career. It provides a route to graduate membership of the Institute of Environmental Management & Assessment. We encourage you to read about the past and present student experiences of our environment and sustainability programmes.

PROGRAMME STRUCTURE

This programme is studied full-time over 12 months and part-time for up to 60 months. It consists of eight taught modules and a dissertation.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Environmental Law
-Foundations of Sustainable Development
-Environmental Auditing and Management Systems
-Corporate, Social and Environmental Responsibility
-Life Cycle Thinking
-Ecological Economics
-Environmental Science and Society
-Industrial Placement
-Integrated Assessment
-Sustainable Development Applications
-Transitions to a Low Carbon Economy
-Life Cycle Assessment
-Psychology of Sustainable Development
-Energy Policies and Economic Dimensions
-Corporate Energy Management
-Energy-Consumer Goods in the Home
-The Energy Market from the Purchaser’s Perspective
-Energy in Industry and the Built Environment
-Renewable Energy and Sustainability
-Transport Energy and Emissions
-Emissions Trading
-Risk Management Optional
-Dissertation

EDUCATIONAL AIMS OF THE PROGRAMME

-Provide participants with a solid grounding in the sustainable development debate from the wide-range of perspectives, i.e. business groups, environmentalists, government agencies, development institutions, etc.
-Equip participants to evaluate existing political, socio-economic, ethical, cultural and regulatory frameworks to inform decisions regarding environmental practice
-Equip participants to develop a sensitive business practice towards environmental and social issues
-To equip students with the necessary skills for critical inquiry related to environmental issues in organisations and industries

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:
Knowledge and understanding
-Intra and inter-organisational contexts in which corporate environmental strategies are developed
-Concepts of sustainable development and their usefulness to business ethics
-Evolving regulatory and policy framework as part of engendering an anticipatory view of environmental management
-Knowledge of a range of corporate environmental management strategies and control mechanisms
-Accessing and using environmental data

Intellectual / cognitive skills
-Absorb complex environmental information and communicate them effectively through logically constructed argumentsCreatively formulate new ideas (MSc, PGDip and PGCert)
-Learn the value of teamwork to solve problems that require multi-disciplinary engagement
-Independent learning and study through self-directed assignments and dissertation
-Critical reading and analysis of environmental policy and regulation
-Inductive reasoning: using specific examples/observations and forming a more general principal
-Deductive reasoning: use stated general premise to reason about specific examples

Professional practical skills
-Comprehend how corporations build, implement and maintain an Environmental Management System (EMS)
-To perform an EMS Audit according to the ISO standards
-Give coherent presentations
-Lead discussions on complex subject areas
-See the other side of the argument given that there are varying and often conflicting perspectives in the environment field
-Competently handle environment information
-Self-motivation, self-regulation and self-assurance

Key / transferable skills
-Acquire knowledge and skills to prepare and deliver a structured and successful presentation
-Write effectively as a means of communicating important ideas
-Communication of findings and presentation of research to a non-specialist audience
-Lead discussion of small/large groups
-Organise and manage a research project
-Basic to advanced IT skills, depending on type of electives and dissertation topic
-Willingness to learn

ACADEMICS

Several high-profile guest lecturers have assisted with the delivery of some of the modules. CES modules make maximum use of guest lecturers, drawing on the practical skills and experience of key experts from government and industry to complement the theoretical components of the modules offered.

For example, Jonathon Porritt, former chairman of the Sustainable Development Commission, gives a guest lecture on the Sustainable Development Applications module, analysing the standing of sustainable development in business and policy making.

The extensive expertise of CES academics and researchers is also drawn upon in modules. Professor Tim Jackson, advisor to the government and international bodies and author of the seminal book, Prosperity without Growth – economics for a finite planet–also lectures on some CES modules.

INDUSTRIAL PLACEMENT

Full-time students are able to undertake an industrial placement module which enables them to spend six to twelve weeks working for a company or NGO, doing the type of work they will aim to find on graduation.

Examples of organisations at which recent industrial placements have taken place include:
-Minimise Solutions
-Portsmouth City Council
-GAP
-Diocese of London
-The Radisson
-LC Energy
-AECOM
-Solar Aid
-NUS
-CAREERS

Graduates go on to a diverse range of careers implementing sustainable development and dealing with the real environmental challenges facing humanity.

Recent examples include working as an energy efficiency officer for a local government, an environmental officer in multi-national chemical company, a sustainability advisor for a national television / radio station, an environmental consultant for an engineering consultancy, and a programme officer with a sustainability charity.

Other graduates use the research skills they developed to go on and do PhDs.

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Accredited by the Energy Institute and the Institution of Chemical Engineers. Tailor the course to suit you by blending core and optional modules. Read more

About the course

Accredited by the Energy Institute and the Institution of Chemical Engineers

Tailor the course to suit you by blending core and optional modules. This practical degree has been developed with the Institution of Chemical Engineers and the Energy Institute to equip you with the skills and expertise needed for work in sectors including industry, education, public administration and commerce.

Take advantage of our expertise

Our teaching is grounded in specialist research expertise. Our reputation for innovation secures funding from industry,
UK research councils, the government and the EU. Industry partners, large and small, benefit from our groundbreaking work addressing global challenges.

You’ll have access to top facilities, including modern social spaces, purpose-built labs, the Harpur Hill Research Station for large-scale work, extensive computing facilities and a modern applied science library. There are high-quality research facilities for sustainable energy processes, safety and risk engineering, carbon capture and utilisation, and biological processes and biomanufacturing.

Studentships

Contact us for current information on available scholarships.

Course content

Diploma: five core and three optional modules. MSc(Eng): five core modules, major research or design project, and three optional modules.

Core modules

Introduction to Fuel and Energy
Applied Energy Engineering
Environment: Gaseous Emissions
Environment: Particulate Emissions
Environment: Liquid Effluents
Research Project

Examples of optional modules

Computational Fluid Dynamics
Fires and Explosion Dynamics
Energy from Biomass and Waste
Low Carbon Energy and Technology (Renewables)
Environmental Impacts and Protection
Nuclear Reactor Engineering
Oil and Gas Origins and Usage

Teaching and assessment

We use lectures, tutorials and project work. All your tutors are actively involved in research and consultancy in their field. Assessment is by formal examinations and a research or design project dissertation. Continuous assessment of some modules.

Read less
This MSc is designed to respond to the significant environmental impact of buildings, which account for around 34% of all energy use and 25% of all CO2 emissions worldwide. Read more
This MSc is designed to respond to the significant environmental impact of buildings, which account for around 34% of all energy use and 25% of all CO2 emissions worldwide. In more developed economies, this is significantly higher: UK buildings account for nearly 46% of all energy use and 39% of all carbon emissions.

As a result, there is a need for construction professionals, and building designers in particular, who can create buildings with a low carbon footprint and reduced environmental impact.

Our course is designed to provide students with the skills and deep knowledge base required to achieve this whilst providing the comfort expected in modern buildings.

This MSc, which is endorsed by the BRE Academy (http://www.bre.co.uk/academy/), will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Learning outcomes

Students will learn how to reappraise the design process and develop sustainability strategies for building projects. Graduates will be qualified to pursue careers as specialists in architectural and engineering practices.

The programme is delivered in a modular format, comprising 10 taught units (undertaken in 4-day blocks) and a dissertation. The programme can be studied full time or part time.

Research-led teaching

The programme is based on research expertise within the Department of Architecture & Civil Engineering.

The Department is the home of centres founded to embrace research into the effects on the built infrastructure of climate change and the need for sustainable development, each with particular focus on materials and products, BRE CICM, and sustainable building design, EDEn.

Programme Content

For a full list of compulsory and optional units see the programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/ar/ar-proglist-pg.html#AA).

- Full time study: 12 months
- Part-time study: 24-48 months

- The programme is offered as a modular programme comprising ten taught units.

- The taught units are undertaken in ten 4-day blocks. The first introductory unit is mandatory and a pre-requisite to all the subsequent core/optional units which may be selected and undertaken to suit your own work and time commitments

- Each unit comprises preparatory work, four consecutive days' attendance at the University of Bath and /or follow up work afterwards, amounting to 100 hours of study. Students will be assessed during the unit or by work submitted immediately after each unit

- Where students do not wish, or are ineligible to progress to the dissertation, a Postgraduate Diploma is awarded after successful completion of the taught modules only

Dissertation:
During the final three months of the degree you will produce a dissertation. This is your opportunity to explore a particular topic that has been covered during the programme in far greater depth

Career Options

Bath students have an excellent track record for getting jobs.

- Bath postgraduates noticeably outperform postgraduates nationally
- Our MSc graduates are extremely attractive to employers and have entered a wide range of careers.
- Other graduates have gone on to pursue research towards and MPhil or PhD

After graduation, you will be qualified to pursue careers as specialists in architectural and engineering practices. The Bath MSc in Environmental Design will enhance your employability by providing you with valuable skills and knowledge that are directly applicable in the construction industry and the need for sustainable developments in the UK and abroad.

BRE Academy logoOur programme is endorsed by the BRE Academy (http://www.bre.co.uk/academy/).

About the Department

The Department of Architecture and Civil Engineering brings together the related disciplines of Architecture and Civil Engineering. It has an interdisciplinary approach to research, encompassing the fields of Architectural History and Theory, Architectural and Structural Conservation, Lightweight Structures, Hydraulics and Earthquake Engineering and Dynamics.

Our Department was ranked equal first in the Research Excellence Framework 2014 for its research submission in the Architecture, Built Environment and Planning unit of assessment.

Half of our research achieved the top 4* rating, the highest percentage awarded to any submission; and an impressive 90% of our research was rated as either 4* or 3* (world leading/ internationally excellent in terms of originality, significance and rigour).

The dominant philosophy in the joint Department is to develop postgraduate programmes and engage in research where integration between the disciplines is likely to be most valuable. Research is carried out in collaboration with other departments in the University, particularly Management, Computer Science, Mechanical Engineering, and Psychology.

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. Read more

Course Description

Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. The course is designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.  The course is suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Overview

The key technological achievement underlying the development and growth of the aerospace industry has been the design and development of efficient and economical propulsion systems. This sector has experienced a consistent growth in the past and is expected to do so in the future. Major efforts are also now being dedicated to the development of new technologies relevant to the propfan and variable cycle engines.

The MSc in Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. The course is designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.

The course is suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Structure

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power
- Meet employer requirements for graduates within power and propulsion industries
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Modules

The taught programme for the Aerospace Propulsion masters consists of eight compulsory modules and up to six optional modules. The modules are generally delivered from October to April.

Individual Project

Individual Project
You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- Design of an experimental test rig facility for an axial compressor
- Energy management in a hybrid turbo-electric, hydrogen fuelled, hale UAV
- Civil aircraft intake, nacelle and nozzle aerodynamics
- The computation of adiabatic isobaric combustion temperature
- Air filtration systems for helicopters
- Nacelle parametric design space exploration
- Distributed propellers assessment for turboelectric distributed propulsion
- Aerodynamic analysis of the flowfield distortion within a serpentine intake
- Green runway :impact of water ingestion on medium and small jet engine performance and emissions
- Distributed propulsion systems boundary layer ingestion for uav aircraft
- Preliminary design of a low emissions combustor for a helicopter engine
- Compressor design and performance simulation through the use of a through-flow method
- Estimation of weight and mechanical losses of a pts for a geared turbofan engine
- Optimisation of turbine disc for a small turbofan engine
- Modelling of tip leakage flows in axial flow high pressure gas turbine
- Aerodynamic modelling and adjoint-based shape optimisation of separate-jet exhaust systems
- Preliminary design & performance analysis of a combustor for UAV.

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

For further information

On this course, please visit our course webpage http://www.cranfield.ac.uk/Courses/Masters/Aerospace-Propulsion-Option-Thermal-Power

Read less
Beautiful architecture. Solid structure. What else do buildings need?. Try living in one without any heating, cooling, electrical power, lighting, water or drainage. Read more
Beautiful architecture. Solid structure. What else do buildings need?

Try living in one without any heating, cooling, electrical power, lighting, water or drainage. What would it be like to work in a tower without lifts? How would you manage without telephones, an IT system or an internet connection? All of these systems and many more are designed by building services engineers. Building Service Engineers turn buildings from empty shells into spaces fit for people to use.

From the very start of the building design, Building Services Engineers are involved helping architects and other members of the design team to get the size, shape and configuration of the building right. They determine strategies for designing energy efficient buildings, making them sustainable in the long term. Buildings are responsible for a large chunk of carbon emissions so this work makes a critical contribution to reducing a building's impact on climate change.

Of all the disciplines working in the built environment today, the building services engineer has the broadest reach and the deepest impact, affecting virtually every aspect of building design. In short, they make buildings work.

This Masters course provides a broad basis of advanced understanding in the technological areas of building services and energy engineering, with particular emphasis on those areas that are relevant to the interaction between the built and natural environments, modern industry, and the analysis of developing technologies.

See the website http://www.lsbu.ac.uk/courses/course-finder/building-services-engineering-msc

Modules

The course provides a practitioner perspective with which we analyse building energy requirements in terms of the external environment and internal space, and the effect on energy resources. We consider the principles and analyse associated building engineering systems to understand control, simulation and modelling techniques.

As well as the core engineering skills, appropriate areas of management and research methods are studied to provide a balance foundation for the specialist units. The MSc dissertation provides an opportunity to develop further research skills by application to problems that require in-depth and innovative thinking.

Module descriptions

- Thermal environment, acoustics and lighting
The module provides an introduction to the processes and characteristics that determine the quality of the internal built thermal, acoustic and visual environment. The aims of this module are to examine the principal parameters that affect the thermal, acoustic and visual environment, and the theory and principles necessary for the design of the internal environment.

- Heating and energy in buildings
This module introduces the key components of building heating and cooling systems, and presents sizing methodologies of central plant and techniques for analysing energy consumption and carbon emissions. System configurations and controls are discussed that ensure optimum safe and efficient operation of the plant.

- Energy resource and use analysis
This module offers the opportunity to develop strategic and operational management skills in the fields of infrastructure asset management and project appraisal. It covers design life extensions, risk and asset management techniques for infrastructure, and techniques for physical appraisal of infrastructure, and their economic, environmental and social impacts.

- Electrical power
The module covers electrical power engineering as applied to the design of systems in buildings. In particular, this includes the connection of, and the effects of, small-scale embedded generation as might be employed to exploit renewable energy sources. The module aims to provide an appreciation and understanding of electrical services design in buildings with particular reference to safety requirements and the effects of embedded generation on the supplier and the consumer.

- Sustainable refrigeration
The module introduces the principles of thermodynamics, and applies them to the study and design of energy efficient refrigeration systems. Vapour compression, absorption and other novel cycles are analysed and modeled. Practical applications of sustainable refrigeration are investigated through case studies.

- Ventilation and air conditioning
This module introduces the theory and principles necessary for the evaluation of ventilation and cooling loads, the selection and design of ventilating and air conditioning systems. It examines the principles of operation and characteristics of contemporary systems and their associated controls and distribution systems with particular emphasis on energy use and heat recovery. It discusses the effect of system balancing and maintenance on the correct and energy efficient operation of the systems.

- Energy engineering project

Employability

Employment prospects are excellent. Construction and engineering activity is expected to accelerate in the UK, Europe and worldwide over the next 20 years and demand for building services engineers continues to outstrip supply.

Graduate success stories

Successful students enter various roles including building services design, management of construction projects, and operation of complex installations.

Professional accreditation

The course is fully accredited by Chartered Institution of Building Services Engineers (CIBSE) and the Energy Institute as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) undergraduate degree. Potential students are advised to check directly with the CIBSE or EI as to the validity of their first degree for a CEng route.

Accredited on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Read less
The extensive consumption of fossil fuels worldwide has been contributing increasingly to global warming, air pollution and imminent energy crisis. Read more
The extensive consumption of fossil fuels worldwide has been contributing increasingly to global warming, air pollution and imminent energy crisis. One of the global challenges of the 21st century is to tackle these risks surrounding excessive CO2 emissions by replacing fossil fuels with renewable energy sources such as solar, wind and biomass. However, a report by the Intergovernmental Panel for Climate Change (IPCC) shows that the world's current use of renewable energy is only 13% of its overall energy consumption. In response to this, European Commission directives aim for a 20% reduction in fossil fuel usage throughout Europe by 2020, and a 15% increase in the use of renewable energy in the UK within the same time period. For Scotland, the Scottish Executive has a target of generating 17% to 18% of electricity from renewables by 2010, a figure rising to 80% by 2020. Renewables located in Scotland count towards both the Scottish target and to the overall target for the UK. Consequently, according to the UK Low Carbon Transition Plan (LCTP) by 2020: 34% of carbon emissions will be cut, over 1.2 million people will be employed in ‘green’ jobs; the efficiency of 7 million homes will be improved, with over 1.5 million of them generating renewable energy. With any luck, more than 50% of the world‘s energy supply could be met with renewables by 2050 .

It follows through that huge business incentives, markets and a wide variety of employment opportunities throughout the world can be expected with the development of renewable energy resources as a substitute for fossil fuel technology. The purpose of the MSc programme is to help meet this demand by cultivating qualified and skilled professionals with specialist knowledge into the relevant technology within the renewable energy sector.

Read less
Buildings consume approximately 45 per cent of the total energy to maintain acceptable thermal environmental conditions, and to provide healthy indoor environments. Read more
Buildings consume approximately 45 per cent of the total energy to maintain acceptable thermal environmental conditions, and to provide healthy indoor environments. There is an international imperative to reduce energy consumption and its associated gas emissions, which contribute to global climate change and pollution. The Climate Change Act set the UK government targets for 34 per cent and 80 per cent reduction in greenhouse gas emissions by 2020 and 2050 respectively based on 1990 levels.

The Architecture and Sustainability MSc provides the opportunity for you to develop the knowledge, skills and research themes in relation to your specialist research. It offers you a wide range of approaches to sustainable architectural design through research units, specialising in building physics and design strategies to promote and encourage holistic sustainability analytical approach, housing and sustainable community.

The course responds to these challenges and focuses on the interface between the environmental, economical and social-cultural dimensions of sustainability to approach building design to carbon neutrality. The aim of the teaching theme on sustainability is to equip, train and inspire you to become responsible ‘global’ citizens in the face of the new global and environmental challenges ahead of you.

A range of tools and simulation software are available to you and will allow you to develop and test your design proposals at various design stages starting with site considerations, through the design and development stage to the final scheme, ensuring sustainable outcomes.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X