• University of Oxford Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
Middlesex University Featured Masters Courses
Coventry University Featured Masters Courses
Vlerick Business School Featured Masters Courses
University of Manchester Featured Masters Courses
Coventry University Featured Masters Courses
"emc"×
0 miles

Masters Degrees (Emc)

We have 19 Masters Degrees (Emc)

  • "emc" ×
  • clear all
Showing 1 to 15 of 19
Order by 
This programme will not have a 2016 intake as the content is being extensively improved. A one-year course that will provide engineering and science graduates with a thorough knowledge of modern radio and mobile communication systems. Read more

NOTE

This programme will not have a 2016 intake as the content is being extensively improved.

A one-year course that will provide engineering and science graduates with a thorough knowledge of modern radio and mobile communication systems.

AIM OF COURSE

Mobile radio encompasses a diversity of communications requirements and technical solutions including cellular mobile radio and data systems (eg GSM, GPRS, 3G, 4G, WiMax) and Personal Mobile Radio as well as various indoor radio systems including Bluetooth, WIFI, Wireless Indoor Networks (WINs or LANs). In view of the huge size of the market for these enhanced systems providing flexible personal communications, it is important that industry equips itself to meet this challenge. This MSc course aims to provide industry with graduates who possess a thorough knowledge both of actual modern radio systems and of the fundamental principles and design constraints embodied in those systems.

COURSE STRUCTURE

The course spans 50 weeks of full-time study and is divided into teaching and project modules. The teaching block is based on 6 modular courses, each comprising approximately 40 hours of lectures (or lecture equivalents) with additional directed study and practical work. All of these modules are augmented by specific case studies, applications and tutorials.

COURSE HIGHLIGHTS

Radio Systems Engineering
A radio receiver design is analysed in detail so that design compromises may be understood. Topics include gain, selectivity, noise figure, dynamic range, intermodulation, spurious output, receiver structures, mixers, oscillators, PLL synthesis, filters and future design trends. This course also includes familiarisation with industry - standard design packages. Introduces key concepts in conventional and novel antenna design. It incovers the following topics: basic antenna structures (eg wire, reflector, patch and helical antennas); design considerations for fixed and mobile communication systems; phased array antennas; conformal and volume arrays; array factor and pattern multiplication; mutual coupling; isolated and embedded element patterns; active match; true time delay systems; pattern synthesis techniques; adaptive antennas; adaptive beamforming and nulling.

Mobile Radio Systems and Propagation
The aim of this module is to investigate the nature of radio propagation in mobile radio environments. This will be achieved through the examination of several modern mobile radio systems. The effects of the propagation environment will also be considered.

Spectrum Management and Utilization
The electromagnetic spectrum is a finite resource which has to be properly managed. This module will address issues related to spectrum management. Topics covered will include: spectrum as a resource; space, time and bandwidth; international regulation organisations and control methods; definitions of spectrum utilisation and spectrum utilisation efficiency; spectrum-consuming properties of radio systems; protection ratio; frequency dependent rejection and the F-D curve; spectrum management tools, models and databases; spectrally-efficient techniques; efficient use of the spectrum.

Electromagnetic Compatability (EMC)
This module provides an introduction to EMC. Topics include fundamental EM interactions and how these give rise to potential incompatibilities between systems; current EMC legislation; test environments and test facilities.

Communication Systems and Digital Signal Processing
Students are introduced to a range of concepts underpinning communications system design. DSP topics include the theory and applications of: real-time DSP concepts/devices; specialist filter applications; A/D and D/A interface technology; review of Fourier/digital filter applicable to DSP; modem design: modulation, demodulation, synchronisation, equalisation; signal analysis and synthesis in time and frequency domain; hands-on experience of DSP tools and DSP applications.

Low Power/Low Voltage Design and VHDL
This module introduces the low power and low voltage design requirements brought about by increasingly small scale sizes of circuit integration. The module also introduces students to VHDL, which is widely used in industry today.

Design Exercise (RF Engineering)
This self-contained exercise aims to introduce the student to aspects of RF engineering, system specification, design and implementation. A design, such as a 2GHz receiver, will be taken through to practical implementation.

Radio Frequency and Microwave Measurements
This covers the theory of EM waves, propagation and scattering. It introduces the student to methods and instruments to measure important EM wave properties such as power and reflection coeffcients.

Active RF and Microwave Circuits
This module provides the student with an appreciation of; noise in microwave systems (basic theory, sources of noise, noise power and temperature, noise figure and measurement of noise); detectors and mixers (diodes and rectification, PIN diodes, single ended mixers, balanced mixers, intermodulation products); microwave amplifiers and oscillators (microwave bipolar transistors and FETs, gain and stability, power gain, design of single stage transistor amlifier, conjugate matching, low noise amplifier design and transistor oscillator design).

PROJECT MODULE
Following a course on research skills and project planning, each student carries out one major project from Easter to September focusing on a real industrial problem. Some projects are carried out ‘on-site’ with our local and national industrial partners. The basics of project planning and structure are taught and supervision will be given whilst the student is writing a dissertation for submission at the end of the course.

Read less
Train to teach English with media to 11 to 16-year-olds with our National College for Teaching and Leadership (NCTL)-accredited course and begin your fulfilling career as a secondary school teacher. Read more
Train to teach English with media to 11 to 16-year-olds with our National College for Teaching and Leadership (NCTL)-accredited course and begin your fulfilling career as a secondary school teacher. You’ll learn the principles of effective English teaching and how to develop school pupils’ love of literature. A dedicated tutor will provide you with support throughout your training, while school placements will provide you with hands-on practical experience in the classroom. Successful graduates of our PGCE Secondary courses achieve high results, with 95% receiving an Ofsted good or outstanding grade by the end of the course and 96% going on to obtain employment, often with one of their placement schools.

More about this course

This NCTL-accredited PGCE Secondary English with Media course leads to Qualified Teacher Status and prepares you to teach 11 to 16-year-olds, while also giving you the opportunity to teach at a college level.

You’ll learn to equip pupils with a strong command of the spoken and written word, and to promote high standards of language and literacy. This will also help develop school pupils’ love of literature and reading for their own enjoyment.

We run this course in collaboration with the English and Media Centre (EMC), an award-winning educational charity. EMC tutors will provide you with support throughout the course, drawing on their extensive experience of consultancy for schools and running Continuing Professional Development (CPD) for teachers. You’ll continue to receive support from a dedicated EMC tutor throughout your school experience.

This PGCE course benefits from our London location and will broaden your understanding of teaching in multicultural and diverse urban environments. Through study, discussion and teaching you’ll develop an understanding of how children learn and the methods you can use to help them to effectively develop their English and media skills.

We place great emphasis on sharing feedback with your peers and colleagues. You’ll complete a weekly reflection and contribute to discussions online in order to further develop your understanding of the role of a secondary teacher.

Although this PGCE course is directed at teaching 11 to 16-year-olds, we seek to provide opportunities for teaching older children wherever possible.

Your assessment will consist of four elements:
-School placement A
-School placement B, where your teaching ability will be assessed in relation to the standard for Qualified Teacher Status
-A Professional Practice Portfolio, which is compiled across the year, detailing personal experiences and reflections on your development as a teacher, largely in relation to your practical teaching experience
-The Educational Research Assignment, which allows you to explore an educational issue

There are no examinations.

Professional accreditation

This course is accredited by the National College for Teaching and Leadership (NCTL).

Modular structure

This is a year long course.

Module 1, Curriculum Studies, includes:
-The theoretical underpinning of the practice that students take into the classroom
-Access to the pedagogical knowledge and understanding required to effectively plan and teach well structured lessons in the secondary curriculum
-Sessions on pedagogy, English language and literature, mathematics, science and foundation subjects
-Training to assess school pupils’ progress in each of the these curriculum areas

Module 2, Professionalism and Inclusive Practice (PIP), includes:
-Support for the wider professional development of each student teacher
-Discussion of the role of children’s rights and how this underpins effective learning relationships
-Understanding of different aspects of inclusive education
-Introduction to the whole school and wider children’s workforce
-Teamwork and collaborative discussion across different subject areas

Work placement:
-120 days spread across two London placements learning to teach with a mentor in secondary schools

In both university and classroom contexts, your self-directed study is extremely important in order to support your development of purposeful educational enquiry, preparing effective teaching resources and ensure your subject knowledge is up-to-date.

After the course

This intensive PGCE School Direct course leads to Qualified Teacher Status (QTS), which enables you to teach 11 to 16-year-olds. Our trainees have gone on to secure secondary teacher roles at schools including Ark Academy, East Barnet School, Kingsford Community School and more.

Funding

Funding is available for many postgraduate courses leading to Qualified Teacher Status (QTS). Depending on your teaching subject and degree classification, you may be eligible for a bursary or scholarship of up to £30,000 through the teacher training bursary.

PGCE School Direct

The School Direct school placements work around the training calendar for the student teacher with the PGCE offered at the university. This means we can only offer places in Early Years / Primary and in Secondary teaching Maths, Modern Languages and Science with a specialism in Biology, Chemistry or Physics.

You will attend the training workshops at the university with other regular PGCE students and carry out placements of 120 days in a school or consortium of schools with a School Direct allocation. This time could be divided between two schools with some flexibility.

London Met has School Direct partnership with nearly 100 schools. This large body of schools have joined with us to build a cross-capital alliance, providing diverse contexts in which to train the new generation of London teachers.

Most of our trainees follow a programme modelled on the traditional PGCE, with time spent under tutor supervision at London Metropolitan University and the school placement divided between two partner schools.

Read less
The MSc in Communications Engineering is a one year full-time taught course which makes extensive use of the knowledge and expertise from our well established Communication Technologies Research Group. Read more
The MSc in Communications Engineering is a one year full-time taught course which makes extensive use of the knowledge and expertise from our well established Communication Technologies Research Group.

It is intended to provide students with a good understanding of the techniques and issues in modern communications systems, with an emphasis on wireless and Internet communications. It provides students with:
-A balanced picture of modern communications technology and networks
-A sound theoretical and practical knowledge of radio communication techniques, signal processing, network protocols, and the design and optimisation of communication networks
-The ability to learn new techniques as they are developed
-Experience of the use of industry-standard tools to make them attractive candidates for employers throughout the field of modern communications

Course Content

The course aims to provide a broad-based introduction to modern communications and to provide a solid grounding in the theory and techniques suitable for students wishing to pursue a career in electronic communications.

Facilities

All postgraduate students have access to high performance computer workstations with full network connectivity within the department, as well as to the large number of other computing rooms available around the campus. Dependent on their project, students might also use some of the department's other facilities, including NAMAS-accredited EMC measurement facilities, well-equipped music and media technology suites, electric measurement facilities up to 40 GHz, anechoic chambers, and specialised software for FPGA design, and DSP workstations.

Students on the MSc Communications Engineering also have use of the MSc Project room which provides computing equipment, project facilities and study space.

Read less
Study the dynamic field of efficient information transfer around the globe. We teach this course jointly with the Department of Computer Science so you get up-to-date knowledge and understanding. Read more

About the course

Study the dynamic field of efficient information transfer around the globe. We teach this course jointly with the Department of Computer Science so you get up-to-date knowledge and understanding.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

Network and Inter-Network Architectures; Network Performance Analysis; Data Coding Techniques for Communications and Storage; Advanced Communication Principles; Mobile Networks and Physical Layer Protocols; (either) Foundations of Object-Orientated Programming (or) Object-Orientated Programming and Software Design; Major Research Project.

Examples of optional modules

Computer Security and Forensics; 3D Computer Graphics; Software Development for Mobile Devices; Cloud Computing; Advanced Signal Processing; Antennas, Propagation and Satellite Systems; Optical Communication Devices and Systems; Computer Vision; Broadband Wireless Techniques; Wireless Packet Data Networks and Protocols; System Design.

Teaching and assessment

We deliver research-led teaching from our department and Computer Science with individual support for your research project and dissertation. Assessment is by examinations, coursework and a project dissertation with poster presentation.

Read less
This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications. Read more

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

Semiconductor Materials; Principles of Semiconductor Device Technology; Packaging and Reliability of Microsystems; Nanoscale Electronic Devices; Energy Efficient Semiconductor Devices; Optical Communication Devices and Systems; Compound Semiconductor Device Manufacture; Major Research Project.

Teaching and assessment

Research-led teaching, lectures, laboratories, seminars and tutorials. A large practical module covers the design, manufacture and characterisation of a semiconductor component, such as a laser or light emitting diode. This involves background tutorials and hands-on practical work in the UK’s national III-V semiconductor facility. Assessment is by examinations, coursework or reports, and a dissertation with poster presentation.

Read less
Study the key design aspects of a modern wireless communication system, in particular cellular mobile radio systems. There is a current shortage of communications engineers with a comprehensive appreciation of wireless system design from RF through baseband to packet protocols. Read more

About the course

Study the key design aspects of a modern wireless communication system, in particular cellular mobile radio systems. There is a current shortage of communications engineers with a comprehensive appreciation of wireless system design from RF through baseband to packet protocols.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

First-class facilities

Semiconductor Materials and Devices
LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

Advanced Signal Processing; Advanced Communication Principles; Antennas, Propagation and Satellite Systems; Mobile Networks and Physical Layer Protocols; Broadband Wireless Techniques; Wireless Packet Data Networks and Protocols; Major Research Project.

Examples of optional modules

Data Coding Techniques for Communication and Storage; Optical Communication Devices and Systems; Computer Vision; Electronic Communication Technologies; Data Coding Techniques for Communication and Storage.

Teaching and assessment

Research-led teaching and an individual research project. Assessment is by examinations, coursework and a project dissertation with poster presentation.

Read less
The Department offers the MSc in Electronic Engineering by Research and the MSc in Music Technology by Research degree programmes. Read more
The Department offers the MSc in Electronic Engineering by Research and the MSc in Music Technology by Research degree programmes.

The MSc by Research is a one year full-time programme (two years part-time) based on a research project which may be in any area of staff expertise. As a member of one of the Department’s research groups you will be supervised on a one-to-one basis by a member of academic staff. The award of the degree is made following the submission and successful examination of a thesis. Progress is monitored in the same way as for other research degrees by a Thesis Advisory Panel.

Students undertaking the MSc by Research are also encouraged to take advanced taught courses in Electronics which might help fill gaps in their background knowledge for their research project topic. The choice of courses taken will be made together with the supervisor, at the beginning of the programme.

Facilities

All full-time postgraduate research students are allocated a desk space in the department with a new PC (with 2 screens) for the duration of their full-time programme. Dependent on their project, students might also use some of the department's other facilities, including NAMAS-accredited EMC measurement facilities, Clean Room, well-equipped music and media technology suites, anechoic chambers, BioWall, Robot Lab and specialised software for FPGA design.

MSc by Research or Taught MSc?

View this web-page to directly compare an MSc by Research and Taught MSc: https://www.york.ac.uk/electronics/postgraduate/research_degrees/msc_research/#tab-4

Read less
This MSc programme will provide you with the skills required to understand the entrepreneurship and innovation required for the software industry. Read more
This MSc programme will provide you with the skills required to understand the entrepreneurship and innovation required for the software industry. Many national and multinational companies employ computer science graduates in areas such as software development and engineering, artificial intelligence, systems and networks, database and systems security as well as mobile multimedia, modelling, research and development. You will also get the chance to demonstrate the skills you have learned by completing a substantial research and development project.

Visit the website: http://www.ucc.ie/en/ckr40/

Course Details

Students must attain 90 credits through a combination of:

- Core Modules (30 credits)
- Elective Modules (30 credits) (15 credits from Group 1 and 15 credits from Group 2 below)
- Research & Development Project (30 credits)

Core Modules

CS6403 Case Studies in Computing Entrepreneurship (5 credits) - Dr. John Herbert
CS6406 Large-Scale Application Development and Integration 1 (5 credits) - Prof. Gregory Provan
CS6407 Large-Scale Application Development and Integration 2 (5 credits) - Prof. Gregory Provan
CS6408 Database Technology (5 credits) - Mr. Humphrey Sorensen
CS6409 Information Storage and Retrieval (5 credits) - Mr. Humphrey Sorensen
CS6410 Project Development Skills (5 credits) - Mr. Marc Van Dongen

Elective Modules Group I

CS6312 Mobile Devices and Systems (5 credits) - Dr. Dan Grigoras
CS6314 Mobile Applications Design (5 credits) - Dr. Sabin Tabirca
CS6320 Formal Methods for Distributed Systems (5 credits) - Dr. John Herbert
CS6321 Model-Based Software Development (5 credits) - Dr. John Herbert
CS6322 Optimisation (5 credits) - Dr. Steve Prestwich

Elective Modules Group 2

CS6313 Services and Mobile Middleware (5 credits) - Dr. Dan Grigoras
CS6315 Mobile Systems Security (5 credits)
CS6316 Cellular Network Services (5 credits)
CS6317 Multimedia Technology in Mobile Networks (5 credits) - Dr. Sabin Tabirca
CS6323 Analysis of Networks and Complex Systems (5 credits) - Prof. Gregory Provan
CS6325 Network Security (5 credits) - Dr. Simon Foley
CS6405 Datamining (5 credits) - Dr. Marc Van Dongen

Research Phase (after period 2)

CS6400 Dissertation in Computing Science (30 credits)

Assessment

Full details and regulations governing Examinations for each programme will be contained in the Marks and Standards 2015 Book and for each module in the Book of Modules 2015/2016 - http://www.ucc.ie/modules/

- Postgraduate Diploma in Computing Science -

Students failing to achieve an aggregate of at least 60% across all modules but who achieve a pass in each of the taught modules at their first attempt graduate with a Postgraduate Diploma in Computing Science. Students may also opt to exit the programme and graduate with a Postgraduate Diploma in Computing Science provided they have achieved a pass in each module.

Careers

Companies actively recruiting Computer Science graduates in 2014-15 include:

Accenture, Aer Lingus, Amazon, Apple, Bank of America Merrill Lynch, Bank of Ireland, BT, Cisco, CiTi-Technology, Cloudreach, Dell, Digital Turbine Asia Pacific, EMC, Enterprise Ireland, Ericsson, First Derivatives, Guidewire, IBM, Intel, Open Text, Paddy Power, Pilz, PWC, SAP Galway Transverse Technologies, Trend Micro, Uniwink, Version 1 (Software).

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The MSc in Interactive Media is a CONVERSION COURSE; it is an intensive taught course focusing on the practical and technical aspects of interactive media. Read more
The MSc in Interactive Media is a CONVERSION COURSE; it is an intensive taught course focusing on the practical and technical aspects of interactive media.

The broad aim of the course is to equip students from a wide range of backgrounds with a thorough understanding of the technology and industry-standard tools used in the digital media sector. Interactive digital media seeks to entertain, inform and inspire an audience. The creation of interactive digital media is a challenging and complex activity requiring a blend of creative and technical skills using a range of existing and emerging technologies.

On successful completion of the course, you will have a comprehensive knowledge of the underlying concepts, technologies and practices of interactive digital media and be able to apply these to create interactive digital media products.

Visit the website: http://www.ucc.ie/en/ckr05/

Course Detail

The MSc (Interactive Media) is a taught programme that may be taken full-time over 12 months or part-time over 24 months from the date of first registration for the programme.

Format

- Lectures: 12 hours per week
- Laboratory sessions: Six hours per week

You are expected to undertake independent reading and study.

Students must attain 90 credits through a combination of:

- Core Modules (30 credits)
- Elective Modules (30 credits)
- Research & Development Project (30 credits)

Core Modules (Period 1)

Full-time students are required to take the following 30 credits of core modules. Part-time students are required to take three of the following core modules in each year (15 credits), for a total of six separate modules over the two years (30 credits).

CS6100 Authoring (5 credits) - Dr. John O'Mullane
CS6101 Digital Publishing and Hypermedia Systems (5 credits) - Dr. Ian Pitt
CS6102 Graphics and Graphic Design (5 credits) - Dr. Sabin Tabirca
CS6103 Audio and Sound Engineering (5 credits) - Mr. David Murphy
CS6104 Digital Video Capture and Packaging (5 credits) - Dr. Ian Pitt
CS6111 3D Graphics and Modelling (5 credits) - Mr. David Murphy

Elective Modules (Period 2)

Full-time students are required to take 30 credits from the following elective modules. Part-time students are required to take three of the following elective modules in each year (15 credits), for a total of six separate modules over the two years (30 credits).

CS6105 Future and Emerging Interaction Technologies (5 credits) - Mr. David Murphy
CS6113 Internet-based Applications (5 credits) - Dr. Frank Boehme
CS6114 Digital Video Compression and Delivery (5 credits) - Dr. Frank Boehme
CS6115 Human Computer Interaction (5 credits) - Dr. Ian Pitt
CS6116 Mobile Multimedia (5 credits) - Dr. Sabin Tabirca
CS6117 Audio Processing (5 credits) - Mr. David Murphy

Note: Not all modules may be offered in a particular year and are subject to change.

Project Phase (After Period 2)

Full-time and part-time students are required to take a project as follows:

CS6200 Dissertation (30 credits)

Assessment

Full details and regulations governing Examinations for each programme will be contained in the Marks and Standards 2015 Book and for each module in the Book of Modules 2015/2016 - http://www.ucc.ie/modules/

Postgraduate Diploma in Interactive Media

Students who successfully achieve the pass standard in the examination may opt not to proceed to the digital media project and may opt instead to be awarded the Postgraduate Diploma in Interactive Media.

Careers

Companies actively recruiting Computer Science graduates in 2014-15 include:

Accenture, Aer Lingus, Amazon, Apple, Bank of America Merrill Lynch, Bank of Ireland, BT, Cisco, CiTi-Technology, Cloudreach, Dell, Digital Turbine Asia Pacific, EMC, Enterprise Ireland, Ericsson, First Derivatives, Guidewire, IBM, Intel, Open Text, Paddy Power, Pilz, PWC, SAP Galway Transverse Technologies, Trend Micro, Uniwink, Version 1 (Software).

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The Higher Diploma in Applied Computing Technology is a CONVERSION COURSE open to graduates from non-computing disciplines. Read more
The Higher Diploma in Applied Computing Technology is a CONVERSION COURSE open to graduates from non-computing disciplines. The course provides you with an understanding of the principles of internet-based computer systems and will equip you with a range of core IT skills, including web design, web server configuration, managing and manipulating multimedia content, interfacing with databases and working with common office software.

Visit the website: http://www.ucc.ie/en/cko08/

Course Details

The Higher Diploma is offered as a one year full-time or a two years part-time.

This is a CONVERSION COURSE and is intended for graduates who do not have Computer Science Degree and would like to attain skills in demand by the IT sector.

Format

A typical five credit module includes:
• two lecture hours
• one to two hours of practicals per week
• outside these regular hours, you are required to study independently

Full-Time Mode

Full-Time students take 60 credits as follows: 30 credits in teaching period 1 and 30 credits in period 2.

CS1117 Introduction to Programming (15 credits) - Dr. Jospeh Manning
CS5002 Web Development 1 (5 credits) - Dr. Frank Boehme
CS5007 Computer Applications with Visual Basic (5 credits) - Dr. James Doherty
CS5008 Internet Computing (5 credits) - Mr. Adrian O'Riordan
CS5009 Multimedia (5 credits) - Prof. James Bowen
CS5018 Web Development 2 (5 credits) - Dr. Derek Bridge
CS5019 Systems Organization I (5 credits) - Prof. John Morrison
CS5020 Systems Organization II (5 credits) - Prof. John Morrison
CS5021 Introduction to Relational Databases (5 credits) - Dr. Kieran Herley
CS5022 Database Design and Administration (5 credits) - Mr. Humprey Sorensen

Part-Time mode

Part-Time students take 30 credits in each of the two academic years as follows:

- Year 1 -

CS1117 Introduction to Programming (15 credits) - Dr. Joseph Manning
CS5002 Web Development 1 (5 credits) - Dr. Frank Boehme
CS5018 Web Development 2 (5 credits) - Dr. Derek Bridge
CS5021 Introduction to Relational Databases (5 credits) - Dr. Kieran Herley

- Year 2 -

CS5007 Computer Application with Visual Basic (5 credits) - Dr. James Doherty
CS5008 Internet Computing (5 credits) - Mr. Adrian O'Doherty
CS5009 Multimedia (5 credits) - Prof. James Bowen
CS5019 Systems Organization I (5 credits) - Prof. John Morrison
CS5020 Systems Organization II (5 credits) - Prof. John Morrison
CS5022 Database Design and Administration (5 credits) - Mr. Humphrey Sorensen

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Diploma/Science/page14.html

Assessment

The Higher Diploma in Applied Computing Technology will be examined through a combination of end-of-year exams and module assignments.

Careers

Companies actively recruiting Computer Science graduates in 2014-15 include:

Accenture, Aer Lingus, Amazon, Apple, Bank of America Merrill Lynch, Bank of Ireland, BT, Cisco, CiTi-Technology, Cloudreach, Dell, Digital Turbine Asia Pacific, EMC, Enterprise Ireland, Ericsson, First Derivatives, Guidewire, IBM, Intel, Open Text, Paddy Power, Pilz, PWC, SAP Galway Transverse Technologies, Trend Micro, Uniwink, Version 1 (Software).

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Electronic and Electrical Engineering is a broad and rapidly-expanding set of disciplines. Read more

About the course

Electronic and Electrical Engineering is a broad and rapidly-expanding set of disciplines. Building on core teaching in electrical machines, electronic materials, and the way that electronic circuits interact, this course will allow you to choose from a wide range of optional modules from all our active research areas to tailor your learning in a way that meets with your requirements.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

Major Research Project.

Examples of optional modules

AC Machines; Advanced Control of Electric Devices; Energy Storage Management; Motion Control and Servo Drives; Permanent Magnet Machines and Actuators; Power Electronic Converters; Power Semiconductor Devices; Advanced Computer Systems; Advanced Integrated Electronics; Advanced Signal Processing; Semiconductor Materials; Principles of Semiconductor Device Technology; Packaging and Reliability of Microsystems; Nanoscale Electronic Devices; Energy Efficient Semiconductor Devices; Optical Communication Devices and Systems; Computer Vision; Electronic Communication Technologies; Data Coding Techniques for Communications and Storage; Principles of Communications; Antennas, Propagation and Satellite Systems; Mobile Networks and Physical Layer Protocols; System Design; Broadband Wireless Techniques; Wireless Packet Data Networks and Protocols.

Teaching and assessment

We deliver research-led teaching with individual support for your research project and dissertation. Assessment is by examinations, coursework and a project dissertation with poster presentation.

Read less
The MSc in Data Science & Analytics, jointly offered by the Department of Computer Science and the Department of Statistics, provides an education in the key principles of this rapidly expanding area. Read more
The MSc in Data Science & Analytics, jointly offered by the Department of Computer Science and the Department of Statistics, provides an education in the key principles of this rapidly expanding area. The combination of sophisticated computing and statistics modules will develop skills in database management, programming, summarisation, modelling and interpretation of data. The programme provides graduates with an opportunity, through development of a research project, to investigate the more applied elements of the disciplines.

Visit the website: http://www.ucc.ie/en/ckr49/

Course Details

The MSc in Data Science and Analytics is a significant collaboration between the Departments of Computer Science and Statistics; designed to provide graduates with the skills and knowledge required to help companies and public bodies deal with ever increasing and complex data. The programme emphasises the application of Computer Science and Statistics methodologies helping transform data into useful information that can support decision making.

Format

A typical 5 credit module:
• 2 lecture hours per week
• 1–2 hours of practicals per week
• Outside these regular hours students are required to study independently by reading and by working in the laboratories and on exercises.

Structure

Students must attain 90 credits through a combination of:

- Core Modules (30 credits)
- Elective Modules (30 credits)
- Dissertation (30 credits)

Part 1 (60 credits)

- Core Modules (30 credits) -

CS6405 Data Mining (5 credits) - Dr. Marc Van Dongen
ST6030 Foundations of Statistical Data Analytics (10 credits)
ST6033 Generalised Linear Modelling Techniques (5 credits)

- Database Modules -

Students who have adequate database experience take:

CS6408 Database Technology (5 credits) - Mr. Humphrey Sorensen
CS6409 Information Storage and Retrieval (5 credits) - Mr. Humphrey Sorensen

- Students who have not studied databases take:

CS6503 Introduction to Relational Databases (5 credits)
CS6505 Database Design and Administration (5 credits)

Elective Modules (30 credits)

Students must take at least 10 credits of CS (Computer Science) modules and at least 10 credits of ST (Statistics) modules from those listed below:

CS6322 Optimisation (5 credits) - Dr. Steve Prestwich
CS6323 Analysis of Networks and Complex Systems (5 credits) - Prof. Gregory Provan
CS6509 Internet Computing for Data Science (5 credits)
ST6032 Stochastic Modelling Techniques (5 credits)
ST6034 Multivariate Methods for Data Analysis (10 credits)
ST6035 Operations Research (5 credits)
ST6036 Stochastic Decision Science (5 credits)

- Programming Modules -

Students who have adequate programming experience take:

CS6406 Large-Scale Application Development and Integration l (5 credits) - Professor Gregory Provan
CS4607 Large-Scale Application Development and Integration ll (5 credits) - Professor Gregory Provan

- Students who have not studied programming take:

CS6506 Programming in Python (5 credits)
CS6507 Programme in Python with Data Science and Applications (5 credits) - Dr. Kieran Herley

Part 2 (30 credits)

Students select one of the following modules:

CS6500 Dissertation in Data Analytics (30 credits)
ST6090 Dissertation in Data Analytics (30 credits)

Assessment

Full details and regulations governing Examinations for each programme will be contained in the Marks and Standards 2015 Book and for each module in the Book of Modules 2015/2016 - http://www.ucc.ie/modules/

Postgraduate Diploma in Data Science and Analytics

Students who pass each of the taught modules may opt to exit the programme and be conferred with a Postgraduate Diploma in Data Science and Analytics.

Careers

This programme aims to prepare students to manage, analyse and interpret large heterogeneous data sources. Graduates will design, compare and select appropriate data analytic techniques, using software tools for data storage/management and analysis, machine learning, as well as probabilistic and statistical methods. Such abilities are at the core of companies that constantly face the need to deal with large data sets.

Companies currently seeking graduates with data analytics skills include: firms specialising in analytics, financial services and consulting, or governmental agencies.

Companies actively recruiting Computer Science graduates in 2014-15 include:

Accenture, Aer Lingus, Amazon, Apple, Bank of America Merrill Lynch, Bank of Ireland, BT, Cisco, CiTi-Technology, Cloudreach, Dell, Digital Turbine Asia Pacific, EMC, Enterprise Ireland, Ericsson, First Derivatives, Guidewire, IBM, Intel, Open Text, Paddy Power, Pilz, PWC, SAP Galway Transverse Technologies, Trend Micro, Uniwink, Version 1 (Software).

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
This course has been developed in response to the demand from industry for cyber security professionals who have a systematic understanding of the principles and technologies underpinning today's IT systems. Read more
This course has been developed in response to the demand from industry for cyber security professionals who have a systematic understanding of the principles and technologies underpinning today's IT systems.

Cyber security is a key problem in the provision of services, from the application layer through to the basic building blocks of computer and network systems. People trained in cyber security are greatly sought after and in the UK analysts expect that there will be a shortage of security professionals for the next 10 years or more.

The digital world is a complex place, varied in form and distributed, serving different types of stakeholder who use a variety of devices to access information. Specialists who recognise the diversity of business needs and the breadth of technologies and techniques to combat cyber threats, and have a systematic approach to understanding the impact of technology on organisations, are essential to the success of today's and tomorrow's cyber systems.

Equal in importance to securing cyber systems and their supporting technologies, is the management and delivery of content and services through to the users. These systems are in reality socio-technical-economic systems incorporating people, technologies, service providers, content providers, governments (laws, regulations, policies) through to law enforcement. The cyber security specialist is a broadly based professional able to work with technologists, senior management, service providers and suppliers, through to the end users, with their aim to provide secure services and investigate breaches.

This course builds on typical undergraduate computing courses, or those degrees with a high degree of computing content, whose graduates are looking to develop new knowledge and skills in cyber security. This course is designed to help the student gain an understanding of how cyber security systems are designed and constructed, and of the impact of technology into an organisation. The course will also give you the skills you need to work effectively in a business environment, and provide a solid basis for cyber security research. The course is supported by several research groups within the School of Computing and Engineering and the school has received research funding in cyber security.

Course detail

The course will also give you the skills you need to work effectively in a business environment, and provide a solid basis for cyber security research and development. The course is supported by several research groups within the School of Computing and Engineering and the School has received research funding in cyber security.

Teaching consists of lectures, seminars and laboratory work to provide a basis for the intensive individual study you need to undertake to maximise your achievements and the potential outcomes from taking the course.

Modules

• Fundamentals of Cyber Security
• Security Management
• Network and Systems Security
• Security Operations and Assurance
• Learning and Professional Development
• Employability Skills and Employment
• Knowledge Management (option)
• Computer Networks (option)
• Distributed Application Development (option)
• Project Management (option)
• Mobile Application Development (option)
• Research Methods
• Dissertation.

Format

Diverse methods are used to explore all aspects of the field. A strong supportive culture exists amongst the course tutors which enables students to achieve their potential.

Assessment

Assessed work is a significant part of the total assessment in the masters. There is practical work, report writing, presentations, critical academic writing and the skills and knowledge gained in these contribute to a capacity to deliver a high quality dissertation.

There are a number of end of module exams. Course tutors provide appropriate support throughout the module to ensure candidates are well prepared.

Career and study progression

Graduates in cyber security have a good record of achieving employment and progressing in their professional work. The security industry is wide, including companies that need to protect themselves, government and law enforcement through to the providers of equipment and services, such as the:
• anti-virus, security software vendors (such as McAfee, Kaspersky, Symantec, Sophos, EMC/RSA, Entrust, etc.),
• network and computer vendors (such as Cisco, Juniper, Palo Alto, HP, Barracuda, etc.),
• network and service providers (such as British Telecom, Vodafone, Rackspace, Amazon, etc.),
• consultancies (such as KPMG, IBM, Fujitsu, HP, etc.)
• services companies and in government and law enforcement.

Outstanding graduates have gone on to further study at the level of MPhil and PhD at UWL and at other institutions.

We actively encourage students with potential for research to make their interest known early on in their course.

How to apply

Click the following link for information on how to apply to this course: http://www.uwl.ac.uk/students/postgraduate/how-apply

Scholarships and bursaries

Information about scholarships and bursaries can be found here: http://www.uwl.ac.uk/students/postgraduate/scholarships-and-bursaries

Read less
The deployment of power electronic converters and electrical machines continues to grow at a rapid rate in sectors such as hybrid and all-electric vehicles, aerospace, renewables and advanced industrial automation. Read more

About the course

The deployment of power electronic converters and electrical machines continues to grow at a rapid rate in sectors such as hybrid and all-electric vehicles, aerospace, renewables and advanced industrial automation. In many of these applications, high performance components are combined into sophisticated motion control and energy management systems. This course will give you a rigorous and in-depth knowledge of the key component technologies and their integration into advanced systems.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

Power Electronic Converters; AC Machines; Permanent Magnet Machines and Actuators; Motion Control and Servo Drives; Advanced Control of Electric Drives; Energy Storage and Management; MSc Individual Project; Major Research Project.

Examples of optional modules

Power Semiconductor Devices; Advanced Signal Processing; Packaging and Reliability of Microsystems; Electronic Communication Technologies; Systems Design.

Teaching and assessment

You’ll learn through research-led teaching, lectures, laboratories, seminars, tutorials and coursework exercises. Assessment is by examinations, coursework and a project dissertation with poster presentation.

Read less
IN THIS 18-MONTH INTENSIVE PART-TIME PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in instrumentation, process control and industrial automation. Read more
IN THIS 18-MONTH INTENSIVE PART-TIME PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in instrumentation, process control and industrial automation
- Guidance from industrial automation experts in the field
- Knowledge from the extensive experience of instructors, rather than from the clinical information gained from books and college
- Credibility as the local industrial automation expert in your firm
- Networking contacts in the industry
- Improved career prospects and income
- An Advanced Diploma of Industrial Automation

Next intake starts October 09, 2017. Applications now open; places are limited.

Contact us now to secure your place!

Payment is not required until around 2 to 4 weeks before the start of the program.

The EIT Advanced Diploma of of Industrial Automation is recognized worldwide and has been endorsed by the International Society of Automation (ISA). Please ask us about specific information on accreditation for your location.

OVERVIEW

Gain strong underpinning knowledge and expertise in Industrial Automation covering a wide range of skills ranging from instrumentation, automation and process control, industrial data communications, process plant layout, project and financial management and chemical engineering with a strong practical focus. Industrial Automation is an extremely fast moving area especially compared to the more traditional areas such as electrical and mechanical engineering. The field is diverse and dynamic and offers the opportunity for a well paid and enjoyable career. The aim of the course is to empower you with practical knowledge that will improve your productivity in the area and make you stand out as a leader in industrial automation amongst your peers.

*JOB OUTCOMES, INTERNATIONAL RECOGNITION AND PROFESSIONAL MEMBERSHIP:

A range of global opportunities awaits graduates of the Advanced Diploma of Industrial Automation. Pending full accreditation you may become a full member of Engineers Australia and your qualification will be recognized by Engineers Australia and (through the Dublin Accord) by leading professional associations and societies in Australia, Canada, Ireland, Korea, New Zealand, South Africa, United Kingdom and the United States. The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

For example, current enrolled students can apply for free student membership of Engineers Australia. After graduation, you can apply for membership to become an Engineering Associate, while graduates interested in UK recognition can apply for membership of the Institution of Engineering and Technology (IET) as a Technician Member of the Institution of Engineering and Technology.

This professional recognition greatly improves the global mobility of graduates, and offers you the opportunity of a truly international career.

You will be qualified to find employment as an Engineering Associate in public and private industry including transportation, manufacturing, process, construction, resource, energy and utilities industries. Engineering Associates often work in support of professional engineers or engineering technologists in a team environment. If you prefer to work in the field you may choose to find employment as a site supervisor, senior technician, engineering assistant, or similar.

PROGRAM STRUCTURE

The program is composed of 72 topics within 21 modules. These cover the following seven engineering threads to provide you with maximum practical coverage in the field of industrial automation:

- Instrumentation, Automation and Process Control
- Electrical Engineering
- Electronics
- Industrial Data Communications and Networking
- Mechanical Engineering
- Project Management
- Chemical Engineering

The modules will be completed in the following order:
1. Practical Instrumentation for Automation and Process Control
2. Practical Fundamentals of Chemical Engineering (for Non- Chemical Engineers)
3. Control Valve Sizing, Selection and Maintenance
4. Fundamentals of Process Plant Layout and Piping Design
5. Practical Process Control for Engineers and Technicians
6. Practical Tuning of Industrial Control Loops for Engineers and Technicians
7. Practical Distributed Control Systems (DCS)
8. Practical Programmable Logic Controllers (PLCs) for Automation and Process Control
9. Best Practice in Industrial Data Communications
10. Practical Advanced Process Control for Engineers and Technicians
11. Practical Boiler Control and Instrumentation for Engineers and Technicians
12. Practical Hazardous Areas for Engineers and Technicians
13. Practical Safety Instrumentation and Emergency Shutdown Systems for Process Industries Using IEC 6155 and IEC 61508
14. Practical HAZOPS (Hazard and Operability Studies) for Engineers and Technicians
15. Practical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board Layout of Electronic Systems
16. Practical Wireless Ethernet and TCP/ IP Networking
17. Practical Radio Telemetry Systems for Industry
18. Practical SCADA Systems for Industry
19. Motor Protection, Control and Maintenance Technologies
20. Practical Power Distribution for Engineers and Technicians
21. Practical Project Management for Electrical, Instrumentation and Mechanical Engineers and Technicians

COURSE FEES

EIT provides distance education to students located all around the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. We aim to give you a rapid response regarding course fees that are relevant to your individual circumstances.

We understand that cost is a major consideration before a student begins to study. For a rapid reply to your query regarding course fees and payment options, please contact a Course Advisor in your region via the below button and we will respond within two (2) business days.

Read less

Show 10 15 30 per page



Cookie Policy    X