• University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
Cranfield University Featured Masters Courses
Imperial College London Featured Masters Courses
OCAD University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
University of Leeds Featured Masters Courses
"embedded" AND "systems"×
0 miles

Masters Degrees (Embedded Systems)

We have 263 Masters Degrees (Embedded Systems)

  • "embedded" AND "systems" ×
  • clear all
Showing 1 to 15 of 263
Order by 
This MSc concentrates on the commercially important and rapidly expanding area of embedded digital systems. It is the ideal choice if you plan a career in embedded systems engineering, or for professional development if you already work in the engineering industry. Read more
This MSc concentrates on the commercially important and rapidly expanding area of embedded digital systems. It is the ideal choice if you plan a career in embedded systems engineering, or for professional development if you already work in the engineering industry.

Embedded systems are at the heart of many engineering devices and you will investigate how they are designed and implemented in hardware and software. You will learn how to critically understand and apply circuit and system simulation techniques, with an emphasis on products that incorporate embedded technology. You will also understand the design of embedded systems, including microcontroller architectures and real-time embedded hardware operating systems.

The course has significant input from industry and as part of the course you will be given the chance to undertake a 6-month unpaid internship*. Whilst not compulsory, internships provide the opportunity to put the theory you’ve learned in the classroom into practice in the real world.

Routes of study:
The course is available to study via two routes:
- MSc Embedded Systems Design (with internship)
- MSc Embedded Systems Design (without internship)

Please note: *Internships are available to full-time students only. Internship places are limited. Students have the opportunity to work in a participating UK company or within a Research Centre at the University. You can also opt to study the course without an internship which will reduce your course length.

See the website http://courses.southwales.ac.uk/courses/1492-msc-embedded-systems-design-with-internship

What you will study

Modules include:
- Embedded Systems Design
- Designing with RTOS
- Digital Design with HDLs
- Research Methodology and Product Management
- Opto-Electronics Devices for Life Science and Measurement
- Applied Digital Signal Processing
- * Six month Internship*
- Msc Major Project (60 credits)

Learning and teaching methods

MSc Embedded Systems Design is delivered in three major blocks that offer an intensive but flexible learning pattern, with two entry opportunities for applicants each year in February and September. You will learn to use the latest computer-aided engineering tools and techniques for the design, manufacture and testing of electronic products. There are six taught modules and an 18-week major project. If you study part-time, you will study three modules per year.

The course is available to study via two main routes, you can opt to add further value to your studies by undertaking an internship or simply focus on building your academic knowledge through a on-campus study as detailed below:


MSc Embedded Systems Design (with internship):

- Delivery: Full-time only | Start dates: September and February
If you choose to undertake an internship, your course will be delivered in four major blocks that offer an intensive but flexible learning pattern. Six taught modules are completed during two teaching blocks featuring 12 contact hours per week. This is followed by 6 month period of internship, after which the student returns to undertake a 16-week major research project. Please note: Course length may vary dependent on your chosen start date.


MSc Embedded Systems Design (without internship):

- Delivery: Full-time and Part-time | Start dates: September and February
The study pathway available without internship is available full-time and part-time. The full-time route is delivered in three major blocks. Six taught modules are completed during two teaching blocks featuring 12 contact hours per week followed by a 16-week major research project. The full-time course duration is about 12 months, if you study part-time then you will complete the course in three years. Part-time study involves completing three modules in each of the first two years and a major research project in the final year. The use of block-mode delivery in this way allows flexible entry and exit, and also enables practising engineers to attend a single module as a short course.

Work Experience and Employment Prospects

Many industries need specialists in embedded systems design, and by the time you graduate, your skills and knowledge will be highly desired by employers. Careers are available in industrial and technology sectors such as embedded systems hardware or software development, telecommunication implementations, instrumentation, general real-time device applications, and signal processing development.

Internship

Internships are only available to students studying full-time: Following successful completion of six taught modules, you will be competitively selected to join participating UK companies or University Research Centres on a six-month period of unpaid work placement before returning to undertake your major research project. All students who have an offer for the MSc Embedded Systems Design (with internship) are guaranteed an internship either in industry or in a University Research Centre.

There are 10 internship places available. Students who wish to undertake an internship must apply for the MSc Embedded Systems Design (with internship). It is anticipated that there will be significant demand for this programme and applicants are advised to apply as soon as possible to avoid disappointment. Applications will be considered on a first come first served basis and the numbers of students offered a place on the programme with internship will be capped.

If the course is already full and we are unable to offer you a place on the Masters course with internship, we may be able to consider you for the standard MSc Embedded Systems Design (without internship) which is a shorter programme.

Assessment methods

Typically, each module will be assessed through coursework.

Read less
Most people aren't familiar with Embedded Systems, but we use them every day of our lives. Smartphones, digital TV, MP3s and iPods, washing machines, even toys or a talking greetings card they all contain a microprocessor or a microcontroller. Read more
Most people aren't familiar with Embedded Systems, but we use them every day of our lives. Smartphones, digital TV, MP3s and iPods, washing machines, even toys or a talking greetings card they all contain a microprocessor or a microcontroller. Embedded systems are the backbone of the digital revolution.

As the complexity of embedded systems increases, the industry needs skilled graduates to fill the talent shortage.

Course detail

With the MSc Embedded Systems and Wireless Networks you'll develop a sound technical knowledge of the fundamentals of electronics, embedded systems, software and hardware, and become an embedded system designer with a multidisciplinary background. You'll develop software programming and hardware design skills, and a broad knowledge of electronics fundamentals.

Graduates of electronic engineering, systems engineering or other appropriate sciences can develop, deepen or update their skills and knowledge in advanced electronic engineering technology and cutting-edge research fields.

This course is ideal for graduate engineers interested in electronics, embedded systems, signal processing, mobile communications and wireless technology.

Modules

• Embedded Real-time Control Systems
• Safety Critical Embedded Systems
• Wireless and Mobile Communications
• Advanced Control and Dynamics
• System Design using HDLs
• Wireless Sensor Networks
• Group Project Challenge
• Dissertation

Format

You'll be taught by experienced specialist academic staff who are experts in basic and advanced electronics, control systems, basic and advanced robotics, mobile communications, wireless sensor networks, embedded systems, power systems, power electronics, signal processing and sensor technology. Many of them are involved in cutting-edge research.

You'll attend lectures, then apply what you've learned to real life through tutorial sessions, case studies, classroom discussions, project work, laboratory exercises and visits to or guest lectures from professionals working in engineering organisations.

Assessment

You are assessed through examinations, coursework, lab-based assessment and oral presentations. An independent examiner assesses your dissertation.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
Vision is the most useful sense we possess and as such accounts for about 30% of the sensing processing of the brain. Read more
Vision is the most useful sense we possess and as such accounts for about 30% of the sensing processing of the brain. The automation of visual processing (ie computer vision) has many applications in the modern world including medical imaging for better diagnosis, surveillance systems to improve security and safety, industrial and domestic robotics plus advanced interfaces for computer games, mobile phones and human-computer interfaces. The possibilities are only limited by our imagination.

Key features
-The unique combination of computer vision and embedded systems skills is highly desirable in state-of-the-art industrial applications.
-This course is accredited by BCS, The Chartered Institute for IT.
-You will have the opportunity to work on your project dissertation in the internationally recognised Digital Imaging Research Centre with groups on visual surveillance, human body motion, medical imaging and robotics and being involved in national and international projects or in collaboration with our industrial contacts.

What will you study?

The Embedded Systems (Computer Vision) pathway will equip you with the knowledge and skills required to specify and build computer vision embedded systems, choosing from different imaging devices and applying software that can process and understand images. You will study a range of option modules encompassing computing, engineering and digital media processing. It may also be possible for you to undertake a real-world project in an industrial placement or as part of high-quality research working alongside DIRC (Digital Imaging Research Centre) groups (eg visual surveillance, human body motion analysis, robotics, medical imaging).

The Embedded Systems (Computer Vision) MSc course can be combined with Management Studies enabling you to develop business and management skills so you can work effectively with business managers to develop innovative and imaginative ways to exploit computer vision and embedded systems for business advantage. This is a key skill for employability, particularly as organisations in the public, private and voluntary sectors grapple with austerity.

Assessment

Coursework and/or exams, research project/dissertation.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

The full MSc course consists of an induction programme, four taught modules, and project dissertation. Please note that this is an indicative list of modules and is not intended as a definitive list.

Embedded Systems (Computer Vision) MSc modules
-Digital Signal Processing
-Real-time Programming
-Artificial Vision Systems
-Project Dissertation
-One option module

Embedded Systems (Computer Vision) with Management Studies MSc modules
-Digital Signal Processing
-Real-time Programming
-Artificial Vision Systems
-Business in Practice
-Project Dissertation

Read less
Vision is the most useful sense we possess and as such accounts for about 30% of the sensing processing of the brain. Read more
Vision is the most useful sense we possess and as such accounts for about 30% of the sensing processing of the brain. The automation of visual processing (ie computer vision) has many applications in the modern world including medical imaging for better diagnosis, surveillance systems to improve security and safety, industrial and domestic robotics plus advanced interfaces for computer games, mobile phones and human-computer interfaces. The possibilities are only limited by our imagination.

Key features
-The unique combination of computer vision and embedded systems skills is highly desirable in state-of-the-art industrial applications.
-This course is accredited by BCS, The Chartered Institute for IT.
-You will have the opportunity to work on your project dissertation in the internationally recognised Digital Imaging Research Centre with groups on visual surveillance, human body motion, medical imaging and robotics and being involved in national and international projects or in collaboration with our industrial contacts.

What will you study?

The Embedded Systems (Computer Vision) pathway will equip you with the knowledge and skills required to specify and build computer vision embedded systems, choosing from different imaging devices and applying software that can process and understand images. You will study a range of option modules encompassing computing, engineering and digital media processing. It may also be possible for you to undertake a real-world project in an industrial placement or as part of high-quality research working alongside DIRC (Digital Imaging Research Centre) groups (eg visual surveillance, human body motion analysis, robotics, medical imaging).
The Embedded Systems (Computer Vision) MSc course can be combined with Management Studies enabling you to develop business and management skills so you can work effectively with business managers to develop innovative and imaginative ways to exploit computer vision and embedded systems for business advantage. This is a key skill for employability, particularly as organisations in the public, private and voluntary sectors grapple with austerity.

Assessment

Coursework and/or exams, research project/dissertation.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

The full MSc course consists of an induction programme, four taught modules, and project dissertation. Please note that this is an indicative list of modules and is not intended as a definitive list.

Embedded Systems (Computer Vision) MSc modules
-Digital Signal Processing
-Real-time Programming
-Artificial Vision Systems
-Project Dissertation
-One option module

Read less
In our modern world, we are surrounded by systems and devices that have unseen computer software and hardware, such as digital televisions, MP3 players, smartphones and traffic lights. Read more
In our modern world, we are surrounded by systems and devices that have unseen computer software and hardware, such as digital televisions, MP3 players, smartphones and traffic lights. It takes a special type of person (typically working in a multidisciplinary team) to conceive, design and implement, and deploy these so-called embedded systems. This course is designed to set you ahead in the vibrant jobs market for consumer electronics, industrial equipment and the automotive industry.

Key features
-This course is accredited by BCS, The Chartered Institute for IT.
-Practical-based teaching will provide you the opportunity to put your hands on industry and/or research-standard software/hardware such as LabView, Compact Rio, Microchip's dsPIC DSC / MPLAB, Matlab.
-The course is taught by academics with expertise in computer science, electrical, mechanical and automotive engineering and by industrial visiting lecturers based in industry.
-You will have the opportunity to work on your project dissertation in one of our industrial contacts or alongside our research teams with internationally recognised expertise in digital image processing, computer vision, robotics, control systems, aerospace, medical telematics, wireless networks and multimedia communications.

What will you study?

The Embedded Systems MSc has been designed to give you a good background on digital signal processing (DSP), digital signal processors (eg the kind used in set top boxes, image processing, etc.), control systems and micro controllers. You can then choose a number of options to tailor your education mixing computing and engineering subjects. If you are vocationally inclined toward management, we also offer a version of the course that includes management modules.

The Embedded Systems course can be combined with Management Studies enabling you to develop business and management skills so you can work effectively with business managers to develop innovative and imaginative ways to exploit embedded systems for business advantage. This is a key skill for employability, particularly as organisations in the public, private and voluntary sectors grapple with austerity.

Assessment

Coursework and/or exams, research project/dissertation.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

The full MSc course consists of an induction programme, four taught modules, and project dissertation. Please note that this is an indicative list of modules and is not intended as a definitive list.

Embedded Systems MSc modules
-Digital Signal Processing
-Real-time Programming
-Control Systems with Embedded Implementation
-Project Dissertation
-One option module

Embedded Systems with Management Studies MSc modules
-Digital Signal Processing
-Real-time Programming
-Control Systems with Embedded Implementation
-Business in Practice
-Project Dissertation

Read less
This programme will not have a 2016 intake as the content is being extensively improved. Microcontrollers are being designed into more and more products e.g. Read more

NOTE

This programme will not have a 2016 intake as the content is being extensively improved.

Overview

Microcontrollers are being designed into more and more products e.g. motor cars, washing machines, mobile phones etc. The fast growing and challenging area of embedded systems requires engineers with hardware and software design capabilities for use in this variety of situations. This advanced programme of study offers a natural progression route for graduates in electrical and electronic engineering, physics, computer science, or related disciplines, and is structured to provide the student with the necessary skills for embedded systems development.

Aims and Objectives

To provide knowledge of electronic systems design based around microcontrollers
To provide the ability to manage new technologies and integrate them into system design
To satisfy the growing demand for engineers with embedded systems experience
To facilitate professional development of the student that will lead to a successful professional career

Distinctive features

MSc in Embedded Systems is for students who wish to study a programme to engage them in system development and design focussing on microcontrollers, both hardware and software. It will provide advanced knowledge in areas essential for this type of design and development, whilst also providing learning in areas closely associated to embedded systems such as control and communications.

Modular structure

The course conforms to the standard University of Hull structure, consisting of two taught semesters (the Diploma stage) followed by a substantial individual project. Core modules are compulsory; choice of optional modules is based on student preferences.

Core:

Advanced Digital Systems Design (Semester 1)
Product Planning and Design Exercise (Semester 1)
Complex Circuits and Systems (Semester 2)
Advanced Discreet Time Signal Processing and Integrated Circuit Design (Semesters 1 and 2)
Dissertation project

Options:

Mobile Radio
Propagation and Antennas
Advanced Control
Radio Frequency and Microwave Devices
Techniques and Measurements
Machine Vision

Read less
In our modern world, we are surrounded by systems and devices that have unseen computer software and hardware, such as digital televisions, MP3 players, smartphones and traffic lights. Read more
In our modern world, we are surrounded by systems and devices that have unseen computer software and hardware, such as digital televisions, MP3 players, smartphones and traffic lights. It takes a special type of person (typically working in a multidisciplinary team) to conceive, design and implement, and deploy these so-called embedded systems. This course is designed to set you ahead in the vibrant jobs market for consumer electronics, industrial equipment and the automotive industry.

Key features
-This course is accredited by BCS, The Chartered Institute for IT.
-Practical-based teaching will provide you the opportunity to put your hands on industry and/or research-standard software/hardware such as LabView, Compact Rio, Microchip's dsPIC DSC / MPLAB, Matlab.
-The course is taught by academics with expertise in computer science, electrical, mechanical and automotive engineering and by industrial visiting lecturers based in industry.
-You will have the opportunity to work on your project dissertation in one of our industrial contacts or alongside our research teams with internationally recognised expertise in digital image processing, computer vision, robotics, control systems, aerospace, medical telematics, wireless networks and multimedia communications.

What will you study?

The Embedded Systems MSc has been designed to give you a good background on digital signal processing (DSP), digital signal processors (eg the kind used in set top boxes, image processing, etc.), control systems and micro controllers. You can then choose a number of options to tailor your education mixing computing and engineering subjects. If you are vocationally inclined toward management, we also offer a version of the course that includes management modules.

The Embedded Systems course can be combined with Management Studies enabling you to develop business and management skills so you can work effectively with business managers to develop innovative and imaginative ways to exploit embedded systems for business advantage. This is a key skill for employability, particularly as organisations in the public, private and voluntary sectors grapple with austerity.

Assessment

Coursework and/or exams, research project/dissertation.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

The full MSc course consists of an induction programme, four taught modules, and project dissertation. Please note that this is an indicative list of modules and is not intended as a definitive list.

Embedded Systems MSc modules
-Digital Signal Processing
-Real-time Programming
-Control Systems with Embedded Implementation
-Project Dissertation
-One option module

Read less
The future of information and communication technology (ICT) is driven by mobile and networked embedded systems. Read more

About Mobile and Embedded Systems

The future of information and communication technology (ICT) is driven by mobile and networked embedded systems: tomorrow’s digital cities, Industry 4.0, cyber-physical systems (CPS) and the Internet of Things (IoT) will all depend on embedded sensing of real-world phenomena, in-situ computation as well as automated information exchange and data distribution using machine-to-machine (M2M) com­munications between local and distributed control systems and machinery.

The ‘smart grid’ is one example of an application for future embedded systems, as it uses real-time sensing of the available renewable energy to determine where energy is to be routed across the power grid and controls intelligent machinery to increase production during peak times; this requires that internet-connected smart meters are installed in industrial plants and private homes alike to facilitate real-time sensing and control of technical systems.

Another exciting area of application for embedded systems is mobile and wearable technology, which allows users to access and manipulate information ‘on the go’ as the system provides relevant and timely information — indeed, this is one of the main purposes of mobile information technology such as smartphones and tablet computers. Additional meaning for this Human-Computer Interaction (HCI) is generated by the context of the device, the user, the location and many more factors, all of which are sensed and computed by a plenitude of embedded sensors and collocated or connected systems.

Wearable devices such as fitness trackers and smart watches collect bio-physiological and health-related data to facilitate novel applications, including smart contact lenses and feedback systems for the learning of physical activities. At the same time, increasing cross-device interoperability means that users of head-mounted augmented reality and virtual reality displays can, for instance, use their entire smartphone screen as a keyboard and have the typed text displayed on augmented reality glasses.

Programme content

The programme is divided into three module groups with core and elective modules. These are:

1. Human-Computer Interaction
2. Systems Engineering
3. Data Processing, Signals and Systems

Features

- Excellent rankings for computer science, e.g. in U-Multirank and the CHE rankings
- A strongly research-oriented two-year programme with a modern, broad range of subjects
- Allows flexible interest-based selection of modules from the groups ‘Human-Computer Interaction’, ‘Systems Engineering’ and ‘Data Processing, Signals and Systems’
- A fully English-taught programme
- An outstanding staff-student ratio
- Participation in cutting-edge research projects
- Excellent research and teaching infrastructure
- An extensive network of partnerships with academic institutions and businesses worldwide
- A great student experience in Passau, the ‘City of Three Rivers’

Language requirements

Unless English is your native language or the language of your secondary or undergraduate education, you should provide an English language certificate at level B2 CEFR, e.g. TOEFL with a minimum score of 567 PBT, 87 iBT or ITP 543 (silver); IELTS starting from 5.5; or an equivalent language certificate.

To facilitate daily life in Germany, it would be beneficial for you to have German language skills at level A1 CEFR (beginner’s level). If you do not have any German skills when starting out on the programme, you will complete a compulsory beginner’s German course during your first year of study.

Read less
This Embedded Systems course offers a natural follow-up to an undergraduate degree in electrical and electronic engineering. It concentrates on the rapidly expanding area of embedded digital systems for communication and control. Read more

This Embedded Systems course offers a natural follow-up to an undergraduate degree in electrical and electronic engineering. It concentrates on the rapidly expanding area of embedded digital systems for communication and control. The course is relevant to industry and offers good preparation for a career in research. It’ll also help you develop a detailed knowledge of the core skills in embedded systems – whilst developing specialist techniques and practices in embedded systems.

On our Embedded Systems course, you’ll work with peers and staff, developing a good level of autonomy and responsibility. You’ll also be able to apply your knowledge to complex applications, critically review existing practice, and develop creative solutions in the field.



Read less
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics. Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. Read more
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics.

Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. They encompass a wide variety of products ranging from small mobile phones to large process automation installations. A practicing engineer in the field of embedded systems needs to have a specialised expertise in more than one of the engineering subjects of this multi-discipline subject.

Our MSc is tailored to provide you with advanced learning in microprocessor systems that are at the heart of embedded systems, with additional contributions from the fields of mechatronics and robotics. This approach reflects the needs of the industry and is well supported by the range in expertise we have in our Department.

The Department of Engineering and Design covers the full gamete of teaching in electronic, telecommunication and computer networks engineering as well as mechanical engineering and product design.

Our academics are a cohesive group of highly skilled lecturers, practitioners and researchers. You'll benefit from your choice of supervisors to support a wide range of modern and multi-discipline Masters-level projects. Our teaching is supported by well-equipped laboratory workshops, using mostly the latest hardware and software available in universities.

Modules

In each of the semesters 1 and 2 you will be required to take two core and one optional module from the lists below:

Semester 1:

•Robotics (20 credits)
• Microprocessors and Control (20 credits)

Optional modules (Semester 1):

• Pattern recognition and machine learning (20 credits)
• Technical, research and professional skills (20 credits)
• Advanced Instrumentation and Design (20 credits)
• Electrical Energy Converters and Drives (20 credits)

Semester 2:

• Digital Signal Processing and Real Time Systems (20 credits)
• Mechatronics and Embedded System Design (20 credits)

Optional modules (Semester 2):

• Electromechanical systems and manufacturing technology (20 credits)
• Technology evaluation and commercialisation (20 credits)
• Cloud Computing (20 credits)
• E-Business Applications (20 credits)

Semester 3

•MSc project (60 credits)

Professional links

The School of Engineering at LSBU has a strong culture of research, extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs), and teaching content is closely related to the latest research findings in the field.

History and expertise

A strong research tradition and our industrial links has helped shaped the course design, content selection, course delivery and project supervision.

The Department of Engineering and Design has a strong Mechatronics, Robotics and Non-destructive testing research group with a wide national and international profile. This is in addition to excellent research in many areas of mechanical engineering, electrical engineering, product design, computer network and telecommunications engineering.

Employability

The course has been designed to help to meet the needs of industry. How much your employability will increase, will depend on your background and the personal contribution you make to your development whilst studying on the course.

Benefits for new graduates

If you are a new graduate in electronic or computer engineering then you benefit from the further advanced topics presented. You'll get an opportunity to cut your teeth on a challenging MSc Project, which will demonstrate your abilities to the potential employers. Alternatively, you could also pursue PhD studies after completing the course.

Benefits of returning to University

If you are returning to University after a period of working in industry, then you'll be able to update yourself with the recent technological progress in the field. You'll gain confidence in your ability to perform at your best and stand a better chance to seek challenging work opportunities. If you are already working in the field, the MSc qualification will enhance your status which will may help with your promotion.

Employment links

We are continually developing links with employers who are interested to provide internship to our students . Examples of this can include small VHDL and DSP designs, ARM based designs, industrial design or correlation research. These projects can be performed as part of the curriculum or as part of a research project.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
The MSc in Electronics with Embedded Systems aims to produce postgraduates with an advanced level of understanding in the design of real-time embedded systems for time-critical, power sensitive applications. Read more
The MSc in Electronics with Embedded Systems aims to produce postgraduates with an advanced level of understanding in the design of real-time embedded systems for time-critical, power sensitive applications. Practical skillset development is emphasized throughout the course. Students will be taught the theory, protocol and the efficient use of both analogue and digital interfaces and sensor devices together with the principles of and use of Real-Time-Operating-Systems (RTOS). A key focus of the course will be in the implementation of power aware sustainable solutions, the course will provide an in-depth discussion of the underlying power management hardware sub-systems within modern MCUs and will show and use software techniques that will exploit these to reduce power consumption.

Broader consideration of embedded system design will be examined. In particular, the design process, risk assessment, product life-cycle, software life-cycle, safety and regulation will be investigated and used. It is intended that the course will re-focus existing knowledge held by the student in software engineering and hardware engineering and deliver a set of enhanced practical skills that will enable the student to fully participate in this multi-disciplined, fast expanding and dominating engineering sector of embedded systems.

Course Structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

There are plenty of opportunities for employment in the electronic systems subject area, in particular, there is a demand for engineers that can solve problems requiring a multi-disciplined approach covering skills from software engineering, control engineering, digital electronic systems engineering, analogue electronic engineering, medical physics, and mechanics amongst others. The MSc in Electronics and its specialist pathways will provide the foundations required to re-focus existing knowledge and enter this exciting world of multi-disciplined jobs.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Electronics MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
Embedded Systems are a key technology of modern society. Whether in automotive industry, aerospace and medical technology or in telecommunications, media and entertainment industries – embedded systems always play a major role in state-of-the-art technology. Read more
Embedded Systems are a key technology of modern society. Whether in automotive industry, aerospace and medical technology or in telecommunications, media and entertainment industries – embedded systems always play a major role in state-of-the-art technology.

The curriculum consists of courses belonging to the following areas:

- Design of microelectronic and micromechanic devices
- Software based components
- System integration
- System optimisation regarding speed, cost and energy efficiency
- Safety and reliability

Six different concentration areas are offered:

- Circuits and systems
- Design and simulation
- Sensors and actuators
- Reliable embedded systems
- Distributed systems
- Robotics and computer visions

There are different kinds of courses, such as lectures, exercises, lab courses, seminars and projects. The state-of-the art equipment of the laboratories at the Faculty of Engineering enhance a hands-on teaching style that combines research and teaching. With a flexible curriculum and a high number of elective courses, students can shape their individual profile.

Read less
This advanced course delivers an understanding of Wireless Embedded Systems and their enabling technologies. It is industrially focused, tailored to the demands of companies that design and manufacture mobile electronic equipment which interfaces with wireless networks and applications. Read more
This advanced course delivers an understanding of Wireless Embedded Systems and their enabling technologies. It is industrially focused, tailored to the demands of companies that design and manufacture mobile electronic equipment which interfaces with wireless networks and applications.

Our Wireless Embedded Systems MSc is a unique blend of five fields of knowledge which work well together:
-Tools, techniques and design of Wireless Embedded Systems and subsystems
-Scientific and engineering principles and practices of Computing Science and Electronic Engineering
-Embedded computer systems architecture
-Networking and communication systems
-Computer programming

You will enjoy a strong emphasis on project work and self-directed learning to develop specialist knowledge in your areas of interest.

Delivery

The course is delivered by the School of Electrical and Electronic Engineering, combining leading research and teaching expertise in mobile communications and distributed computing. It is taught by experienced academic staff also involved in internationally recognised research work, reflected in hundreds of published papers. You are personally supervised by a staff member during your individual project which is one third of the course.

Employability

We collect information from our graduates six months after they leave University. This is part of the Destination of Leavers from Higher Education (DLHE) survey that every UK higher education institution takes part in.

Facilities

The School of Electrical and Electronic Engineering has large, modern teaching laboratories providing superb learning opportunities for you, the next generation of technology and computing specialists.

Read less
Course Summary. The applications of embedded systems can be found in all sectors of the economy. consumer electronics, car industry, media and process industries and also banking and commerce. Read more

Course Summary

The applications of embedded systems can be found in all sectors of the economy: consumer electronics, car industry, media and process industries and also banking and commerce. This programme will equip you with the key skills required to design embedded systems. This includes hardware design and verification, real time computing, embedded processors with extensive practical use of cutting-edge and industry-standard tools and methods. You will be taken through the embedded system design process, from concept to implementation and testing.

Modules

Semester one: Real-Time Computing and Embedded Systems; Digital System Design; Secure Hardware Design; Digital IC and Systems Design; Signal Processing.

Semester two: Embedded Processors; Advanced Systems and Signal Processing; Digital Systems Synthesis; Cryptography; Applied Control Systems; Mobile Applications Development.

Plus three-month independent research project culminating in a dissertation.

Visit our website for further information.



Read less
The MSc Embedded Systems and Control aims to provide the knowledge and skills required of a professional engineer to design embedded systems for use in control, diagnostics, monitoring and communications. Read more
The MSc Embedded Systems and Control aims to provide the knowledge and skills required of a professional engineer to design embedded systems for use in control, diagnostics, monitoring and communications. State-of-the-art techniques in control system design, signal processing and software design will be core elements of the course.

Read less

Show 10 15 30 per page



Cookie Policy    X