• University of Surrey Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Northampton Featured Masters Courses
London Metropolitan University Featured Masters Courses
Birmingham City University Featured Masters Courses
Cranfield University Featured Masters Courses
EURECOM Featured Masters Courses
University of Bath Featured Masters Courses
"electronics" AND "engine…×
0 miles

Masters Degrees (Electronics Engineering)

We have 399 Masters Degrees (Electronics Engineering)

  • "electronics" AND "engineering" ×
  • clear all
Showing 1 to 15 of 399
Order by 
The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. Read more

Mission and goals

The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged.
To meet these training needs, the Master of Science in Electronics Engineering bases its roots on a full spectrum of basic courses (mathematics, classical and modern physics, computer science, signal theory, control and communications, basic electronic circuits) that are prerequisites required from the Bachelor, and focuses on the most advanced disciplines in electronic design (analog and digital electronics, solid state physics and devices, microelectronics, optoelectronics, sensors and electronic instrumentation, communications and control systems) to provide a complete and updated preparation. Upon graduating, students will have developed a “design oriented” mindset and acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Career opportunities

Thanks to the deep and solid scientific and technological knowledge provided, Master of Science graduates in Electronics Engineering will be able to hold positions of great responsibility, both at technical and management level, in a wide variety of productive contexts:
- Scientific and technological research centers, national and international, public or private;
- Industries of semiconductors, integrated circuits and in general of electronic components;
- Industries of electronic systems and instrumentation, such as consumer electronics (audio, video, telephone, computers, etc.), optoelectronics, biomedical, etc.;
- Electromechanical industries with high technological content such as aeronautics, transportation, aerospace, energy, robotics and plant automation, etc.;
- Work as a freelance in the design and fabrication of custom electronic systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electronics_Engineering_01.pdf
The Master of Science in Electronics Engineering aims to form graduates with a comprehensive and solid scientific and technological knowledge in the field of Electronics, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. The course focuses on the most advanced aspects of Electronics (analog and digital integrated circuits design, solid state devices, microelectronics, optoelectronic devices and sensors, electronic instrumentation, communications and control systems) to provide a complete and updated professional preparation. Upon graduating, students will have developed a “design oriented” mindset enabling them to successfully deal with the complex needs of today’s industrial system. They will have also acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields as well as a maturity to hold positions of great responsibility both at technical and management level. The programme is taught in English.

Required background from Bachelor studies

The Master of Science in Electronics Engineering bases its roots on a full spectrum of knowledge that students are expected to have successfully acquired in their Bachelor degree, like advanced mathematics, classical and modern physics, computer science, signal and communication theory, electric circuits and feedback control, basic electronic devices and analog & digital circuit analysis.

Subjects

- Analog & Digital Integrated Circuit Design
- MEMS and Microsensors
- Electronic Systems
- Electron Devices and Microelectronic Technologies
- Signal recovery and Feedback Control
- Optoelectronic Systems and Photonics Devices
- RF Circuit Design
- Power Electronics
- Semiconductor Radiation Detectors
- FPGA & Microcontroller System Design
- Biochip and Electronics Design for Biomedical Instrumentation

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
New knowledge and improvement of existing skills are inherent in development of electronics engineering. It provides the theoretical basis and design methods for electronic systems and intellectual components. Read more

New knowledge and improvement of existing skills are inherent in development of electronics engineering. It provides the theoretical basis and design methods for electronic systems and intellectual components: communications, computers, programming, software engineering, control and other electronic and electrical energy systems. Practical and organisational skills are encouraged through project, design and laboratory work and management studies. Performed scientific research and totality of the knowledge conveyed by this programme allows our graduates to remain competitive in the labour market.

The Master+ model offers either to masterpiece in the chosen discipline by choosing the Field Expert track or to strengthen the interdisciplinary skills by choosing the Interdisciplinary Expert track emphasising managerial skills or a choice of a different competence to compliment the chosen discipline and achieve a competitive advantage in one’s career.

Why @KTU?

Long history of research in electronics engineering

KTU has a long history of expertise in electronics engineering: embedded systems design and analysis research is led by prof. V. Deksnys, prof. L. Svilainis is known for investigation in signal technologies.

Well equipped high-tech laboratories

A pragmatic balance between theory and applied aspects is implemented in high-tech laboratories.

Master+

Master+ model offers either to masterpiece in the specialisation or to strengthen managerial/interdisciplinary skills by choosing individual set of competencies required for career.

MA+

Master+ is a unique model within a chosen MSc programme

The Master+ model offers either to masterpiece in the chosen discipline by choosing the Field Expert track or to strengthen the interdisciplinary skills in addition to the main discipline by choosing the Interdisciplinary Expert track providing a choice of a different competence to compliment the chosen discipline and achieve a competitive advantage in one’s career.

Students of these study programmes can choose between the path of Field Expert and Interdisciplinary Expert. Selection is made in the academic information system. Each path (competence) consists of three subjects (18 credits) allocated as follows: 1 year 1 semester (autumn) – first subject (6 credits), 1 year 2 semester (spring) – second subject (6 credits), 2 year 3 semester – third subject (6 credits). A student, who chooses a path of the Field Expert, deepens knowledge and strengthens skills in the main field of studies. The one, who chooses a path of the Interdisciplinary Expert, acquires knowledge and skills in a different area or field of studies. Competence provides a choice of alternative additional subjects.

  • Field Expert (profound knowledge and skills in the area, required for solution of scientific research tasks);
  • Interdisciplinary Expert: 
  • (fields of different knowledge and skills are combined for solution of specific tasks);

Acquisition of the competence is certified by the issue of KTU certificate and entry in the appendix to the Master’s diploma. In addition, students can acquire an international certificate (details are provided next to each competence).

Competences are implemented by KTU lecturers – experts in their area – and high level business and public sector organizations; their employees deliver lectures, submit topics for the student’s theses, placement-oriented tasks for the projects, etc.

Career

Student’s competences:

– Applies deeper knowledge of electronics engineering science and research methods;

– Recognises problems, formulates them and applies solutions;

– Performs experiment’s planning and its progress;

– Conduct research activities applying modern technologies.

Student’s skills:

– Able to solve unknown problems that are not clearly defined;

– Able to develop new methods;

– Able to plan or conduct analytical, modelling or experimental research;

– Able to apply available knowledge and experience in generation of ideas and making of decisions.



Read less
The Master’s programme in Electronics Engineering focuses on the  design of integrated circuits and System-on-Chip in advanced semiconductor technologies. Read more

The Master’s programme in Electronics Engineering focuses on the  design of integrated circuits and System-on-Chip in advanced semiconductor technologies. This requires a broad spectrum of knowledge and skills across many fields within engineering and science.

The programme provides a competitive education in digital, analogue and radio-frequency (RF) integrated circuits (IC) and System-on-Chip (SoC) design, combined with in-depth knowledge in signal processing, application specific processors, embedded systems design, modern communications systems, and radio transceiver design.

Modern society depends on reliable and efficient electronics. Mobile phones, the Internet, computers and TVs are just a few examples that constantly improve in terms of functionality, performance and cost. In addition, a growing number of concepts and technologies significantly improve areas such as mobile and broadband communication, healthcare, automotive technology, robotics, energy systems management, entertainment, consumer electronics, public safety and security, industrial applications, and much more. This suggests that there will be vast industrial opportunities in the future, and a high demand for skilled engineers with the knowledge and skills required to lead the design of such complex integrated circuits and systems.

World-class research activities

The programme is organised by several strong divisions at the Department of Electrical Engineering and the Department of Computer and Information Science. These divisions, which include more than 60 researchers and 10 internationally recognised professors, have excellent teaching experience, world-class research activities that cover nearly the entire field of integrated electronic design, state-of-the-art laboratories and design environments, and close research collaboration with many companies worldwide.

Design-project courses with the latest software

The programme starts with courses in digital communication, digital integrated circuits, digital system design, analogue integrated circuits, and an introduction to radio electronics, providing a solid base for the continuation of the studies.

Later on, a large selection of courses enables students to choose between two major tracks:

  • System-on-Chip, with a focus on digital System-on-Chip design and embedded systems
  • Analogue/Digital and RF IC design, with a focus on the design of mixed analogue/digital and radio-frequency integrated circuits.

The programme offers several large design-project courses, giving excellent opportunities for students to improve their design skills by using the state-of-the-art circuit and system design environments and the CAD tools used in industry today. For instance, students who take the course VLSI Design will design real chips using standard CMOS technology that will be sent for fabrication, measured and evaluated in a follow-up course. Only a few universities in the world have the know-how and capability to provide such courses.



Read less
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different. Read more
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different.

The Master of Advanced Engineering is the key transitional stage in your career, transforming you into a global leader. Gain a depth of knowledge, mastering the crucial skills to become a leading contributor in your field.

Customise your degree - the Master of Advanced Engineering offers flexibility to complete your Master degree in just one year, or you can choose a two year option.

This course is designed to extend your knowledge in your chosen specialisation area and advance your leadership and complex problem-solving skills in a cross cultural environment.

Understand, reflect critically upon and apply methods in at least one specialist engineering area to design solutions to complex, multifaceted engineering problems.

Common core units will develop crucial skills in areas such as data analysis and entrepreneurship, translating theory into engineering practice. In discipline core units you will identify, interpret and critically appraise current developments and technologies within your specialisation.

Enhancement units are designed to provide breadth and are taken from either another engineering specialisation or in complementary areas such as information technology and business.

In addition, the two year version of the program offers a range of technical electives that will deepen your understanding of a specific topic, and two, year- long engineering project units. You will work closely with an academic on a topic of your choice and immerse yourself in a multidisciplinary design project.

The Master of Advanced Engineering could also be your stepping stone to a research degree. All of this in highly interactive, expert led classes.

Visit the website http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true

Overview

Please select a specialisation for more details:

Chemical engineering

Your qualification will be a Master of Advanced Chemical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Chemical Engineering allows you to engage in the areas of study including advanced reaction engineering, process design and optimization, conversion of bioresources into fuel, materials and specialty chemicals, and nanostructured membranes for sustainable separations and energy production with an emphasis on the latest developments in the field. In this course, you will develop specialised knowledge and skills that are important to Chemical Engineers in industry and research. This course provides graduates with enhanced opportunities for advancement in their careers.

Civil engineering (Infrastructure systems)

Your qualification will be a Master of Advanced Civil Engineering (Infrastructure Systems)

The Master of Advanced Civil Engineering (Infrastructure Systems) will equip graduates to work with in the area of infrastructure engineering and management. It will provide the fundamental knowledge associated with interfacing both structural and geotechnical designs for infrastructure systems. The program is designed to equip you with advanced skills necessary for managing the challenges posed by ageing and leading designs of new complex infrastructure systems. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills, as well as to develop theoretical and applied knowledge in the area of infrastructure engineering and management.

Civil engineering (Transport)

Your qualification will be a Master of Advanced Civil Engineering (Transport)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Transport) program deals with the fundamental knowledge associated with transport engineering and management, traffic engineering, intelligent transport systems and transport planning. The program in is a response to the growing need for engineers with broad awareness of the characteristics and significance of transport, including its technological, economic and social impact. At the same time, the program outlines the state-of-the-art of transport engineering, as it may be applied to the solution of real problems in the planning, design, management and operation of transport facilities. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of transport engineering and management.

Civil engineering (Water)

Your qualification will be a Master of Advanced Civil Engineering (Water)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Water) allows you to major in water resources engineering and management. This program deals with the fundamental knowledge associated with surface and ground water flow, stormwater management, water quality, flood forecasting and mitigation. The program is designed to equip you with advanced skills necessary for managing the challenges posed by changing climatic condition on water resource management. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of water resources engineering and management.

Electrical engineering

Your qualification will be a Master of Advanced Electrical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Electrical Engineering will give you a broad introduction to advanced techniques in signal processing, communications, digital systems and electronics. The units have been chosen around the common theme of embedded systems: special purpose computing systems designed for specific applications. They are found just about everywhere including in consumer electronics, transportation systems, medical equipment and sensor networks. The course will mix theory and practice and will contain a significant amount of hands-on learning in laboratories and team-based design projects.

Energy and sustainability engineering

Your qualification will be a Master of Advanced Engineering (Energy and Sustainability)

Please note that this specialisation is available only in Malaysia.

The Master of Advanced Engineering (Energy and Sustainability) is designed for qualified engineers keen to deepen their knowledge in the energy and sustainability area. The course provides foundations in general engineering through engineering analysis and entrepreneurship units. Students can major in this program by examining energy and sustainability area from a multi-disciplinary perspective. Students can also choose elective units such as environment and air pollution control and smart grids to further enhance their knowledge in this area or undertake a minor research work to pursue a topic of interest related to this area.

Materials engineering

Your qualification will be a Master of Advanced Materials Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Materials Engineering encompasses practical aspects of the key classes of materials such as metals, polymers, biomaterials, nanomaterials and energy-related materials. This program particularly focuses on the most up-to-date aspects of the field, along with the utilisation of materials and their electronic, chemical and mechanical properties as underpinned by the microstructures that are revealed by modern characterisation techniques. This program is designed to prepare students to appreciate and exploit the central role of materials in addressing the present technical, economic and environmental problems involved in the design and construction of engineering structures, processes and devices. This course is ideally suited for new graduates as well as professional engineers who are eager to advance their applied knowledge in the area of Materials Engineering.

Mechanical engineering

Your qualification will be a Master of Advanced Mechanical Engineering

Please note that this specialisation is available only in Clayton.

Most modern engineering projects are multidisciplinary in nature and require a broad range of skills, proficiencies and perspectives to accomplish the task. The Master of Advanced Mechanical Engineering takes a systems approach to the design, monitoring and performance of complex mechanical engineering systems in the fields of renewable energy, aerospace, buildings, transportation, and biomedical devices. The systems approach also permeates the design of the course: four discipline-based core units are vertically integrated so that common problems are examined from different perspectives, culminating in a sustainable systems unit.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/engineering

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true#making-the-application

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

As a student on the Master's course in Electronic and Electrical Engineering, you will develop specialist skills aligned with the College of Engineering’s research interests and reflecting the needs of the electronics industry.

Key Features of MSc in Electronic and Electrical Engineering

The MSc Electronic and Electrical Engineering course covers the ability to apply the knowledge gained in the course creatively and effectively for the benefit of the profession, to plan and execute a programme of work efficiently, and to be able, on your own initiative, to enhance your skills and knowledge as required throughout your career in Electronic and Electrical Engineering.

Students on the Electronic and Electrical Engineering course benefit from the use of industry-standard equipment, such as a scanning tunnelling microscope for atomic scale probing or an hp4124 parameter analyzer for power devices, for simulation, implementation and communication.

During the Electronic and Electrical Engineering course there will be the opportunity to choose and apply suitable prototyping and production methods and components, gain knowledge in constructing and evaluating advanced models of various manufacturing techniques, and be able to differentiate, analyse and discuss various product lifetime management solutions and how they affect different sectors of Electronic and Electrical Engineering industry.

The MSc in Electronic and Electrical Engineering programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation in Electronic and Electrical Engineering. Students on the Electronic and Electrical Engineering course must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode of MSc in Electronic and Electrical Engineering

The part-time scheme of the MSc in Electronic and Electrical Engineering is a version of the full-time equivalent MSc in Electronic and Electrical Engineering scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option in Electronic and Electrical Engineering.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules on Electronic and Electrical Engineering

Modules on the MSc Electronic and Electrical Engineering course can vary each year but you could expect to study:

Communication Skills for Research Engineers

Energy and Power Electronics Laboratory

Power Semiconductor Devices

Advanced Power Electronics and Drives

Wide Band-Gap Electronics

Power Generation Systems

Modern Control Systems

Advanced Power Systems

Signals and Systems

Digital Communications

Optical Communications

Probing at the Nanoscale

RF and Microwaves

Wireless Communications

Facilities for Electronic and Electrical Engineering

The new home of the Electronic and Electrical Engineering programme is at the innovative Bay Campus which provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Find out more about the facilities used by Electronic and Electrical students at Swansea University, including the electronics lab on our website.

Links with Industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

Electronic and Electrical Engineering has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses including the MSc in Electronic and Electrical Engineering maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students including those on the MSc in Electronic and Electrical Engineering.

Careers

Electronic and Electrical Engineering graduates find employment in industry, research centres, government or as entrepreneurs in a wide range of careers, from a design and development role for electronic and electrical equipment or as a technological specialist contributing to a multi-disciplinary team in a range of fields, including medicine, travel, business and education.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Power Engineering and Sustainable Energy at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Power Engineering and Sustainable Energy at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The Master's course in Power Engineering and Sustainable Energy places strong emphasis on state-of-the-art semiconductor devices and technologies, advanced power electronics and drives, and advanced power systems. The Power Engineering and Sustainable Energy course also covers conventional and renewable energy generation technologies. Exciting new developments such as wide band gap electronics, energy harvesting, solar cells and biofuels are discussed and recent developments in power electronics are highlighted.

Key Features of MSc in Power Engineering and Sustainable Energy

The College of Engineering has an international reputation for electrical and electronics research for energy and advanced semiconductor materials and devices.

Greenhouse gas emission and, consequently, global warming are threatening the global economy and world as we know it. A non-rational use of electrical energy largely contributes to these.

Sustainable energy generation and utilisation is a vital industry in today’s energy thirsty world. Energy generation and conversion, in the most efficient way possible, is the key to reducing carbon emissions. It is an essential element of novel energy power generation system and future transportation systems. The core of an energy conversion system is the power electronics converter which in one hand ensures the maximum power capture from any energy source and on another hand controls the power quality delivered to grid. Therefore the converter parameters such as efficiency, reliability and costs are directly affecting the performance of an energy system.

Transmission and distribution systems will encounter many challenges in the near future. Decentralisation of generation and storage systems has emerged as a promising solution. Consequently, in the near future, a power grid will no longer be a mono-directional energy flow system but a bi-directional one, requiring a much more complex management.

The MSc in Power Engineering and Sustainable Energy is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Power Engineering and Sustainable Energy students must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode

The part-time scheme is a version of the full-time equivalent MSc in Power Engineering and Sustainable Energy scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Power Engineering and Sustainable Energy course can vary each year but you could expect to study:

Advanced Power Electronics and Drives

Power Semiconductor Devices

Advanced Power Systems

Energy and Power Engineering Laboratory

Power Generation Systems

Modern Control Systems

Wide Band-Gap Electronics

Environmental Analysis and Legislation

Communication Skills for Research Engineers

Optimisation

Facilities

The new home of MSc in Power Engineering and Sustainable Energy is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Our new WOLFSON Foundation funded Power Electronics and Power System (PEPS) laboratory well-appointed with the state-of the-art equipment supports student research projects.

Careers

Employment in growing renewable energy sector, power electronic and semiconductor sector, electric/hybrid vehicle industry.

The MSc Power Engineering and Sustainable Energy is for graduates who may want to extend their technical knowledge and for professional applicants be provided with fast-track career development. This MSc addresses the skills shortage within the power electronics for renewable energy sector.

Links with industry

BT, Siemens, Plessey, GE Lighting, Schlumberger, Cogsys, Morganite, Newbridge Networks, Alstom, City Technology, BNR Europe, Philips, SWALEC, DERA, BTG, X-Fab, ZETEX Diodes, IQE, IBM, TSMC, IR, Toyota, Hitachi.

As a student on the MSc Power Engineering and Sustainable Energy course, you will learn about numerical simulation techniques and have the opportunity to visit electronics industries with links to Swansea.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Communications Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Communications Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

As a student on the MSc in Communications Engineering, you will be provided with an in-depth understanding of the technology and architecture of computer communications, photonics and telecommunication networks, wireless telecommunications and related wireless information technologies.

Key Features of MSc in Communications Engineering

The practical knowledge and skills you will gain as a student on the MSc Communications Engineering course include being presented with the essential element of modern optical communication systems based on single mode optical fibres from the core to the access, evaluating bandwidth-rich contemporary approaches.

The MSc Communications Engineering course also covers advanced networking topics including network performance and network security. This is supported with some practical knowledge and skills for project and business management principles.

As a student on the MSc Communications Engineering course, you will also be introduced to technologies underlying the compressions and transmission of digital video over networking platforms, gain knowledge on the channel models and associated impairments that typically limit the performance of wireless systems, and learn to design optimum digital communication receivers for some basic communications channel models.

The MSc in Communications Engineering is modular in structure. Communications Engineering students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students on the Communications Engineering course must successfully complete Part One before being allowed to progress to Part Two.

Part-time MSc in Communications Engineering Delivery mode:

The part-time scheme is a version of the full-time equivalent MSc in Communications Engineering scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Timetables for the Communications Engineering programme are typically available one week prior to each semester.

Modules

Modules on the MSc Communications Engineering course can vary each year but you could expect to study:

RF and Microwave

Signals and Systems

Entrepreneurship for Engineers

Nanophotonics

Micro and Nano Electro-Mechnical Systems

Lasers and applications

Wireless Communications

Digital Communications

Optical Communications

Optical Networks

Communication Skills for Research Engineers

Research Dissertation

MSc Dissertation - Communications Engineering

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching which benefit students on the MSc in Communications Engineering course. In addition the University provides open access IT resources.

Links with Industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

This discipline has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students.

Careers

The MSc Communications Engineering is suitable for those who have a career interest in the field of communication systems, which has been fundamentally changing the whole world in virtually every aspect, and would like to gain lasting career skills and in-depth knowledge to carry out development projects and advanced research in the area of communication systems.

Communications Engineering graduates can seek employment in wireless communication systems and network administration, and mobile applications development.

Student Quotes

“I was fascinated by the natural beauty of Swansea before I came here. Swansea University is near the beach so you can walk around the beach at any time. This Master’s is very useful to enhance your ability and enrich your principle of the academic knowledge.”

Zhang Daping, MSc Communication Systems (now Communications Engineering)

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

As a world-leader in the research areas of power semiconductor technology and devices, power electronics, nanotechnology and biometrics, and advanced numerical modelling of micro and nanoelectronic devices, Swansea University provides an excellent base for your research as a MSc by Research student in Electronic and Electrical Engineering.

Key Features of MSc by Research Electronic and Electrical Engineering

The Electronic Systems Design Centre (ESDC) is known for its ground-breaking research into Power IC technology, the key technology for more energy efficient electronics. The Centre is also a world-leader in semiconductor device modelling, FEM and compact modelling.

The MSc by Research Electronic and Electrical Engineering has a wide range of subject choice including areas such as:

- Parallel 3D Finite Element Monte Carlo Device Simulations Of Multigate Transistors

- Modelling of Metal-Semiconductor Contacts for the Next Generation of Nanoscale Transistors

- Novel GaN HEMT Switches for Power Management: Device Design, Optimization and Reliability Issues

MSc by Research in Electronic and Electrical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

The new home of the Electronic and Electrical Engineering programme is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Students on the Electronic and Electrical Engineering research programme benefit from the Electronic Systems Design Centre (ESDC) facilities.

Links with industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

Electronic and Electrical Engineering has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students including those on the Electronic and Electrical Engineering.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.



Read less
Our MSc in Electronic Engineering offers content that is different to many other similarly-titled courses. It equips you with a skill set that is in demand by industry worldwide, allowing you to maximise your employability by taking a course that is broad in scope but challenging in detail. Read more

About the course

Our MSc in Electronic Engineering offers content that is different to many other similarly-titled courses. It equips you with a skill set that is in demand by industry worldwide, allowing you to maximise your employability by taking a course that is broad in scope but challenging in detail.

Electronic Engineering provides a broad master’s-level study of some of the most important aspects of electronic engineering today. It builds on your undergraduate knowledge of core aspects of electronics, supported by a module in Engineering Business Environment and Energy Policies, which provides you with an understanding of the context of engineering in the early 21st Century.

The course embraces a number of themes in areas identified as being generally under-represented in many other courses, such as power electronics and electromagnetic compatibility, providing you with as wide a range of employment opportunities as possible – whether this is in industry or continuing in research at university.

The course has achieved accreditation by the Institution of Engineering and Technology (IET) to CEng level for the full five year period.

Reasons to study

• Accredited by the Institution of Engineering and Technology (IET) to CEng level
offering a streamlined route to professional registration

• Industry placement opportunity
you can chose to undertake a year-long work placement, gaining valuable experience to enhance your practical and professional skills further

• Graduate employability
Our graduates have gone on to work in a variety of specialist roles in diverse industries, including; embedded systems, electronic design and biomedical monitoring

• Access to superb professional facilities
such as general electronics and assembly, digital electronics and microprocessor engineering, power electronics, control systems and communications engineering

• Study a wide range of specialist modules
course content is regularly reviewed and modules have been specifically developed to address skills gaps in the industry

• Academic and research expertise
benefit from teaching by experienced academic and research-based staff, including those from DMU’s dedicated Centre for Electronic and Communications Engineering, who are actively involved in international leadership roles in the sector.Programme

Course Structure

First semester (September to January)

• Digital Signal Processing
• Physics of Semiconductor Devices
• Engineering Business Environment and Energy Policies
• Control and Instrumentation

Second semester (February to May)

• Embedded Systems
• Research Methods
• Electromagnetic Compatibility and Signal Integrity
• Power Electronics

Third semester (June to September)

This is a major research-based individual project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your dissertation.

Teaching and Assessment

Modules are delivered through a mixture of lectures, tutorials and laboratories. The methodology ensures a good balance between theory and practice so that real engineering problems are better understood, using strong theoretical and analytical knowledge translated into practical skills.

Contact and learning hours

You will normally attend 4 hours of timetabled taught sessions each week for each module undertaken during term time, for full time study this would be 16 hours per week during term time. You are expected to undertake around 212 further hours of independent study per 30 credit modules. Alternate study modes and entry points may change the timetabled session available, please contact us for details.

Industry Accreditation

he course is fully accredited by the Institution of Engineering and Technology (IET) which is one of the world’s leading professional societies for the engineering and technology community, with more than 150,000 members in 127 countries.

IET accreditation recognises the high standard of the course and confirms the relevance of its content. In order to achieve IET accreditation the course has had to reach a certain standard in areas such as the course structure, staffing, resourcing, quality assurance, student support and technical depth.

The benefits of an IET accredited course include increased opportunities, being looked on favourably by employers and completing the first step in your journey to achieving professional Chartered Engineer (CEng) status which can be applied for following a period of suitable industrial experience after graduation.

This degree has been accredited by IET under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

You will have flexible access to our laboratories and workshops which include: electrical and electronic experimental facilities in general electronics and assembly, digital electronics and microprocessor engineering, power electronics, control systems and communications engineering. Each area is equipped with the latest experimental equipment appropriate to the corresponding areas of study and research. An additional CAD design suite provides access to computing facilities with specialist electronics CAD tools including OrCAD and PSpice. A specialised area incorporating a spacious radio frequency reverberation chamber and Faraday cage allows for experimentation in radio frequency engineering and electromagnetics, while our digital design suite is equipped with the latest 8 and 32-bit embedded microprocessor platforms together with high-speed programmable logic development environments. Power generation and conversion, industrial process control and embedded drives are provided while our communications laboratory is additionally equipped for RF engineering.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students:
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
The MS program in Electrical and Electronics Engineering aims to provide advanced education and a cutting edge research experience in electrical and electronics engineering, or in electrical and computer engineering crossing the boundary of the two disciplines. Read more
The MS program in Electrical and Electronics Engineering aims to provide advanced education and a cutting edge research experience in electrical and electronics engineering, or in electrical and computer engineering crossing the boundary of the two disciplines. The focus of this program is excellence in research. Graduates of the program can join industry or continue to work in academia.

Current faculty projects and research interests:

• Micro and Nano Systems (MEMS & NEMS)
• Wireless, Acoustic, Nano and Quantum Communication
• Waves, Optics and Photonics
• Electrical, Biological and Nano-Scale Systems
• Signal, Speech, Image and Video Processing
• Multimedia and Networking
• Machine Learning

Read less
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in electrical engineering. Read more

IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in electrical engineering

- Practical guidance from electrical engineering experts in the field

- Knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college

- Credibility as the local electrical engineering expert in your firm

- Networking contacts in the industry

- Improved career prospects and income

- An Advanced Diploma of Applied Electrical Engineering (Electrical Systems)

Next intake starts July 02, 2018, with the following intake starting October 02, 2018. Registrations are now open.

Payment is not required until 2 to 4 weeks before the start of the program.

The EIT Advanced Diploma of Applied Electrical Engineering (Electrical Systems) is recognized worldwide and has been endorsed by the International Society of Automation (ISA). Please ask us about specific information on accreditation for your location.

OVERVIEW

Join the next generation of electrical engineers and technicians and embrace a well paid, intensive yet enjoyable career by embarking on this comprehensive course on electrical engineering. It is presented in a practical and useful manner - all theory covered is tied to a practical outcome. Leading electrical engineers who are highly experienced engineers from industry, having 'worked in the trenches' in the various electrical engineering areas present the course over the web in a distance learning format using our acclaimed live e-learning techniques.

The course starts with an overview of the basic principles of electrical engineering and then goes on to discuss the essential topics in depth. With a total of 16 modules, everything that is of practical value from electrical distribution concepts to the equipment used, safety at work to power quality are all looked at in detail. Each module contains practical content so that the students can practice what they learn including the basic elements of designing a system and troubleshooting.

Most academic courses deal with engineering theory in detail but fall short when it comes to giving practical hints on what a technician is expected to know for a job in the field. In this course, the practical aspects receive emphasis so that when you go out into the field you will have the feeling that ‘you have seen it all.

*JOB OUTCOMES, INTERNATIONAL RECOGNITION AND PROFESSIONAL MEMBERSHIP:

A range of global opportunities awaits graduates of the Advanced Diploma of Applied Electrical Engineering (Electrical Systems). Pending full accreditation you may become a full member of Engineers Australia and your qualification will be recognized by Engineers Australia and (through the Dublin Accord) by leading professional associations and societies in Australia, Canada, Ireland, Korea, New Zealand, South Africa, United Kingdom and the United States. The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

For example, current enrolled students can apply for free student membership of Engineers Australia. After graduation, you can apply for membership to become an Engineering Associate, while graduates interested in UK recognition can apply for membership of the Institution of Engineering and Technology (IET) as a Technician Member of the Institution of Engineering and Technology.

This professional recognition greatly improves the global mobility of graduates, and offers you the opportunity of a truly international career.

You will be qualified to find employment as an Engineering Associate in public and private industry including transportation, manufacturing, process, construction, resource, energy and utilities industries. Engineering Associates often work in support of professional engineers or engineering technologists in a team environment. If you prefer to work in the field you may choose to find employment as a site supervisor, senior technician, engineering assistant, or similar.

WHO SHOULD COMPLETE THIS PROGRAM?

- Electrical Engineers and Technicians

- Project Engineers

- Design Engineers

- Instrumentation and Design Engineers

- Electrical Technicians

- Field Technicians

- Electricians

- Plant Operators

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Instrument Fitters and Instrumentation Engineers

- Consulting Engineers

- Production Managers

- Chemical and Mechanical Engineers

- Instrument and Process Control Technicians

In fact, anyone who wants to gain solid knowledge of the key elements of electrical engineering – to improve work skills and to create further job prospects. Even those of you who are highly experienced in electrical engineering may find it useful to attend some of the topics to gain key, up to date perspectives on electrical engineering.

PROGRAM STRUCTURE

The course is composed of 16 modules. These cover the following seven main threads to provide you with maximum practical coverage in the field of electrical engineering

- Electrical technology fundamentals

- Distribution equipment and protection

- Rotating machinery and transformers

- Power electronics

- Energy efficiency

- Earthing and safety regulations

- Operation and maintenance of electrical equipment

The 16 modules will be completed in the following order:

- Electrical Circuits

- Basic Electrical Engineering

- Fundamentals of Professional Engineering

- Electrical Drawings

- Electrical Power Distribution

- Transformers, Circuit Breakers and Switchgear

- Electrical Machines

- Power Cables and Accessories

- Earthing and Lightning / Surge Protection

- Power System Protection

- Electrical Safety and Wiring Regulations

- Testing, Troubleshooting and Maintenance of Electrical Equipment

- Energy Efficiency and Energy Use

- Power Quality

- Power Electronics and Variable Speed Drives

- DC and AC High Reliability Power Supplies

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located all around the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. We aim to give you a rapid response regarding course fees that are relevant to your individual circumstances.

We understand that cost is a major consideration before a student begins to study. For a rapid reply to your query regarding course fees and payment options, please contact a Course Advisor in your region via the below button and we will respond within two (2) business days.



Read less
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering. Read more

The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering.

Why this programme

  • Electronics and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017). It was also ranked 1st in Scotland in the Guardian and Complete University Rankings 2018.
  • You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
  • If you have an engineering background, but with little management experience and are wanting to develop your knowledge of management while also furthering your knowledge of electronics and electrical engineering, this programme is designed for you.
  • You will gain first-hand experience of managing an engineering project through the integrated system design module, allowing development of skills in project management, quality management and accountancy.
  • You will benefit from access to our outstanding laboratory facilities and interaction with staff at the forefront of research in electronics and electrical engineering.
  • This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills of management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

  • Contemporary issues in human resource management 
  • Managing creativity and innovation 
  • Managing innovative change 
  • Marketing management 
  • Operations management 
  • Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen electronics and electrical engineering subjects.

Core course

  • Integrated systems design project

Optional courses (a choice of two)

  • Computer communications
  • Electrical energy systems
  • Micro- and nano-technology
  • Microwave and millimetre wave circuit design
  • Microwave electronic and optoelectronic devices
  • Optical communications
  • Real-time embedded programming.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May - August). This will give you an opportunity to apply and consolidate your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to electronics and electrical engineering projects, and January entry students have a choice of electronics and electrical engineering projects. 

Career prospects

Career opportunities include software development, chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, development of PC peripherals and FPGA programming, defence, services for the heavy industries, for example electricity generation equipment and renewables plant, etc.

Graduates of this programme have gone on to positions such as:

Project Engineer at TOTAL

Schedule Officer at OSCO SDN BHD

Control and Automation Engineer at an oil and gas company.



Read less
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems. Read more
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems.

As a broad-based Mechanical Engineering degree this programme provides a wide variety of career options in the engineering sector.

Core study areas include experimental mechanics, simulation of advanced materials and processes structural analysis, computer aided engineering, engineering design methods, sustainable development: the engineering context, the innovation process and project management, thermofluids and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Programme modules

- Experimental Mechanics
This module introduces the following elements: experimental techniques for analysis and characterisation of various engineering materials and full-field, non-contact optical methods for deformation and strain measurements. Students will learn to identify the most appropriate experimental techniques for evaluating material response in a specific setting and for different types of materials.

- Simulation of Advanced Materials and Processes
The objective of this module is to introduce students to the concepts in numerical simulation of advanced materials and processes. To enable students to gain theoretical and practical experience in simulating mechanical behaviour of advanced materials and modelling processes related to these materials using finite element modelling techniques.

- Structural Analysis
Students will gain an understanding of modern concepts of structural analysis. They will gain practical experience in analyses of structures using finite-element modelling and understand the need for structural analysis in design.

- Computer Aided Engineering
Students will learn how to evaluate, choose and implement CAE systems. Students will learn to select and apply appropriate computer based methods and systems for modelling engineering products; analysing engineering problems; and assisting in the product design process.

- Engineering Design Methods
The aims of this module are to provide students with a working understanding of some of the main methods which may be employed in the design of products and systems. Students will learn to identify appropriate methods and techniques for use at different times and situations within a project.

- Sustainable Development: The Engineering Context
The objective of this module are to provide students with an understanding of the principles and practices of sustainable development and to provide them with an understanding of how engineers can help manufacturing businesses develop into more sustainable enterprises.

- The Innovation Process and Project Management
This module allows students to gain a clear overview of the innovation process and an understanding of the essential elements within it. Students will learn strategies for planning and carrying out innovative projects in any field.

- Thermofluids
In this module students study the fundamentals of combustion processes and understand key aspects relating to performance and emissions. Students develop knowledge and skills required by engineers entering industries involved in the design and use of combustion equipment.

- Project
In addition to the taught modules, all students undertake an individual major project. Part-time students normally undertake a major project that is based on the needs of their employing company.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling and independent research.

The programme consists of eight, week-long, taught lecture modules plus project work. Each taught module is self-contained and covers a complete target. This programme is available in both full-time and part-time forms. Full-time students commence their studies on the first Monday in October for a period of 12 months. Part-time students may commence their registration at any time between October and the following March, and take 3 years (typical) to complete the programme.

On completion of this programme, students should be able to:
- Plan and monitor multi-disciplinary projects;
- appreciate the central role of design within engineering;
- demonstrate competence in using computer based engineering techniques;
- analyse and understand complex engineering problems; and
- use team working skills and communicate effectively at an advanced technical level.

Facilities

As a student within the School of Mechanical and Manufacturing Engineering you will have access to a range of state-of-the-art equipment. Our computer labs are open 24/7 and use some of the latest industry standard software including STAR-CCM and CAD.

We have high-tech laboratories devoted to:
- Dynamics and control
- Electronics
- Fluid mechanics
- Materials
- Mechatronics
- Metrology
- Optical engineering
- Structural integrity
- Thermodynamics

Careers and further study

The programme will allow students to acquire the technical and transferable skills required to succeed in a career in industry or academic research. Graduates may also study for an MPhil or PhD with the School.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a country outside the European Union. These scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Read less
MS Engineering Management program is ranked . #17 Top Online Best Value Engineering Program in 2017.  . according to the SR Education Group. Read more

MS Engineering Management program is ranked #17 Top Online Best Value Engineering Program in 2017 according to the SR Education Group.

The MS Engineering Management degree is designed for people with engineering or science backgrounds who have moved or expect to move into areas of managerial responsibilities. The program addresses important topics such as, engineering economics and finance, quality control and management, reliability, project management and scheduling, decision making and optimization, leadership and entrepreneurship, product development and marketing, value management, and strategic management.

The MS Engineering Management program can be completed fully online, which enables students to take courses at a time and place that fits their own schedules.

There are five graduate certificate programs offered in Engineering Management: Project and Technology Management, Quality Management, Power Systems Management, Logistics and Supply Chain Management, and Construction Management.

Program Mission

The mission of MS Engineering Management programs is to provide accessible education in the theory and application of engineering management that

  • Prepares students for successful careers in industry, government, and academia
  • Applies tools and techniques in engineering management through team-based and individual-based projects
  • Promotes life-long learning
  • Serves the engineering profession

Program Objectives

In support of this mission, the Engineering Management program produces graduate who

  • Function as successful professionals in a variety of engineering disciplines
  • Function effectively in multidisciplinary environments
  • Adapt to various environments
  • Participate in further knowledge building opportunities
  • Are progressing toward Professional Registration.

MS Engineering Management program has two concentrations:

  • Construction Management
  • Power Systems Management

M.S. ENGM: Construction Management

The M.S. ENGM: Construction Management degree is one of the graduate concentrations in Engineering Management. The program is designed for graduate students who are in interested in construction related areas. Its core classes are the same as Engineering Management, however students will take other construction electives in topics such as:

  • Strategic Bidding and Estimating
  • Construction Law
  • Sustainability and LEED
  • Lean Construction

M.S. ENGM: Power Systems Management

The M.S. ENGM: Power Systems Management degree is a new graduate concentration in Engineering Management. The program is designed for graduate students who have an undergraduate degree in Electrical Engineering and are interested in power systems areas. Its core classes are the same as Engineering Management, however students will take five of the power electives in topics such as:

  • Power Electronics and Drives
  • Power Systems Operations
  • Power Systems Transients
  • Power Systems Protection
  • Introduction to the Smart Grid
  • Sustainable Electric Energy Systems
  • Power System Analysis and Design
  • Reliability Engineering


Read less
Move up the hierarchy. Whether you are looking to move up the hierarchy in your engineering career, are interested in developing analytical skills through applied research, or both, Massey’s Master of Engineering Studies unique aspects will give you a step up. Read more

Move up the hierarchy

Whether you are looking to move up the hierarchy in your engineering career, are interested in developing analytical skills through applied research, or both, Massey’s Master of Engineering Studies unique aspects will give you a step up.

Find out more about the Master of Engineering Studies parent structure.

The Master of Engineering Studies (Electronics and Computer Engineering) is a high-quality programme combining taught and research courses at a postgraduate level. It is a 120 credit qualification able to be completed in one year full-time. 

If you are already working, or your research experience is limited, this qualification will give you the learning you need to take your career to the next level or pursue more in-depth postgraduate research. 

This qualification will help you become an excellent electronic and computer engineer. You will be multi-disciplinary, have excellent practical skills and be able to design, develop and manage both software and hardware projects. You will be capable of working in a team environment to solve problems from the device level to networks, communication systems and embedded systems.

Hands-on practice as you learn

There is a strong emphasis on embedding computing & electronics technologies in every-day consumer products and the importance of the user interface.

Solve real-world problems

While you will gain a thorough knowledge of the fundamental principles of engineering, the Master of Engineering Studies emphasises the application of your engineering learnings to complex real-world industrial problems. Massey staff have strong relationships with industry and you can utilise these to find projects of relevance to you. 

Unique specialities

The degree will help you gain expertise in an area outside of the focus of your undergraduate qualification, or current employment, or help you progress your career in your area of interest.

Advanced problem-solving skills

An integral part of your learning will be the experience working in a team environment to solve problems at a variety of conceptual levels.

You’ll gain the ability to learn independently, analyse industry needs and propose and validate tangible technical solutions, identify when your knowledge of a problem is lacking, and be able access and use the information required.

Access to broad expertise and equipment

As an engineering student at Massey University, you gain access to engineering and advanced technology-related expertise as well as a huge range of equipment and knowledge such as 3D printers and world class mechanical and electronic workshops, state-of-the art microscopic and genomic facilities, horticulture and agriculture expertise, extensive farm networks and a broad range of science, health, business and humanities-related staff. This unique capacity will enable you to build machines and devices for testing hypotheses and develop products in a modern multidisciplinary engineering context.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Engineering Studies will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. It takes you to a new level in knowledge, expertise, and the critical analytic skills needed to define a problem and develop, test, and validate engineering solutions. In fact, the world engineering originates from Latin ingenium, meaning "cleverness."



Read less

Show 10 15 30 per page



Cookie Policy    X