• University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
Cranfield University Featured Masters Courses
University of Kent Featured Masters Courses
University College London Featured Masters Courses
Vlerick Business School Featured Masters Courses
Swansea University Featured Masters Courses
"electromagnetic"×
0 miles

Masters Degrees (Electromagnetic)

We have 34 Masters Degrees (Electromagnetic)

  • "electromagnetic" ×
  • clear all
Showing 1 to 15 of 34
Order by 
Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering. Read more

Important note

Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering

Mission & Goals

Electrical Engineering is the branch of engineering that deals with the study and application of electricity, electronics and engineering electromagnetics, with particular focus on electric power systems, electrical machines and their control, electronic power converters, electrical transportation systems, electrical and electronic measurements, circuit theory and electromagnetic compatibility.
An electrical engineer has a wide background of knowledge that is necessary to address ever increasing challenges of the professional and research activities. These activities span not only in the traditional field of electricity generation, transmission and distribution, but also in the multi-faceted reality of industrial and home electrical appliances and systems, the electric systems in the transportation and health-care sectors, the electromagnetic compatibility, and the measurement and diagnosis techniques, just to mention some of the most relevant possible fields of activity.
A wide and in-depth knowledge of mathematics and physics is the essential background of graduates’ qualification in electrical engineering. Fundamental is also the background in computer science, automation and electronics applied to the different areas of electrical engineering.

The programme is entirely taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Career Opportunities

There is a steady high demand for electrical engineers: in 2010, the Master of Science graduated of that year were 60, whilst the Politecnico di Milano’s Career Service received 546 requests for employment of electrical engineers. According to the Technical Report of the Evaluation Committee of Politecnico di Milano, 88% of the Master of Science graduated in Electrical Engineer in 2007, interviewed in December 2008, declared that they would have applied again to the same Electrical Engineering Programme and the 90% of the interviewed graduated declared to have a stable, full-time employment.

- Contacts
For further information about didactic aspects of the course and curricula, visit http://www.electre.polimi.it http://www.ingpin.polimi.it or contact didattica.etec(at)polimi.it.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electrical_eng_energy_ren.pdf
This track of the Master of Science in Electrical Engineering aims to form graduates with a comprehensive scientific and technological background on electrical power systems. It builds on basic disciplines (covering digital signal processing, electromagnetic compatibility and engineering electromagnetics, measurements and diagnosis techniques, power electronics and electrical drives, design of electrical machines and apparatus, etc.) and provides solid skills in the areas of electrical energy and renewable sources, electrical systems in transportation, design and automation of electrical systems. Graduates will be highly employable in the sectors of generation, transmission, distribution and utilization of electrical energy; manufacturing of electrical machines and power electronics equipment; industrial automation; design, production and operation of electrical systems for transportation (rail, automotive, aerospace and marine); companies operating on the electricity market.
The programme is taught in English.

Subjects

Measurement Oriented Digital Signal Processing, Electric Power Systems, Science And Technology of Electrical Materials, Power Electronics, Applied Statistics, Electromagnetic Compatibility, Electrical Switching Apparatus (or other offered courses), Construction and Design of Electrical Machines, Electric Systems for Transportation, Reliability Engineering and Quality Control, Electrical Drives

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering. Read more

Important note

Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering

Mission & Goals

Electrical Engineering is the branch of engineering that deals with the study and application of electricity, electronics and engineering electromagnetics, with particular focus on electric power systems, electrical machines and their control, electronic power converters, electrical transportation systems, electrical and electronic measurements, circuit theory and electromagnetic compatibility.
An electrical engineer has a wide background of knowledge that is necessary to address ever increasing challenges of the professional and research activities. These activities span not only in the traditional field of electricity generation, transmission and distribution, but also in the multi-faceted reality of industrial and home electrical appliances and systems, the electric systems in the transportation and health-care sectors, the electromagnetic compatibility, and the measurement and diagnosis techniques, just to mention some of the most relevant possible fields of activity.
A wide and in-depth knowledge of mathematics and physics is the essential background of graduates’ qualification in electrical engineering. Fundamental is also the background in computer science, automation and electronics applied to the different areas of electrical engineering.

The programme is entirely taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Career Opportunities

There is a steady high demand for electrical engineers: in 2010, the Master of Science graduated of that year were 60, whilst the Politecnico di Milano’s Career Service received 546 requests for employment of electrical engineers. According to the Technical Report of the Evaluation Committee of Politecnico di Milano, 88% of the Master of Science graduated in Electrical Engineer in 2007, interviewed in December 2008, declared that they would have applied again to the same Electrical Engineering Programme and the 90% of the interviewed graduated declared to have a stable, full-time employment.

- Contacts
For further information about didactic aspects of the course and curricula, visit http://www.electre.polimi.it http://www.ingpin.polimi.it or contact didattica.etec(at)polimi.it.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electrical_eng_smartgrid.pdf
This track of the Master of Science in Electrical Engineering provides tools to manage the new challenges of electricity systems involving increasing presence of Renewable Energy Sources (RES) and Dispersed Generation. Such a new generation paradigm drives the evolution of distribution networks towards Smart Grids. Mastering the evolution requires new professional skills, ranging from the use of information-communication technology as enabling key for enhancing traditional networks to a full knowledge of the regulation of power systems operated in liberalized energy markets. Graduates will be highly employable in the following sectors: planning and operation of distribution systems; manufacturing of RES power plants; energy market operators.
The programme is taught in English and supported by ENEL Distribuzione S.p.A

Subjects

Electric power systems; Project management: principles & tools; Electricity Market; TLC networks for electricity systems Sensors, measurements and smart metering; Electromagnetic compatibility; Electric switching apparatus (or other offered courses); Planning & operation of distribution grids with a high penetration of RES; Renewable energy sources and network interface; Regulation of electric power systems; Network automation and protection systems; tools for network simulation; Smart grids: components, functionalities & benefits

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
About the course. Study the dynamic field of efficient information transfer around the globe. We teach this course jointly with the Department of Computer Science so you get up-to-date knowledge and understanding. Read more

About the course

Study the dynamic field of efficient information transfer around the globe. We teach this course jointly with the Department of Computer Science so you get up-to-date knowledge and understanding.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

  • Network and Inter-Network Architectures
  • Network Performance Analysis
  • Data Coding Techniques for Communications and Storage
  • Advanced Communication Principles
  • Mobile Networks and Physical Layer Protocols
  • (either) Foundations of Object-Orientated Programming (or) Object-Orientated Programming and Software Design
  • Major Research Project

Examples of optional modules

  • Computer Security and Forensics
  • 3D Computer Graphics
  • Software Development for Mobile Devices
  • Cloud Computing
  • Advanced Signal Processing
  • Antennas, Propagation and Satellite Systems
  • Optical Communication Devices and Systems
  • Computer Vision
  • Broadband Wireless Techniques; Wireless Packet Data Networks and Protocols
  • System Design

Teaching and assessment

We deliver research-led teaching from our department and Computer Science with individual support for your research project and dissertation. Assessment is by examinations, coursework and a project dissertation with poster presentation.



Read less
Course description. Semiconductor photonics and electronics underpin many areas of advanced and emerging technologies, from high efficiency LED lighting to advanced photovoltaics and lasers for communications. Read more

Course description

Semiconductor photonics and electronics underpin many areas of advanced and emerging technologies, from high efficiency LED lighting to advanced photovoltaics and lasers for communications.

This course covers fundamentals through to cutting edge research in areas such as GaN materials and devices (behind the solid state lighting LED revolution), nanoscaled materials and devices, and photonic device manufacture.

You will gain a comprehensive understanding of the materials and device theory whilst developing excellent practical experimental skills in extensive semiconductor cleanroom lab-work, giving you a competitive edge for work in industry or further study.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

  • Semiconductor Materials
  • Principles of Semiconductor Device Technology
  • Packaging and Reliability of Microsystems
  • Nanoscale Electronic Devices
  • Energy Efficient Semiconductor Devices
  • Optical Communication Devices and Systems
  • Compound Semiconductor Device Manufacture
  • Major Research Project

Teaching and assessment

Research-led teaching, lectures, laboratories, seminars and tutorials. A large practical module covers the design, manufacture and characterisation of a semiconductor component, such as a laser or light emitting diode.

This involves background tutorials and hands-on practical work in the UK’s national III-V semiconductor facility.

Assessment is by examinations, coursework or reports, and a dissertation with poster presentation.



Read less
About the course. Study the key design aspects of a modern wireless communication system, in particular cellular mobile radio systems. Read more

About the course

Study the key design aspects of a modern wireless communication system, in particular cellular mobile radio systems.

There is a current shortage of communications engineers with a comprehensive appreciation of wireless system design from RF through baseband to packet protocols.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

  • Advanced Signal Processing
  • Advanced Communication Principles
  • Antennas, Propagation and Satellite Systems
  • Mobile Networks and Physical Layer Protocols
  • Broadband Wireless Techniques
  • Wireless Packet Data Networks and Protocols
  • Major Research Project

Examples of optional modules

  • Data Coding Techniques for Communication and Storage
  • Optical Communication Devices and Systems
  • Computer Vision
  • Electronic Communication Technologies
  • Data Coding Techniques for Communication and Storage

Teaching and assessment

Research-led teaching and an individual research project. Assessment is by examinations, coursework and a project dissertation with poster presentation.



Read less
Our MSc in Electronic Engineering offers content that is different to many other similarly-titled courses. It equips you with a skill set that is in demand by industry worldwide, allowing you to maximise your employability by taking a course that is broad in scope but challenging in detail. Read more

About the course

Our MSc in Electronic Engineering offers content that is different to many other similarly-titled courses. It equips you with a skill set that is in demand by industry worldwide, allowing you to maximise your employability by taking a course that is broad in scope but challenging in detail.

Electronic Engineering provides a broad master’s-level study of some of the most important aspects of electronic engineering today. It builds on your undergraduate knowledge of core aspects of electronics, supported by a module in Engineering Business Environment and Energy Policies, which provides you with an understanding of the context of engineering in the early 21st Century.

The course embraces a number of themes in areas identified as being generally under-represented in many other courses, such as power electronics and electromagnetic compatibility, providing you with as wide a range of employment opportunities as possible – whether this is in industry or continuing in research at university.

The course has achieved accreditation by the Institution of Engineering and Technology (IET) to CEng level for the full five year period.

Reasons to study

• Accredited by the Institution of Engineering and Technology (IET) to CEng level
offering a streamlined route to professional registration

• Industry placement opportunity
you can chose to undertake a year-long work placement, gaining valuable experience to enhance your practical and professional skills further

• Graduate employability
Our graduates have gone on to work in a variety of specialist roles in diverse industries, including; embedded systems, electronic design and biomedical monitoring

• Access to superb professional facilities
such as general electronics and assembly, digital electronics and microprocessor engineering, power electronics, control systems and communications engineering

• Study a wide range of specialist modules
course content is regularly reviewed and modules have been specifically developed to address skills gaps in the industry

• Academic and research expertise
benefit from teaching by experienced academic and research-based staff, including those from DMU’s dedicated Centre for Electronic and Communications Engineering, who are actively involved in international leadership roles in the sector.Programme

Course Structure

First semester (September to January)

• Digital Signal Processing
• Physics of Semiconductor Devices
• Engineering Business Environment and Energy Policies
• Control and Instrumentation

Second semester (February to May)

• Embedded Systems
• Research Methods
• Electromagnetic Compatibility and Signal Integrity
• Power Electronics

Third semester (June to September)

This is a major research-based individual project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your dissertation.

Teaching and Assessment

Modules are delivered through a mixture of lectures, tutorials and laboratories. The methodology ensures a good balance between theory and practice so that real engineering problems are better understood, using strong theoretical and analytical knowledge translated into practical skills.

Contact and learning hours

You will normally attend 4 hours of timetabled taught sessions each week for each module undertaken during term time, for full time study this would be 16 hours per week during term time. You are expected to undertake around 212 further hours of independent study per 30 credit modules. Alternate study modes and entry points may change the timetabled session available, please contact us for details.

Industry Accreditation

he course is fully accredited by the Institution of Engineering and Technology (IET) which is one of the world’s leading professional societies for the engineering and technology community, with more than 150,000 members in 127 countries.

IET accreditation recognises the high standard of the course and confirms the relevance of its content. In order to achieve IET accreditation the course has had to reach a certain standard in areas such as the course structure, staffing, resourcing, quality assurance, student support and technical depth.

The benefits of an IET accredited course include increased opportunities, being looked on favourably by employers and completing the first step in your journey to achieving professional Chartered Engineer (CEng) status which can be applied for following a period of suitable industrial experience after graduation.

This degree has been accredited by IET under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

You will have flexible access to our laboratories and workshops which include: electrical and electronic experimental facilities in general electronics and assembly, digital electronics and microprocessor engineering, power electronics, control systems and communications engineering. Each area is equipped with the latest experimental equipment appropriate to the corresponding areas of study and research. An additional CAD design suite provides access to computing facilities with specialist electronics CAD tools including OrCAD and PSpice. A specialised area incorporating a spacious radio frequency reverberation chamber and Faraday cage allows for experimentation in radio frequency engineering and electromagnetics, while our digital design suite is equipped with the latest 8 and 32-bit embedded microprocessor platforms together with high-speed programmable logic development environments. Power generation and conversion, industrial process control and embedded drives are provided while our communications laboratory is additionally equipped for RF engineering.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students:
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Tissue Engineering and Regenerative Medicine at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Tissue Engineering and Regenerative Medicine at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Every day we are hearing of ground breaking advances in the field of tissue engineering which offer tremendous potential for the future of regenerative medicine and health care. Staff at Swansea University are active in many aspects of tissue engineering.

Key Features of Tissue Engineering and Regenerative Medicine

We are actively researching many aspects of tissue engineering including the following areas:

- Characterisation and control of the stem cell niche

- Mechanical characterisation of stem cells and tissues

- Production of novel scaffolds for tissue engineering

- Electrospinning of scaffold materials

- Cartilage repair and replacement

- Bone repair and replacement

- The application of nanotechnology to regenerative medicine

- Wound healing engineering

- Reproductive Immunobiology

- Bioreactor design

As an MSc By Research Tissue Engineering and Regenerative Medicine student, you will join one of the teams at Swansea University working in tissue engineering and use state of the art research equipment within the Centre for NanoHealth, a collaborative initiative between the College of Engineering and Swansea University Medical School.

The MSc by Research in Tissue Engineering and Regenerative Medicine typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Aim of Tissue Engineering and Regenerative Medicine programme

The aim of this MSc by Research in Tissue Engineering and Regenerative Medicine is to provide you with a solid grounding within the field of tissue engineering and its application within regenerative medicine.

This will be achieved through a year of research in a relevant area of tissue engineering identified after discussion with Swansea academic staff. Working with two academic supervisors you will undertake a comprehensive literature survey which will enable the formulation of an experimental research programme.

As a student on the MSc by Research Tissue Engineering and Regenerative Medicine course, you will be given the relevant laboratory training to undertake the research program. The research will be written up as a thesis that is examined. You will also be encouraged to present your work in the form of scientific communications such as journals and conference poster presentation.

The MSc by Research in Tissue Engineering and Regenerative Medicine will equip you with a wealth of research experience and knowledge that will benefit your future career in academia or the health care industries.

Recent MSc by Research theses supervised in the area of Tissue Engineering at Swansea University include:

- Quality assurance of human stem cell/primary cell bank

- The development of electrospinning techniques for the production of novel tissue engineering scaffolds.

- The incorporation of pulsed electromagnetic fields into wound dressings.

- The application of pulsed electromagnetic fields for improved wound healing.

- The use of nanoparticles in the control of bacterial biofilms in chronic wounds.

- The control of bacterial adhesion at surfaces relevant to regenerative medicine.

- The production of micro-porous particles for bone repair

Facilities

The £22 million Centre for Nanohealth is a unique facility linking engineering and medicine, and will house a unique micro-nanofabrication clean room embedded within a biological research laboratory and with immediate access to clinical research facilities run by local NHS clinicians.

Links with industry

The academic staff of the Medical Engineering discipline have always had a good relationship with industrial organisations. The industrial input ranges from site visits to seminars delivered by clinical contacts.

The close proximity of Swansea University to two of the largest NHS Trusts in the UK outside of London also offers the opportunity for collaborative research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
Overview. This is a one year full-time or two or more years part-time taught course. Course Structure. Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules. Read more

Overview

This is a one year full-time or two or more years part-time taught course.

Course Structure

Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules. Modules include Computational Physics, Quantum Mechanics, Mathematical Methods, Condensed Matter Theory, Astrophysics and Cosmology, Particle Physics, Quantum Information Processing, Chaos and Nonlinear Dynamics, Electromagnetic Theory and Statistical Methods.

Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules.

Duration:2 or more years Part-time



Read less
Overview. This is a one year full-time or two or more years part-time taught course. Course Structure. Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules. Read more

Overview

This is a one year full-time or two or more years part-time taught course.

Course Structure

Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules. Modules include Computational Physics, Quantum Mechanics, Mathematical Methods, Condensed Matter Theory, Astrophysics and Cosmology, Particle Physics, Quantum Information Processing, Chaos and Nonlinear Dynamics, Electromagnetic Theory and Statistical Methods.

Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules.

Duration: 1 year Full-time




Read less
On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology. Read more

On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology.

A rewarding career

Engineers apply scientific and technological principles to solve problems in a creative way. It’s a well-paid and rewarding career that is constantly changing with new developments in technology. And with a shortage of electrical and electronic engineers in the UK, your skills will be in demand.

Electrical engineers are at the forefront of many innovations in the way we live and work today. They design, produce and install systems which power and control a range of products and digital communications.

What you study

You can follow your interests to create the right programme of study for you. Initially, you take two modules in engineering principles. Then, with guidance from your course leader, you select from a range of technical modules covering topics including electrical and control engineering and electronic systems.

In addition to your technical modules, you also take an engineering management subject and participate in a multidisciplinary product development project with MSc students from a range of engineering specialisms. You develop an understanding of how engineering projects work and how they relate to the commercial world, as well as becoming part of our engineering community and learning to think like an engineer.

One third of your study will be an individual project and dissertation. You specialise in a technical area of your interest and carry out your own in-depth investigation into a particular problem. Where possible, this will be an industry-related problem.

Expertise

Many of our academic staff are actively involved in research. Examples of recent projects include • developing equipment to monitor the bone mineral density of young children for Sheffield Children's Hospital • developing palm-sized robots to enable firefighters to safely enter and negotiate hazards in burning buildings.

Course structure

Core modules

  • engineering principles
  • electrical and electronic engineering
  • international product development (group project)

Plus one of either

  • project and quality management

or

  • global supply chain and manufacturing strategy.

Options

Your remaining four modules are themed in the following subjects.

You can choose to specialise in one theme or a mix of both:

Electrical and Control Engineering

• electrical energy systems • efficient machines and electromagnetic applications • control of linear systems • industrial automation

Electronic Systems

• digital electronic systems design • mixed signal design • digital signal processing • microprocessor engineering

Assessment

Assessments will be a mix of coursework and exam, depending on the specific module studied.

Employability

You can work in areas such as • global telecommunications • consumer electronics • computer electronics • aerospace • automotive • railway • robotics • general manufacturing • water, gas and electricity supply.

You can specialise in the design of • computers • mobile phones • media streamers • satellite dishes • instrumentation and control systems • aeroplanes • military equipment • cars • electrical energy systems.

Our graduates have developed careers with companies including • BBC • Tata Steel • Emhart Glass • Sony Mobile Communications • Honeywell Control Systems • Motorola • Rolls-Royce • First ScotRail • Siemens • Vodafone.



Read less
This programme will offer home astronomers, who may have graduated in subjects other than physics, the opportunity to gain a formal postgraduate qualification in Astronomy and Astrophysics, and is designed to give students a robust and up-to-date background in these areas. Read more
This programme will offer home astronomers, who may have graduated in subjects other than physics, the opportunity to gain a formal postgraduate qualification in Astronomy and Astrophysics, and is designed to give students a robust and up-to-date background in these areas. Over the course of two years, we will explore the solar system, stellar physics, infra-red, radio and high energy astronomy, as well as discussing the foundations of cosmology.

By its very nature, astronomy is a mathematical subject - students will therefore need a background in this area, although fully-supported maths master classes will be a permanent feature on the programme for those who need to refresh their skills in this area.

The programme starts in late September/early October each academic year, as well as a second start date in January each year – places are limited to ensure a constructive atmosphere for discussions.

This is a part-time, postgraduate-level programme delivered wholly online in a fully-supported learning environment. Students can exit with a Postgraduate Certificate after successful completion of the first year if their circumstances change.

Overview

Through this programme, students will:
-Gain a comprehensive knowledge of the development of astronomy, astronomy in the visible region of the electromagnetic spectrum, the solar system and stellar physics.
-Learn that physics is a quantitative subject and appreciate the use and power of mathematics for modelling the physical world and solving problems.
-Develop skills in research and planning and their ability to assess critically the link between theoretical results and experimental observation.
-Develop the ability to solve advanced problems in physics using appropriate mathematical tools.
-Be able to identify the relevant physical principles, to translate problems into mathematical statements and apply their knowledge to obtain order-of-magnitude or more precise solutions as appropriate.
-Develop the ability to plan and execute under supervision an experiment or investigation, analyse critically the results and draw valid conclusions.
-Be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare these results with expected outcomes, theoretical predictions or with published data.
-Possess a more complete working knowledge of a variety of experimental, mathematical and computational techniques applicable to current research within physics.

Structure

This part-time two-year programme will comprise six 20-credit modules:
Year One
-Introduction to Astronomy
-Stellar Physics
-The Solar System

Year Two
-Infrared and Radio Astronomy
-High Energy Astronomy
-The Foundations of Cosmology

Students will be required to complete all these modules in the first instance, though additional modules may be added in the future to accommodate future programme growth and offer a broader learning experience.

It is anticpated that assessments will comprise a balance of short and long critical essays, conference style posters and maths-based open book problems.

Online Study

Our approach to e-learning is distinctive and may be different from your general perceptions about online study:
-Flexible, fully supported, modular delivery
-Taught exclusively online
-Two stages: Certificate and Diploma. Each stage typically takes 12 months
-Comprises six distinct modules
-Part-time study (approximately 15 hours per week) allows participants to structure their learning around the other life circumstances

Read less
The Department of Philosophy has exceptional research strength in philosophy of physics, and very strong links with the School of Physics. Read more
The Department of Philosophy has exceptional research strength in philosophy of physics, and very strong links with the School of Physics. Our MA draws on these strengths. It is intended both for students who wish to specialise in philosophy of physics at a higher level, and for individuals with a background in physics or mathematics who wish to make a transition to philosophy and foundations of physics. The course consists of five taught units in philosophy, two taught master's units in physics, and a 15,000-word dissertation.

As a postgraduate student, you will be an active member of the department’s flourishing research culture. You will be encouraged to attend and participate in both the weekly departmental research seminar and in the Philosophy and History of Science seminars, which often feature well-known scholars in the field, from Bristol and beyond. There is also a weekly postgraduate seminar, where you may present your own work before your peers and learn to develop your argumentative strategies in a supportive environment.

Programme structure

The MA consists of taught components in philosophy and physics, as well as a dissertation.

Core units
- Philosophical Writing and Research Methods (Philosophy, 20-credit unit)
- A mandatory, two-hour weekly seminar developing ideas, bibliographical and writing skills necessary for philosophical research. The unit is assessed by seminar contributions and presentations.
- Scientific Methodology and Epistemology (Philosophy, 20-credit unit)
This unit concerns core topics in scientific epistemology and metaphysics. The unit is examined on the basis of an essay of 5,000-6,000 words. As with all assessed essays, you may meet with a supervisor to discuss your work and to receive feedback on a draft essay.
- Philosophy of Physics (Philosophy, 20-credit unit)
This unit covers philosophical issues related to basic physical theories, focusing on conceptual issues in the foundations of quantum theory and special relativity. We will cover topics such as the relativity of simultaneity; geometry and the causal structure of relativity physics; the conceptual structure of quantum mechanics, the Einstein-Podolsky-Rosen argument; the measurement problem and Schrödinger’s cat paradox of; locality and action-at-a-distance.
- Advanced Philosophy of Physics (Philosophy, 20-credit unit)
This unit will examine a selection of conceptual issues in the foundations of physical theory with particular focus on the physics of the mid-to-late 20th century. We cover topics such as: the arrow of time in thermal physics; the interpretation of quantum field theory; emergence and universality in condensed matter physics; fine tuning problems and inflationary cosmology; spontaneous symmetry breaking and the Higgs mechanism; and time in quantum gravity.
- Foundations of Modern Physics (Physics, 10-credit unit)
Emphasis is placed on students developing an appreciation of the foundations of different areas of physics, and the unit assessment involves students writing an essay whose detailed subject is partly decided by the student. The lectures are divided into Classical, Spacetime and Quantum Physics.
- Relativistic Field Theory (Physics, 10-credit unit)
This course will give an account of the modern approach to special relativity and Lagrangian field theory, and their role in the covariant description of the classical electromagnetic field, and the relativistic quantum Klein-Gordon and Dirac equations. Formative assessment is through problem sheets discussed in problems classes. Summative assessment is through a 2 hour written examination

Optional units (all Philosophy 20-credit units)
- History of Science
- Logic
- Philosophy and History of Mathematics
- Philosophy and History of Medicine
- Philosophy of Biology
- Philosophy of Psychology
- An individual, supervised research project

Please be aware that optional units may vary from year to year.

Careers

The MA in Philosophy of Physics is an ideal platform for further studies in Philosophy or Foundations of Physics. This course will also provide students with Maths and Physics backgrounds with an opportunity to develop verbal, written and argumentative skills that are highly valued by employers.

Read less
Our MPhil/PhD research degree programme offers you. Wide variety of research interests. The Institute of Science and the Environment has a strong mix of academics with a high degree of professional and personal experience, enabling you to get the most out of your programme. Read more
Our MPhil/PhD research degree programme offers you:

Wide variety of research interests
The Institute of Science and the Environment has a strong mix of academics with a high degree of professional and personal experience, enabling you to get the most out of your programme. Our staff have expertise in river science, glacial geomorphology, environmental geology, GIS and remote sensing.

Excellent supervision
Benefit from a professional and challenging relationship with your supervisory team, drawn from experienced academics working at the forefront of their disciplines.

Resources
Access to the University of Worcester’s virtual resources and its state of the art library facilities. The Physical Geography team at Worcester have an excellent range of resources available to support your learning and your research project, including; field equipment including a Teledyne StreamPro Acoustic Doppler Current Profiler (ADCP), a 2D Flow Tracker, six Valeport Electromagnetic current meters, three portable YSI multi-parameter water quality probes, an ISCO automatic liquid sampler, Solinst water level and water temperature data loggers, Tinytag water temperature data loggers and tipping bucket logging rain gauges. Two hydrological monitoring sites on local streams (Leigh Brook and Bow Brook) continuously monitor water level and various water quality parameters (pH, temperature, specific conductance, dissolved oxygen, turbidity) with data logged every 15 minutes and accessible online via telemetry in real-time. Each site also has an ISCO automatic liquid sampler The field equipment and hydrological monitoring sites are managed and maintained by a specialist Physical Geography technician and field equipment can booked out through him.

Survey equipment includes a Draganflyer X6 Unmanned Aerial System (UAS) with three staff licensed with the Civil Aviation Authority to fly it in the UK, mapping and survey grade GPS, a Leica Terrestrial Laser Scanner, total stations, quickset levels and laser distance measurers.

The Institute of Science and the Environment has a fully-equipped GIS, Mapping and Visualization Suite, which provides access to high-end computers, industry-standard GIS (ArcGIS) and statistical analysis software (e.g. Primer-E, Matlab, SPSS) and other mapping and remote sensing software (e.g. ENVI and Photoscan Pro (Agisoft LLC)). This facility is run by GIS technicians, who provide advice and training to students and the suite also has its own A3 colour laser printer and A3 scanner for staff and student use. The Institute also has digital camcorders, cameras and microphones which students can use for data capture. A further six science and geography technicians offer support with field and laboratory based work.

Recent successful projects have included Dr Caroline Wallis who evaluated the Spatial Configuration and Temporal Dynamics of Hydraulic Patches in Three UK Lowland Rivers (2014), Dr Martin Wilkes who examined The Hydrodynamics of River Ecosystems: Towards an Objective and Ecologically Relevant Classification of Mesohabitat (2014), and Dr Amy Woodget who quantified Physical River Habitat Parameters Using Hyperspatial Resolution UAS Imagery and SfM-photogrammetry (2015). Some of our current research students are exploring The influence of physical habitat heterogeneity on macroinvertebrate community response to fine sediment deposition in river ecosystems (George Bunting).

Read less
Become part of something bigger. Take part in a research-led physical geography programme and have an excellent, world-class learning experience. Read more

Become part of something bigger

Take part in a research-led physical geography programme and have an excellent, world-class learning experience.

Find out more about the Master of Science parent structure.

Massey’s Master of Sciences (Geography) will give you the knowledge and skills to understand and help solve some of the world’s most important environmental issues like flooding, coastal erosion, sea level change, landslide hazards and environmental change.

Broad range of equipment and facilities

You will have access to a wide range of techniques and equipment, making it easier to progress your research in a timely and comprehensive fashion. From ground survey equipment like a Trimble RTK differential GPS and S6 robotic total station and a ground penetrating radar to a range of coring apparatus e.g., lake/bog corers, percussion corer and vibracorer and Schmidt hammers for relative age dating of boulders we have the specialist equipment to help your research meet global standards.

Other equipment includes:

  • Fully equipped palynology laboratory
  • SEM, TEM and Confocal microscopes (via the Manawatu Microscopy and Imaging Centre)
  • Classifynder automated microscope system prototype (see http://www.classifynder.com)
  • Laser particle size analyser
  • Sontek M9 river surveyor (ADCP flow meter)
  • Several electromagnetic flow meters
  • Chirp Sub-bottom sonar

Work readiness

Our strong relationship with industry and counciis and the masters programmes research element make our graduates very attractive to potential employers such as environmental consultancies and regional councils.

Globally-renowned expertise

Let our experts help you develop your own expertise.

Massey’s geography lecturers have an extensive range of experience and expertise. The ratio of staff to students is high. Your lecturers will be your mentors, working alongside you to fully engage you in the practical and theoretical aspects of advanced physical geography study, to prepare you for life in the workplace in a specialist sense or preparing you for research at a higher level.

World-leading

Massey’s geography programmes are ranked as some of the best globally. Out of 800 of the world’s leading universities we were ranked in the top 200 in the QS World University Rankings.

Gain expertise in an area of your choice

The physical geography team at Massey research and have expertise in fluvial processes, coastal processes, slope processes, palynology, biogeography, palaeoecology and river solutions. During the course of your studies you can choose to further your knowledge and apply your learning on an exciting research project like:

  • Monitoring active landslides in glaciated valleys
  • Age estimation of ancient glaciated rockslides
  • Refining understanding of marine terrace development
  • Reconstructing the evolution of estuaries and coastal environmentsStatistical analyses of earthquake-induced landslides
  • 3D soil mapping
  • Pollen-based vegetation and climate reconstructions
  • Applications of automated palynology systems
  • Mapping floodplain geomorphology
  • Flood series extension

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study.

The postgraduate study experience

Some courses in the geography major are taught in block mode, which means you come onto campus for a period. This gives you the opportunity to come to Massey for a semester and spend valuable time with lecturers and fellow students in lectures, seminars, student-led presentations and seminars, lab work, field work day trips, small group discussions, and residential field work.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. It takes you to a new level in knowledge and expertise especially in planning, time management, setting goals and milestones and undertaking research.

Geography options

The Master of Science (Geography) may comprise a selection of courses from across both physical and human geography. However, normally students taking this programme will focus on physical geography and it is this experience that is described in these pages.

Students should also consult the Master of Arts (Geography) programme pages for a description of the equivalent experience in human geography.



Read less
Quantum technology has been selected by the UK Government as a key area of innovation, moving science into real-world applications. Read more

Quantum technology has been selected by the UK Government as a key area of innovation, moving science into real-world applications. The first phase of the UK National Quantum Technology initiative has received £350 million of government funding to create a flourishing industry in this area in the UK.

Four Quantum Technology Hubs have been established as flagship projects in this program. This postgraduate training programme is aligned with the UK National Quantum Technology Hub in Sensors and Metrology, an £80 million collaborative effort led by the University of Birmingham in partnership with the Universities of Glasgow, Nottingham, Southampton, Strathclyde and Sussex, the National Physical Laboratory and over 70 companies.

Course details

The MRes programme offers a unique opportunity for students to undertake a research-based Masters degree in a multi-disciplinary environment between science, engineering and industry. Students benefit from participating in both the technology translation and applied research activities carried out within the UK National Quantum Technology Hub in Sensors and Metrology, and from the educational programmes offered by the College of Engineering and Physical Sciences. The programme comprises classroom taught quantum physics-oriented modules for students with engineering backgrounds; technology-orientated modules for students with physics backgrounds; and an independent research project that is documented in a substantial thesis.

The research project consists of a team element; all students will organise themselves to present a technical demonstration at a national or international conference. There is also an individual research element, which takes place in industry or in relation to a participating company.

It will include 70 credits of classroom taught modules and a research project worth 110 credits, consisting of team and individual elements.

The team element of the research project teaches technical, team working, project management, communication and presentation skills with an emphasis on responsible research and innovation. The individual element of the research project focuses on problems relevant to industry and will be carried out in close collaboration with industry partners.

Related links

Learning and teaching

The Birmingham led UK National Quantum Technology Hub in Sensors and Metrology is a cross-disciplinary centre, involving staff from the Schools of Physics, Civil, Electrical and Materials Engineering, as well as staff from a number of other Schools across the University. It will translate fundamental science and applied research in quantum sensors and metrology based on atomic probe particles, providing high level educational opportunities in these fields.

The Hub’s research activities include research in the development of sensors for gravity, magnetic fields, rotation, electromagnetic fields and time. It also researches their applications in a diverse range of sectors including aviation, communication, construction, defense, energy, finance, healthcare, oil and mineral exploration, transport and space.

The Translational Quantum Technology programme aims at preparing students for the challenges in translating quantum sensors and metrology devices based on atoms as probe particles into real-world applications. After the programme, students should understand the underpinning science and technology; the needs of end-user applicants; and the impact of these quantum technology devices on society. They should be able to move seamlessly between academia and industry, and translate scientific outcomes into technology.

The programme will create a strongly networked cohort of students with practical experience in academia and industry. It aims:

  • to develop students' research and technological skills, and their knowledge of research methods applicable to the specific issues arising in quantum technology-related research;
  • to ensure that students are aware of state-of-the-art developments in quantum technology in specific technical and operational topic areas;
  • to allow students to develop the understanding necessary to identify new and emerging research needs in the emerging quantum technology industry;
  • to enable students to develop the knowledge and skills required to independently undertake a significant research project of relevance to the quantum technology industry including users of quantum technology.

Employability

This programme is a unique opportunity to acquire translational skills, including specific skills of relevance to the emerging quantum technology industry. The UK National Quantum Technology Hub in Sensors is actively engaged with a growing number of industry partners, currently standing at 70 companies from various sectors of the economy. Industry secondments to our partners will foster career prospects.



Read less

Show 10 15 30 per page



Cookie Policy    X