• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Birmingham City University Featured Masters Courses
De Montfort University Featured Masters Courses
University College London Featured Masters Courses
Cranfield University Featured Masters Courses
Staffordshire University Featured Masters Courses
Cardiff University Featured Masters Courses
"electromagnetic"×
0 miles

Masters Degrees (Electromagnetic)

We have 37 Masters Degrees (Electromagnetic)

  • "electromagnetic" ×
  • clear all
Showing 1 to 15 of 37
Order by 
Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering. Read more

Important note

Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering

Mission & Goals

Electrical Engineering is the branch of engineering that deals with the study and application of electricity, electronics and engineering electromagnetics, with particular focus on electric power systems, electrical machines and their control, electronic power converters, electrical transportation systems, electrical and electronic measurements, circuit theory and electromagnetic compatibility.
An electrical engineer has a wide background of knowledge that is necessary to address ever increasing challenges of the professional and research activities. These activities span not only in the traditional field of electricity generation, transmission and distribution, but also in the multi-faceted reality of industrial and home electrical appliances and systems, the electric systems in the transportation and health-care sectors, the electromagnetic compatibility, and the measurement and diagnosis techniques, just to mention some of the most relevant possible fields of activity.
A wide and in-depth knowledge of mathematics and physics is the essential background of graduates’ qualification in electrical engineering. Fundamental is also the background in computer science, automation and electronics applied to the different areas of electrical engineering.

The programme is entirely taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Career Opportunities

There is a steady high demand for electrical engineers: in 2010, the Master of Science graduated of that year were 60, whilst the Politecnico di Milano’s Career Service received 546 requests for employment of electrical engineers. According to the Technical Report of the Evaluation Committee of Politecnico di Milano, 88% of the Master of Science graduated in Electrical Engineer in 2007, interviewed in December 2008, declared that they would have applied again to the same Electrical Engineering Programme and the 90% of the interviewed graduated declared to have a stable, full-time employment.

- Contacts
For further information about didactic aspects of the course and curricula, visit http://www.electre.polimi.it http://www.ingpin.polimi.it or contact didattica.etec(at)polimi.it.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electrical_eng_energy_ren.pdf
This track of the Master of Science in Electrical Engineering aims to form graduates with a comprehensive scientific and technological background on electrical power systems. It builds on basic disciplines (covering digital signal processing, electromagnetic compatibility and engineering electromagnetics, measurements and diagnosis techniques, power electronics and electrical drives, design of electrical machines and apparatus, etc.) and provides solid skills in the areas of electrical energy and renewable sources, electrical systems in transportation, design and automation of electrical systems. Graduates will be highly employable in the sectors of generation, transmission, distribution and utilization of electrical energy; manufacturing of electrical machines and power electronics equipment; industrial automation; design, production and operation of electrical systems for transportation (rail, automotive, aerospace and marine); companies operating on the electricity market.
The programme is taught in English.

Subjects

Measurement Oriented Digital Signal Processing, Electric Power Systems, Science And Technology of Electrical Materials, Power Electronics, Applied Statistics, Electromagnetic Compatibility, Electrical Switching Apparatus (or other offered courses), Construction and Design of Electrical Machines, Electric Systems for Transportation, Reliability Engineering and Quality Control, Electrical Drives

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
About the course. Study the dynamic field of efficient information transfer around the globe. We teach this course jointly with the Department of Computer Science so you get up-to-date knowledge and understanding. Read more

About the course

Study the dynamic field of efficient information transfer around the globe. We teach this course jointly with the Department of Computer Science so you get up-to-date knowledge and understanding.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

  • Network and Inter-Network Architectures
  • Network Performance Analysis
  • Data Coding Techniques for Communications and Storage
  • Advanced Communication Principles
  • Mobile Networks and Physical Layer Protocols
  • (either) Foundations of Object-Orientated Programming (or) Object-Orientated Programming and Software Design
  • Major Research Project

Examples of optional modules

  • Computer Security and Forensics
  • 3D Computer Graphics
  • Software Development for Mobile Devices
  • Cloud Computing
  • Advanced Signal Processing
  • Antennas, Propagation and Satellite Systems
  • Optical Communication Devices and Systems
  • Computer Vision
  • Broadband Wireless Techniques; Wireless Packet Data Networks and Protocols
  • System Design

Teaching and assessment

We deliver research-led teaching from our department and Computer Science with individual support for your research project and dissertation. Assessment is by examinations, coursework and a project dissertation with poster presentation.



Read less
Course description. Semiconductor photonics and electronics underpin many areas of advanced and emerging technologies, from high efficiency LED lighting to advanced photovoltaics and lasers for communications. Read more

Course description

Semiconductor photonics and electronics underpin many areas of advanced and emerging technologies, from high efficiency LED lighting to advanced photovoltaics and lasers for communications.

This course covers fundamentals through to cutting edge research in areas such as GaN materials and devices (behind the solid state lighting LED revolution), nanoscaled materials and devices, and photonic device manufacture.

You will gain a comprehensive understanding of the materials and device theory whilst developing excellent practical experimental skills in extensive semiconductor cleanroom lab-work, giving you a competitive edge for work in industry or further study.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

  • Semiconductor Materials
  • Principles of Semiconductor Device Technology
  • Packaging and Reliability of Microsystems
  • Nanoscale Electronic Devices
  • Energy Efficient Semiconductor Devices
  • Optical Communication Devices and Systems
  • Compound Semiconductor Device Manufacture
  • Major Research Project

Teaching and assessment

Research-led teaching, lectures, laboratories, seminars and tutorials. A large practical module covers the design, manufacture and characterisation of a semiconductor component, such as a laser or light emitting diode.

This involves background tutorials and hands-on practical work in the UK’s national III-V semiconductor facility.

Assessment is by examinations, coursework or reports, and a dissertation with poster presentation.



Read less
About the course. Study the key design aspects of a modern wireless communication system, in particular cellular mobile radio systems. Read more

About the course

Study the key design aspects of a modern wireless communication system, in particular cellular mobile radio systems.

There is a current shortage of communications engineers with a comprehensive appreciation of wireless system design from RF through baseband to packet protocols.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

  • Advanced Signal Processing
  • Advanced Communication Principles
  • Antennas, Propagation and Satellite Systems
  • Mobile Networks and Physical Layer Protocols
  • Broadband Wireless Techniques
  • Wireless Packet Data Networks and Protocols
  • Major Research Project

Examples of optional modules

  • Data Coding Techniques for Communication and Storage
  • Optical Communication Devices and Systems
  • Computer Vision
  • Electronic Communication Technologies
  • Data Coding Techniques for Communication and Storage

Teaching and assessment

Research-led teaching and an individual research project. Assessment is by examinations, coursework and a project dissertation with poster presentation.



Read less
Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering. Read more

Important note

Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering

Mission & Goals

Electrical Engineering is the branch of engineering that deals with the study and application of electricity, electronics and engineering electromagnetics, with particular focus on electric power systems, electrical machines and their control, electronic power converters, electrical transportation systems, electrical and electronic measurements, circuit theory and electromagnetic compatibility.
An electrical engineer has a wide background of knowledge that is necessary to address ever increasing challenges of the professional and research activities. These activities span not only in the traditional field of electricity generation, transmission and distribution, but also in the multi-faceted reality of industrial and home electrical appliances and systems, the electric systems in the transportation and health-care sectors, the electromagnetic compatibility, and the measurement and diagnosis techniques, just to mention some of the most relevant possible fields of activity.
A wide and in-depth knowledge of mathematics and physics is the essential background of graduates’ qualification in electrical engineering. Fundamental is also the background in computer science, automation and electronics applied to the different areas of electrical engineering.

The programme is entirely taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Career Opportunities

There is a steady high demand for electrical engineers: in 2010, the Master of Science graduated of that year were 60, whilst the Politecnico di Milano’s Career Service received 546 requests for employment of electrical engineers. According to the Technical Report of the Evaluation Committee of Politecnico di Milano, 88% of the Master of Science graduated in Electrical Engineer in 2007, interviewed in December 2008, declared that they would have applied again to the same Electrical Engineering Programme and the 90% of the interviewed graduated declared to have a stable, full-time employment.

- Contacts
For further information about didactic aspects of the course and curricula, visit http://www.electre.polimi.it http://www.ingpin.polimi.it or contact didattica.etec(at)polimi.it.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electrical_eng_smartgrid.pdf
This track of the Master of Science in Electrical Engineering provides tools to manage the new challenges of electricity systems involving increasing presence of Renewable Energy Sources (RES) and Dispersed Generation. Such a new generation paradigm drives the evolution of distribution networks towards Smart Grids. Mastering the evolution requires new professional skills, ranging from the use of information-communication technology as enabling key for enhancing traditional networks to a full knowledge of the regulation of power systems operated in liberalized energy markets. Graduates will be highly employable in the following sectors: planning and operation of distribution systems; manufacturing of RES power plants; energy market operators.
The programme is taught in English and supported by ENEL Distribuzione S.p.A

Subjects

Electric power systems; Project management: principles & tools; Electricity Market; TLC networks for electricity systems Sensors, measurements and smart metering; Electromagnetic compatibility; Electric switching apparatus (or other offered courses); Planning & operation of distribution grids with a high penetration of RES; Renewable energy sources and network interface; Regulation of electric power systems; Network automation and protection systems; tools for network simulation; Smart grids: components, functionalities & benefits

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Tissue Engineering and Regenerative Medicine at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Tissue Engineering and Regenerative Medicine at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Every day we are hearing of ground breaking advances in the field of tissue engineering which offer tremendous potential for the future of regenerative medicine and health care. Staff at Swansea University are active in many aspects of tissue engineering.

Key Features of Tissue Engineering and Regenerative Medicine

We are actively researching many aspects of tissue engineering including the following areas:

- Characterisation and control of the stem cell niche

- Mechanical characterisation of stem cells and tissues

- Production of novel scaffolds for tissue engineering

- Electrospinning of scaffold materials

- Cartilage repair and replacement

- Bone repair and replacement

- The application of nanotechnology to regenerative medicine

- Wound healing engineering

- Reproductive Immunobiology

- Bioreactor design

As an MSc By Research Tissue Engineering and Regenerative Medicine student, you will join one of the teams at Swansea University working in tissue engineering and use state of the art research equipment within the Centre for NanoHealth, a collaborative initiative between the College of Engineering and Swansea University Medical School.

The MSc by Research in Tissue Engineering and Regenerative Medicine typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Aim of Tissue Engineering and Regenerative Medicine programme

The aim of this MSc by Research in Tissue Engineering and Regenerative Medicine is to provide you with a solid grounding within the field of tissue engineering and its application within regenerative medicine.

This will be achieved through a year of research in a relevant area of tissue engineering identified after discussion with Swansea academic staff. Working with two academic supervisors you will undertake a comprehensive literature survey which will enable the formulation of an experimental research programme.

As a student on the MSc by Research Tissue Engineering and Regenerative Medicine course, you will be given the relevant laboratory training to undertake the research program. The research will be written up as a thesis that is examined. You will also be encouraged to present your work in the form of scientific communications such as journals and conference poster presentation.

The MSc by Research in Tissue Engineering and Regenerative Medicine will equip you with a wealth of research experience and knowledge that will benefit your future career in academia or the health care industries.

Recent MSc by Research theses supervised in the area of Tissue Engineering at Swansea University include:

- Quality assurance of human stem cell/primary cell bank

- The development of electrospinning techniques for the production of novel tissue engineering scaffolds.

- The incorporation of pulsed electromagnetic fields into wound dressings.

- The application of pulsed electromagnetic fields for improved wound healing.

- The use of nanoparticles in the control of bacterial biofilms in chronic wounds.

- The control of bacterial adhesion at surfaces relevant to regenerative medicine.

- The production of micro-porous particles for bone repair

Facilities

The £22 million Centre for Nanohealth is a unique facility linking engineering and medicine, and will house a unique micro-nanofabrication clean room embedded within a biological research laboratory and with immediate access to clinical research facilities run by local NHS clinicians.

Links with industry

The academic staff of the Medical Engineering discipline have always had a good relationship with industrial organisations. The industrial input ranges from site visits to seminars delivered by clinical contacts.

The close proximity of Swansea University to two of the largest NHS Trusts in the UK outside of London also offers the opportunity for collaborative research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
Join us for our. Master Open Day. to find out more about our courses. Geophysics is the remote study of the Earth's interior through physical techniques – principally analysing seismic data, but also applying gravity, magnetic, electrical and electromagnetic methods. Read more

Join us for our Master Open Day to find out more about our courses.

Geophysics is the remote study of the Earth's interior through physical techniques – principally analysing seismic data, but also applying gravity, magnetic, electrical and electromagnetic methods.

It is a key element of oil, gas and mineral exploration, environmental and archaeological assessment, and engineering site investigation.

This course prepares you to embark on a career in resource exploration, environmental and engineering geophysics.

Running continuously for over 50 years it is very firmly established and has strong links to industry. It provides you with a broad range of practical skills, underpinned by a theoretical understanding that equips you to become a professional in your chosen field.

You will also undertake a four-month individual project, mostly in association with an external company or institute and often in their offices.

Demand for geophysicists continues to be high and this well-established course has an exceptionally good record of job placement for both UK/EU and overseas students.

Course highlights:

  • Network with energy, geophysical acquisition, processing and software companies, who visit regularly to engage and recruit our students.
  • Complete a 4 month individual project, mostly in association with an external company or institute and often in their offices.
  • Access our state-of-the-art computer suite that runs a comprehensive range of industry-standard software on hi-spec twin-screen workstations.
  • Develop your field skills with our sector-leading portfolio of field geophysical equipment.
  • Apply for a scholarship – we have a large number of School and dedicated external (industry) scholarships for UK/EU applicants.


Read less
Ideal for you if you are a professional with a background in computer engineering, communication systems or electronic/electrical engineering, and provides you with the skills and knowledge needed to move into computer networking. Read more

Ideal for you if you are a professional with a background in computer engineering, communication systems or electronic/electrical engineering, and provides you with the skills and knowledge needed to move into computer networking. It is particularly useful for people working in companies that rely on constant innovation in electronics, computer engineering and communications.

Computer networks currently provide the infrastructure for most, businesses, educational institutions, retailers, manufacturers and public services. Many companies rely increasingly on computer and network engineering, which is now a global discipline.

This course is hardware and software based, and examines the design, specification, and integration of current and next generation computer and communications network technologies.

This course provides an opportunity for you to

  • increase the depth of your technical knowledge
  • develop your computer hardware and software skills
  • gain a thorough working knowledge of computer engineering
  • study the latest technologies used in modern day computer networking systems and their applications
  • gain the skills needed to design, develop and maintain computer network systems

You may wish to expand your current knowledge and expertise if you already have computer networking skills or possibly move into a new area of engineering and have the necessary entry requirements for this course.

Professional recognition

This programme is CEng accredited by the Institution of Engineering and Technology (IET) and fulfils the educational requirements for registration as a Chartered Engineer when presented with an CEng accredited Bachelors programme.

Course structure

Full time – September start – typically 12 or 18 months

Full time – January start – typically 12 or 18 months

Part time – September start – typically 36 months

Part time – January start – typically 36 months

The course is based around two main themes, communication and networks, and computer engineering. You study eight modules plus a major project.

Communications and network modules

At least three from

  • communication engineering
  • communication media
  • communication networks
  • network applications

Computer engineering modules

At least three from

  • microprocessor engineering
  • object-oriented methods
  • operating systems
  • software engineering

Option modules

Up to two from

  • applicable artificial intelligence
  • digital signal processing
  • embedded systems
  • mixed signal design
  • electrical energy systems
  • efficient machines and electromagnetic applications

Project (equivalent to four modules)

You undertake a major project under the supervision of a tutor.

Assessment

By final examination, coursework and project reports

Employability

Information technology, communications, computer networks and electronics are among some of the fastest growing areas of the economy. By completing this course, you gain a thorough understanding of computer networking systems with the knowledge and expertise to enable you to apply your skills within many areas of industry, or take up a position in higher education or research.



Read less
A comprehensive training in the theory and practice of groundwater science and engineering, providing an excellent basis for careers in scientific, engineering and environmental consultancies, water companies, major industries, research, and government scientific and regulatory services in the UK and abroad. Read more

A comprehensive training in the theory and practice of groundwater science and engineering, providing an excellent basis for careers in scientific, engineering and environmental consultancies, water companies, major industries, research, and government scientific and regulatory services in the UK and abroad.

Modules encompass the full range of groundwater studies and are supported by practical field sessions and computing and hydrogeological modelling based on industry standard software.

Course details

This is a vocational programme relevant to graduates with good Honours degrees in appropriate subjects (for example, Geosciences, Engineering, Physics, Mathematics, Chemistry, Biosciences, and Environmental Sciences). It is important to have a good knowledge of mathematics.

The lecture component of the programme encompasses the full range of hydrogeology. Modules cover drilling, well design, aquifer test analysis, laboratory test analysis, groundwater flow, hydrogeophysics, inorganic chemistry of groundwaters, organic contamination of groundwater, contaminated land and remediation, groundwater modelling, contaminant transport, hydrology, and groundwater resources assessment. 

These lecture modules are supported by practical field sessions, and by computing and hydrogeological modelling based on industry standard software. Integration of concepts developed in the taught programmes is facilitated through student-centred investigations of current issues linked to a diverse range of hydrogeological environments. 

Examinations are held in January and April. From May onwards, you undertake a project, a report on which is submitted in September. 

Projects may be field-, laboratory-, or modelling- based, and are usually of an applied nature, although a few are research-orientated. Our chemical (inorganic and organic), rock testing, computing, geophysical and borehole-logging equipment is available for you to use during this period. 

Career openings include those with consulting engineering and environmental firms, government scientific services and regional water companies, both in this country and abroad. Demand for hydrogeologists is substantial and students from the course are highly regarded by employers.

Learning and teaching

Hydrogeology is the study of groundwater; an essential component of the world’s water supply. More than 2 billion people depend on groundwater for their daily needs (approximately 30% of water supplied in the UK is groundwater). 

The aim of our Hydrogeology MSc Course is to provide students who have a good scientific or engineering background with a comprehensive training in the fundamentals of groundwater science and engineering, together with considerable practical experience.

The School is well supported and you will have the use of all equipment and facilities appropriate to your work: 

Computing

You will have access to the multiple clusters of PCs in the University Learning Centre and Library, and the School-based Earth Imaging Laboratory. The MSc course also has its own dedicated room for teaching and study with six PCs for convenient access to email, web and on-line learning resources.

The University based computers have an extensive range of software installed that covers the needs of students of all disciplines, but in common with the School-based PCs, specialist software packages used routinely by professional hydrogeologists are installed for our MSc students. These include industry standard groundwater flow modelling, contaminant transport modelling, geochemical modelling, geophysical interpretation and field and laboratory hydraulic test analysis packages. You can also register for more specialist software on the University high speed BlueBEAR computing facility if your individual project requires it. Research software developed within the Water Sciences research group is also available.

Laboratories

The School is well equipped for inorganic and organic chemical analysis of field and laboratory samples. Facilities include: Total Organic Carbon analysis, Gas Chromatography, ICP Mass Spectrometry, Ion Chromatography, Stable Isotope Mass Spectrometry and Luminescence and UV/visible spectroscopy. These facilities have been used in a wide range of MSc projects, for both standard geochemical analysis of groundwater samples and for more specific purposes including studies of persistent organic pollutants and toxic heavy metals in the environment, and denitrification in river beds. 

The School also has a dedicated microbiology laboratory equipped with an autoclave for sterilizing media and equipment, a class II safety cabinet for handing microbial samples, and incubators. 

Facilities are also available within the School and elsewhere for geological material analysis, including thin section preparation and microscopy, a wide range of electron microscopy techniques, XRD, pore size distribution determination, and surface area measurement.

Fieldwork

The School has two field sites on campus for use by MSc students and research staff. Both consist of arrays of boreholes drilled into the underlying sandstone aquifer to depths of up to 60m.

The groundwater group is well stocked with field equipment, which is used extensively in research projects, for teaching, and particularly on individual MSc projects. This equipment includes pumping test equipment (submersible pumps, generators, packers, digital pressure transducers, data loggers, divers, dip meters, pipe-work and installation frames); chemical sampling and tracer transport equipment (depth samplers, sampling pumps, tracer test equipment and field fluorimeter, hand held EC, pH and EH probes, portable chemical lab kit); geophysical equipment (resistivity imaging, electromagnetic surveying, ground penetrating radar, and borehole logging); and a secure, towable, mobile laboratory for off-site testing.

Fieldwork and projects transform theory into practice and form a large part of the course. They are supported by extensive field, laboratory and technical facilities.

A weeklong course of practical work and site visits is held in Week 7 of the Autumn Term. The content varies from year to year, but typically includes pumping tests, small-scale field tests, chemical sampling, and geophysics using the research boreholes on campus. Visits to landfill sites, water resources schemes, wetlands, and drilling sites are also arranged in collaboration with the Environment Agency, consultants and landfill operators. During the Spring Term, field demonstrations are provided by chemical sampling equipment distributors and manufacturers. You will gain further field experience either during your own 4.5 month project or when helping your colleagues on other projects.



Read less
The technology and applications of Non Destructive Testing (NDT) are wide-ranging and constantly evolving. Major fields of application include the aerospace industry, oil, gas and energy generation, chemical industries, space technology, rail transport, shipping and manufacturing. Read more
The technology and applications of Non Destructive Testing (NDT) are wide-ranging and constantly evolving. Major fields of application include the aerospace industry, oil, gas and energy generation, chemical industries, space technology, rail transport, shipping and manufacturing.

Other applications are constantly emerging and there are strong links with medical technology. New NDT techniques need to be developed to meet the changing needs of nano-technologies.

Course Overview

Careers in NDT often offer opportunities to travel and to work in new, high technology industries. The series of taught modules that form part one of the course will develop your in-depth knowledge and understanding of non-destructive testing technologies. The University has access to a range of state-of-the-art equipment and technologies including: Infrared Thermography; Ultrasonics; Scanning Laser Doppler Vibrometer; a ballistics testing cell and, DeltaVision computer software for the measurement of photoelasticity. Practical tasks undertaken with these facilities will enable you to develop your skills in applying a variety of testing and measurement techniques and critically examining the results.

Upon the successful completion of 120 credits in part one, you will be required to undertake an independent research project worth 60 credits. Your dissertation supervisor will be available to you to help guide you through the independent research phase.

Collaboration and Knowledge Transfer
Non Destructive Testing (NDT) and evaluation is a key area of research for UWTSD Swansea, where we are the lead academic partner in the NDT Validation Centre in Port Talbot (just outside Swansea), operated by TWI, a global leader in technology engineering and one of the UK's largest research organisations, with an international reputation. This partnership offers excellent opportunities to our students, providing industrial links relevant to the Part 2 project. Furthermore, funding from the Welsh Government and from the EPSRC has facilitated the acquisition of state-of-the-art equipment. Other links with industry include: Knauf Insulation; Silverwing UK Ltd; Oceaneering Inspection Services; Team Precision Pipeline Assembllies; Cyden; and, Rikoset.

UWTSD Swansea is the lead academic partner in the NDT Validation Centre, just outside Swansea, and through this partnership has strong links with TWI, one of the UK's largest research organisations, with an international reputation. The Institute has received significant funding for equipment and has an active research group in NDT,

Modules

The programme is structured in two parts. Part I (120 Credits) comprises the following taught modules:
-Research Methods
-NDT Systems, Standards and Applications
-Materials
-Ultrasonic Methods
-Radiographic Methods
-Electromagnetic Methods
-Thermal and Optical Methods

Part II (60 Credits)
-Major Project

Read less
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. Read more
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. The School enjoys an international reputation for its work and prides itself in allowing students the freedom to realise their maximum potential.

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

We undertake high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Visit the website https://www.kent.ac.uk/courses/postgraduate/262/electronic-engineering

Project opportunities

Some projects available for postgraduate research degrees (http://www.eda.kent.ac.uk/postgraduate/projects_funding/pgr_projects.aspx).

Research areas

- Communications

The Group’s activities cover system and component technologies from microwave to terahertz frequencies. These include photonics, antennae and wireless components for a broad range of communication systems. The Group has extensive software research tools together with antenna anechoic chambers, network and spectrum analysers to millimetre wave frequencies and optical signal generation, processing and measurement facilities. Current research themes include:

- photonic components
- networks/wireless systems
- microwave and millimetre-wave systems
- antenna systems
- radio-over-fibre systems
- electromagnetic bandgaps and metamaterials
- frequency selective surfaces.

- Intelligent Interactions:

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

- Instrumentation, Control and Embedded Systems:

The Instrumentation, Control and Embedded Systems Research Group comprises a mixture of highly experienced, young and vibrant academics working in three complementary research themes – embedded systems, instrumentation and control. The Group has established a major reputation in recent years for solving challenging scientific and technical problems across a range of industrial sectors, and has strong links with many European countries through EU-funded research programmes. The Group also has a history of industrial collaboration in the UK through Knowledge Transfer Partnerships.

The Group’s main expertise lies primarily in image processing, signal processing, embedded systems, optical sensors, neural networks, and systems on chip and advanced control. It is currently working in the following areas:

- monitoring and characterisation of combustion flames
- flow measurement of particulate solids
- medical instrumentation
- control of autonomous vehicles
- control of time-delay systems
- high-speed architectures for real-time image processing
- novel signal processing architectures based on logarithmic arithmetic.

Careers

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
This MSc covers a range of advanced topics drawn from wireless communications and communications-related signal processing, including associated enabling technologies. Read more
This MSc covers a range of advanced topics drawn from wireless communications and communications-related signal processing, including associated enabling technologies. It provides an excellent opportunity to develop the skills required for careers in some of the most dynamic fields in wireless communications.

This programme builds on the internationally recognised research strengths of the Communications Systems and Networks group within the Smart Internet Lab. This group conducts pioneering research in a number of key fundamental and experimental work areas, including spatial channel measurements and predictions, information theory, advanced wireless access (cellular and WLAN) and RF technologies. The group has well-equipped laboratories with state-of-the-art test and measurement equipment and first-class computational facilities.

The MSc provides in-depth training in design, analysis and management skills relevant to the theory and practice of the wireless communications industry. This degree is accredited by the Institute of Engineering and Technology (IET) until 2018, and is one of only a handful of accredited programmes in this field in the UK.

Programme structure

Your course will cover the following core subjects:
Semester One (60 credits)
-Coding theory
-Radio frequency engineering
-Communication systems
-Mobile communications
-Networking protocol principles
-Digital filters and spectral analysis

Semester Two (60 credits)
-Advanced mobile radio techniques
-Antennas and electromagnetic compatibility
-Broadband wireless communications
-Digital signal processing systems
-Engineering research skills
-Research project (60 credits)

You will carry out a substantial research project, starting during Semester Two and completing during the summer. This may be based at the University or with industrial partners.

Careers

This is a challenging one-year taught Master’s degree, covering all aspects of current and future wireless communication systems and associated signal processing technologies. It will prepare you for a diverse range of exciting careers - not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path, with a number of students going on to study for PhDs at leading universities.

Read less
This two-year MSc is offered by Royal Holloway as part of its South East Physics Network Partnership (SEPnet). SEPnet is a consortium of six universities. Read more

This two-year MSc is offered by Royal Holloway as part of its South East Physics Network Partnership (SEPnet). SEPnet is a consortium of six universities: University of Kent, Queen Mary University of London, Royal Holloway University of London, University of Southampton, University of Surrey, and University of Sussex. This consortium consists of around 160 academics, with an exceptionally wide range of expertise linked with world-leading research.

The first year consists mainly of taught courses in the University of London; the second research year can be at Royal Holloway or one of the other consortium members. This is a unique opportunity to collaborate with physics research groups and partner institutions in both the UK and Europe. You will benefit from consortium led events as well as state of the art video conferencing. 

The Department of Physics at Royal Holloway is known internationally for its top-class research. Our staff carry out research at the cutting edge of Nanoscience and Nanotechnology, Experimental Quantum Computing, Quantum Matter at Low Temperatures, Theoretical Physics, and Biophysics, as well as other areas.

With access to some of the leading physics departments in the world, there is a wide choice of accommodation options, sporting facilities, international student organisations and careers services. South East England, with its close connections to continental Europe by air, Eurotunnel, and cross channel ferries, is an ideal environment for international students.

  • The course offers an incomparably wide range of options.
  • Royal Holloway's Physics Department has strong links with leading international facilities, including Rutherford Appleton and National Physical Laboratory, Oxford Instruments, CERN, ISIS and Diamond. 
  • We hold a regular series of colloquia and seminars on important research topics and host a number of guest lectures from external organisations.

Course structure

Year 1

All modules are optional

Year 2

  • Major Project

Optional modules

In addition to these mandatory course units there are a number of optional course units available during your degree studies. The following is a selection of optional course units that are likely to be available. Please note that although the College will keep changes to a minimum, new units may be offered or existing units may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Year 1

You will take six from the following:

  • Lie Groups and Lie Algebras
  • Quantum Theory
  • Statistical Mechanics
  • Phase Transitions
  • Advanced Quantum Theory
  • Advanced Topics in Statistical Mechanics
  • Relativistic Waves and Quantum Fields
  • Advanced Quantum Field Theory
  • Functional Methods in Quantum Field Theory
  • Advanced Topics in Classical Field Theory
  • Formation and Evolution of Stellar Clusters
  • Advanced Physical Cosmology
  • Atom and Photon Physics
  • Advanced Photonics
  • Quantum Computation and Communication
  • Quantum Electronics of Nanostructures
  • Molecular Physics
  • Particle Physics
  • Particle Accelerator Physics
  • Modelling Quantum Many-Body Systems
  • Order and Excitations in Condensed Matter
  • Theoretical Treatments of Nano-Systems
  • Physics at the Nanoscale
  • Electronic Structure Methods
  • Computer Simulation in Condensed Matter
  • Superfluids, Condensates and Superconductors
  • Advanced Condensed Matter
  • Standard Model Physics and Beyond
  • Nuclear Magnetic Resonance
  • Statistical Data Analysis
  • String Theory and Branes
  • Supersymmetry
  • Stellar Structure and Evolution
  • Cosmology
  • Relativity and Gravitation
  • Astroparticle Cosmology
  • Electromagnetic Radiation in Astrophysics
  • Planetary Atmospheres
  • Solar Physics
  • Solar System
  • The Galaxy
  • Astrophysical Plasmas
  • Space Plasma and Magnetospheric Physics
  • Extrasolar Planets and Astrophysical Discs
  • Environmental Remote Sensing
  • Molecular Biophysics
  • Cellular Biophysics
  • Theory of Complex Networks
  • Equilibrium Analysis of Complex Systems
  • Dynamical Analysis of Complex Systems
  • Mathematical Biology
  • Elements of Statistical Learning

Year 2

Only core modules are taken.

Teaching & assessment

This high quality European Masters programme follows the European method of study and involves a year of research working on pioneering projects.

Assessment is carried out by a variety of methods including coursework, examinations and a dissertation.

Your future career

This course equips you with the subject knowledge and a solid foundation for continued studies in physics, and many of our graduates have gone on to study for a PhD. 

On completion of the course graduates will have a systematic understanding of knowledge, and a critical awareness of current problems and/or new insights at the forefront of the discipline a comprehensive understanding of techniques applicable to their own research or advanced scholarship originality in the application of knowledge, together with a practical understanding of how established techniques of research and enquiry are used to create and interpret knowledge in the discipline.

Our graduates are highly employable and, in recent years, have entered many different physics-related areas, including careers in industry, information technology and finance.



Read less
The increased need for communications in modern day society has led to the development of a complex global communication infrastructure that uses the latest wireless and wired technologies for the communication of information. Read more

The increased need for communications in modern day society has led to the development of a complex global communication infrastructure that uses the latest wireless and wired technologies for the communication of information.

To keep up with the increasing demands placed on this infrastructure requires engineers with the latest knowledge of and skills in current and emerging technologies.

Studying this course enables you to gain an advanced understanding of current telecommunications and electronic systems and acquire the skills necessary for their design, development and maintenance.

You study key technical areas such as digital electronics and communications with the option of selecting management modules to develop your project and managerial ability.

A number of option modules ranging from artificial intelligence to software engineering allow you to focus your studies towards your career aspirations and tailor the course to your requirements.

As well as improving your technical skills and knowledge, we also focus on building wider professional skills, such as planning, research techniques and promoting innovation.

We emphasise learning through practical investigations and problem solving, where you explore the complex issues that are typical of modern telecommunication systems typically through real world case studies. You complete a major project, supported by a project tutor, in an area of your choice allowing you to focus on a topic that can contribute to your career aims.

Professional recognition

This programme is CEng accredited by the Institution of Engineering and Technology (IET) and fulfils the educational requirements for registration as a Chartered Engineer when presented with an CEng accredited Bachelors programme.

Course structure

Core modules

  • Communication media
  • Digital electronic system design
  • Project

Management modules

Choose up to two from

  • Finance and marketing
  • Management of strategy, change and innovation
  • Project and quality management

Options

Choose up to six from

• advanced control methods • applicable artificial intelligence • communication engineering • computer networks • control of linear systems • microprocessor engineering • digital signal processing • group project – international product development • network applications • object-oriented methods • operating systems • software engineering • machine vision • embedded systems • mixed signal design • electrical energy systems • efficient machines and electromagnetic applications.

Assessment

  • coursework
  • examinations
  • project reports

Employability

One of the primary motivations in developing this course is to enhance your employability or to allow you to progress to higher levels of study such as academic research.

You can consider employment in a number of areas of telecommunications and electronics at senior and management level or alternatively undertake further study by working towards a research degree and pursue a career possibly in academia.



Read less
The Power Systems Engineering MSc is designed to provide students with the necessary knowledge and skills to work at a professional level in industries involved in the production, distribution and consumption of energy and power. Read more

The Power Systems Engineering MSc is designed to provide students with the necessary knowledge and skills to work at a professional level in industries involved in the production, distribution and consumption of energy and power. This wide range of industries includes transport, conventional and renewable power generation.

About this degree

Students study analysis and design of conventional and renewable machinery systems and the use of computers in their advanced engineering analysis. Students gain knowledge of electrical and mechanical engineering principles, quantitative methods, and mathematical and computer modelling alongside an awareness of the codes of practice, standards and quality issues within the modern industrial world. They also take modules in project management.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), one optional module (15 credits) and a research project (75 credits).

Core modules

  • Power Transmission and Auxiliary Machinery Systems
  • Electrical Machines and Power Electronic Drives
  • Electrical Power Systems and Electrical Propulsion
  • New and Renewable Energy Systems
  • Project Management
  • Group Project

Optional modules

  • Applied Thermodynamics and Turbomachinery
  • Vibrations, Acoustics and Control
  • Advanced Computer Applications in Engineering

Dissertation/report

All students undertake an independent research project which culminates in a project report and oral presentation. In many cases the work has some input from industry.

Teaching and learning

This dynamic programme is delivered through lectures, tutorials, individual and group projects, practical laboratory work and coursework assignments, (including computational analysis). Assessment is through written, oral and viva voce examinations and coursework (including the evaluation of laboratory reports, technical and project reports, problem-solving exercises, computational and modelling skills and oral presentations).

Further information on modules and degree structure is available on the department website: Power Systems Engineering MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The Power Systems Engineering MSc has been accredited by the Engineering Council as meeting the further learning requirements, in full, for registration as a Chartered Engineer for a period of five years, from the 2012 student cohort intake onwards.

Recent career destinations for this degree

  • PhD Research Assistant in Electromagnetic Engineering, Forschungszentrum J゚lich (J゚lich Research Centre)
  • Business Development Associate, Enviromena Power Systems
  • Graduate Electrical Engineer, Mott MacDonald
  • Graduate Project Manager, EDF Energy
  • Power Engineer, General Electric (GE)

Employability

Delivered by leading research and academic staff from across UCL, you will definitely have plenty of opportunities to network and keep abreast of emerging ideas through cross-fertilisation with collaborating companies and governmental bodies such as BAE Systems, Rolls Royce, Lloyds Register and TfL who provide specialised lectures and are key to our research success. We will encourage you to develop networks through the programme itself and via the department’s careers programme which includes employer-led events and individual coaching. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The department has an international reputation for the excellence of its research which is funded by numerous bodies including: EPSRC, EU, Wellcome Trust, the Royal Society, the Leverhulme Trust, UK Ministry of Defence, BAe Systems, Cosworth Technology, Ebara, Jaguar Cars, Shell, and BP.

The Power Systems Engineering MSc is accredited under UK-SPEC by the Institution of Mechanical Engineers (IMechE), Institute of Engineering and Technology (IET), and the Institute of Marine Engineering Science and Technology (IMarEST). This programme also constitutes in part the requirement to obtain Chartered Engineering status.

UCL Mechanical Engineering has seen, in recent years, unprecedented activity in refurbishing and re-equipping our laboratories. Highlights of this include an extensive workshop, four engine test cells of the highest specification, a fuel cell laboratory, an electrical power laboratory and a new fluid mechanics laboratory.



Read less

Show 10 15 30 per page



Cookie Policy    X