The MSc in Electrochemistry taught course builds upon our international reputation for excellence in research and education in Electrochemistry by offering an advanced, postgraduate education in Electrochemistry from the fundamental principles through to applications in Electrochemical Engineering. The course provides opportunities for you to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the identified areas.
Electrochemistry is central to processes with huge economic and societal impacts, e.g. electroplating, corrosion, chlorine, sodium hydroxide and aluminium production, electricity storage, sensing (blood glucose, pH). The MSc Electrochemistry will offer you a platform to develop your theoretical and practical skills and to undertake a challenging research project.
The modules offered will allow you to explore this fascinating interdisciplinary science and to specialise e.g. in batteries, fuel cells, electroanalytical techniques or electrochemical engineering.
The MSc in Electrochemistry course aims to:
Find out more about the course visit the programme specification
A Chemistry masters degree will give students valuable insight into postgraduate research skills. Independent project work will support students to develop transferable skills in areas such as time management, communication and presentation skills that are key for career success in a wide range of areas such as industry, analysis, policymaking and scientific communication. Completing an MSc qualification will help individuals tackle the challenges of an advanced research degree at PhD level and prepare them for a career in academia.
Typical career destinations for the MSc in Electrochemistry include;
This masters in chemistry by research is a one year course beginning in October each year and is intended for participants with high quality first degrees in chemistry or a closely related subject.
Would you like to carry out an extensive piece of research whilst developing your theoretical skills? Our most research-intensive MSc programme includes a year-long research project embedded into one of our leading research groups and with access to our state of the art facilities.
Theory modules can be selected from topics in synthesis, advanced structural, analytical and spectroscopic techniques, materials chemistry, modelling, biological and medicinal chemistry, and electrochemistry.
You can specialise in a research area of your choice, within one of our main six research groups:
This programme provides training in chemical research and involves both lecture based units and a one year research project that constitutes 66 per cent of the assessment. In addition to units to enhance knowledge in chemistry, participants are offered training with regard to safety in the laboratory and to improve their professional skills, such as data analysis and presentation and oral presentations for example.
View the programme specification document for this course
This one-year taught programme offers the opportunity to study Chemistry at an advanced level, covering both the traditional core areas of chemistry, as well as more specialist courses aligned to the research groupings of the department. The course provides opportunities for you to develop and demonstrate advanced knowledge, understanding, and practical/research skills.
Would you like to upgrade your bachelor’s degree to a master’s and gain access to a chemistry career in industry or research? Join the MSc Chemistry and develop your lab and theoretical skills. Specialise in inorganic and materials, organic or physical chemistry, or maintain a broad portfolio, for a more detailed description of the available pathways, click the Pathways tab. Courses are available in synthesis, advanced structural, analytical and spectroscopic techniques, materials chemistry, modelling, biological and medicinal chemistry, and electrochemistry.
The MSc Chemistry course combines the opportunity for students to take modules from a wide range of cutting-edge fields in chemistry with sessions on practical, technical skills, and scientific writing, communication and presentation and a three month summer project supervised by one of Southampton’s expert academics. The course aims to:
Find out more about the course visit the programme specification
A Chemistry masters degree will give students valuable insight into postgraduate research skills. Independent project work will support students to develop transferable skills in areas such as time management, communication and presentation skills that are key for career success in a wide range of areas such as industry, analysis, policymaking and scientific communication. Completing an MSc qualification will help individuals tackle the challenges of an advanced research degree at PhD level and prepare them for a career in academia.
The following information summarises the typical pathways offered when choosing the MSc Chemistry degree programme:
Organic Chemistry
This area focuses on synthetic organic chemistry, total synthesis, synthetic methodology, reaction mechanism, organocatalysis, organofluorine chemistry, photochemistry and carbohydrate chemistry, both towards the synthesis of bioactive compounds and organic materials, and includes the study of organic reactions under flow conditions. This pathway offers the opportunity to specialise in the following areas
This pathway consists of advanced postgraduate courses in synthetic reaction mechanisms and is best suited to students who already have a thorough BSc level grounding in aspects of nomenclature, stereochemistry, reaction mechanisms.
Inorganic chemistry and materials
This area focuses on the synthesis of functional inorganic, solid-state and supramolecular materials and assemblies to address key challenges in energy, sustainability, healthcare and diagnostics and the deposition of nanostructured materials. This pathway will give you the opportunity to specialise in the following areas
This pathway is best suited to students who already have a thorough BSc level grounding in the fundamentals and applications of inorganic chemisry.
Physical chemistry
This pathway is best suited to students who already have a thorough BSc level grounding in the fundamentals and applications of inorganic chemistry. This area covers a wide range of fundamental and applied topics. This pathway will give you the opportunity to specialise in the following areas
This pathway is best suited to students who already have a thorough BSc level grounding in the fundamentals and applications of physical chemistry, in particular quantum chemistry, spectroscopy, thermodynamics and kinetics
General chemistry
You can choose to further your knowledge across a blend of advanced courses from organic, inorganic and/or physical chemistry (any combination). This pathway is suited to those wishing to develop an interdisciplinary expertise. If you choose this pathway you should already have a sound BSc-level grounding in the areas of chemistry in which you intend to choose modules (see other boxes).
Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life.
In addition to gaining research skills, making friends, meeting eminent researchers and being part of the research community, a research degree will help you to develop invaluable transferable skills which you can apply to academic life or a variety of professions outside of academia.
The Chemistry/Biology Interface
This is a broad area, with particular strengths in the areas of protein structure and function, mechanistic enzymology, proteomics, peptide and protein synthesis, protein folding, recombinant and synthetic DNA methodology, biologically targeted synthesis and the application of high throughput and combinatorial approaches. We also focus on biophysical chemistry, the development and application of physicochemical techniques to biological systems. This includes mass spectrometry, advanced spectroscopy and microscopy, as applied to proteins, enzymes, DNA, membranes and biosensors.
Experimental & Theoretical Chemical Physics
This is the fundamental study of molecular properties and processes. Areas of expertise include probing molecular structure in the gas phase, clusters and nanoparticles, the development and application of physicochemical techniques such as mass spectoscropy to molecular systems and the EaStCHEM surface science group, who study complex molecules on surfaces, probing the structure property-relationships employed in heterogeneous catalysis. A major feature is in Silico Scotland, a world-class research computing facility.
Synthesis
This research area encompasses the synthesis and characterisation of organic and inorganic compounds, including those with application in homogeneous catalysis, nanotechnology, coordination chemistry, ligand design and supramolecular chemistry, asymmetric catalysis, heterocyclic chemistry and the development of synthetic methods and strategies leading to the synthesis of biologically important molecules (including drug discovery). The development of innovative synthetic and characterisation methodologies (particularly in structural chemistry) is a key feature, and we specialise in structural chemistry at extremely high pressures.
Materials Chemistry
The EaStCHEM Materials group is one of the largest in the UK. Areas of strength include the design, synthesis and characterisation of functional (for example magnetic, superconducting and electronic) materials; strongly correlated electronic materials, battery and fuel cell materials and devices, porous solids, fundamental and applied electrochemistry polymer microarray technologies and technique development for materials and nanomaterials analysis.
Students attend regular research talks, visiting speaker symposia, an annual residential meeting in the Scottish Highlands, and lecture courses on specialised techniques and safety. Students are encouraged to participate in transferable skills and computing courses, public awareness of science activities, undergraduate teaching and to represent the School at national and international conferences.
Our facilities are among the best in the world, offering an outstanding range of capabilities. You’ll be working in recently refurbished laboratories that meet the highest possible standards, packed with state-of-the-art equipment for both analysis and synthesis.
For NMR in the solution and solid state, we have 10 spectrometers at field strengths from 200-800 MHz; mass spectrometry utilises EI, ESI, APCI, MALDI and FAB instrumentation, including LC and GC interfaces. New combinatorial chemistry laboratories, equipped with a modern fermentation unit, are available. We have excellent facilities for the synthesis and characterisation of bio-molecules, including advanced mass spectrometry and NMR stopped-flow spectrometers, EPR, HPLC, FPLC, AA.
World-class facilities are available for small molecule and macromolecular X-ray diffraction, utilising both single crystal and powder methods. Application of diffraction methods at high pressures is a particular strength, and we enjoy strong links to central facilities for neutron, muon and synchrotron science in the UK and further afield. We are one of the world's leading centres for gas-phase electron diffraction.
Also available are instruments for magnetic and electronic characterisation of materials (SQUID), electron microscopy (SEM, TEM), force-probe microscopy, high-resolution FTRaman and FT-IR, XPS and thermal analysis. We have also recently installed a new 1,000- tonne pressure chamber, to be used for the synthesis of materials at high pressures and temperatures. Fluorescence spectroscopy and microscopy instruments are available within the COSMIC Centre. Dedicated computational infrastructure is available, and we benefit from close links with the Edinburgh Parallel Computing Centre.