• University of Northampton Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
University of Leicester Featured Masters Courses
Cranfield University at Shrivenham Featured Masters Courses
University of Dundee Featured Masters Courses
Swansea University Featured Masters Courses
"electrical" AND "power" …×
0 miles

Masters Degrees (Electrical Power Engineering)

We have 193 Masters Degrees (Electrical Power Engineering)

  • "electrical" AND "power" AND "engineering" ×
  • clear all
Showing 1 to 15 of 193
Order by 
This one-year programme is designed to equip graduates and professionals with a broad and robust training on modern power engineering technologies, with a strong focus on renewable energy conversion and smart grids. Read more

This one-year programme is designed to equip graduates and professionals with a broad and robust training on modern power engineering technologies, with a strong focus on renewable energy conversion and smart grids. It is suitable for recent graduates who wish to develop the specialist knowledge and skills relevant to this industry and is also suitable as advanced study in preparation for research work in an academic or industrial environment.

In semesters 1 and 2, the programmes comprises a mixture of taught courses, workshops and a group design project, led by leading experts in the field, covering the key topics in power systems, electrical machines and power electronics. The final part of the programme is an individual dissertation, which provides a good opportunity for students to apply their acquired skills to real problems in electrical power engineering.

This one year programme at the University of Edinburgh will immerse the students in the most current developments in the area of Electrical Power Engineering, through a combination of taught modules, workshops, a research dissertation, and a range of supporting activities delivered by internationally leading experts in the field. The programme develops through the year from advanced fundamental topics and research tools and techniques in electrical power engineering, to specialist courses on emerging technologies and advanced numerical methods for power engineering problems, and culminates in the summer dissertation project where the acquired skills in various areas are put into practice in application to an actual power engineering problem.

Topics covered within the individual courses of the programme, include (but are not limited to):

  • Fundamental and emerging power engineering technologies
  • Advanced numerical methods in application to electrical power engineering problems
  • Modern power conversion components & systems
  • Integration of renewable energy in the power system
  • Distributed energy resources
  • Electrical engineering aspects of energy storage
  • Power, telecommunications & control aspects of smart grids
  • Research and innovation management techniques.

In addition, our MSc students actively engage in research as part of their dissertation projects either within the Institute for Energy Systems or with industry, with some joining our PhD community afterwards.

Programme structure

This programme is delivered over 12 months, with two semesters of taught courses, followed by a research project leading to the submission of a Master’s Thesis.

Semester 1

  • Power Electronics, Machines & Systems
  • Power Engineering Research Techniques
  • Energy & Environmental Economics
  • Technologies for Sustainable Energy

Semester 2

  • Power Conversion and Control
  • Power Systems Engineering & Economics
  • Distributed Energy Resources and Smart Grids

Research Project

  • Electrical Power Engineering Dissertation

The above courses correspond to 120 credits of taught material, plus 60 credits of a research project.

Learning outcomes

The main objective of the programme is to train the next generation of electrical power engineers who:

  • are aware of the most recent, cutting edge developments in power engineering;
  • have skills and training needed in both industrial and academic settings;
  • are able to tackle the global energy trilemma of supplying secure, equitable and environmentally sustainable energy, while appreciating the technical, social and economic challenges faced in both developed and developing countries.

Career opportunities

Governments worldwide are putting in place plans to decarbonise and modernise their electricity sector. A transition to a green economy will require a highly skilled workforce led by electrical power engineers with a solid academic background, an appreciation of the trajectory of the industry and an understanding of the challenges and implications brought about by the introduction of new power technologies.

According to the Institution for Engineering & Technology (IET): “The business of managing and distributing power in the UK is beginning to undergo revolutionary changes and [power] engineers are the people who will play a pivotal role in keeping the lights on”. This also holds true in many other developed and developing countries in the world.

Power engineers are employed in public/governmental organisations as well as in the private sector and cover areas spanning from generation, to conversion and transmission of electrical power, design and manufacturing of power components and systems, and energy policy and commerce. In the UK, experienced, chartered power engineers can earn around £45,000 a year on average*.

The programme will run in a close association with other activities within the broader Electrical Engineering programme within the School, including networking events, industrial presentations and seminars. It will benefit from the current strong connections with industry (coordinated by the Student Industry Liaison Manager, and existing research associations and consortia (such as the EPSRC Centre for Energy Systems Integration).



Read less
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems. Read more
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems.

The course, which enjoys very high student satisfaction rates, has been carefully designed to meet the needs of industry. It also meets the academic requirements of the Institution of Engineering and Technology (IET), by whom it is fully accredited.

Electrical power engineers need to be able to work in multidisciplinary teams and to show organisational and commercial skills alongside technical knowledge. The course therefore has a strong focus on project management, self-development and employability.

You’ll benefit from the University’s excellent facilities that include specialist electrical and electronics laboratory resources. Northumbria has a well-established reputation for producing graduates who can apply their knowledge to generate creative solutions for sustainable electrical power systems.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

This course can also be started in January - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/electrical-power-engineering-msc-ft-dtfepz6/

Learn From The Best

Our teaching team includes experts from the Northumbria Photovoltaics Application Centre (NPAC) and Power and Wind Energy Research (PaWER) group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, laboratory sessions, computer workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a practical or theoretical master’s dissertation that will hone your skills in evaluating and applying research techniques and methodologies.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Learning Environment

Northumbria University provides outstanding facilities for electrical power engineering. Our laboratories have equipment that includes oscilloscopes, signal generators and Labview software as well as National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) to measure and control signal voltages.

Our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the practical/theoretical dissertation that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. Our specialist interests include electrical and electronic engineering, mobile communication, microelectronic, renewable and sustainable energy technologies, and advanced materials.

Give Your Career An Edge

The course will equip you with the knowledge and skills you’ll need to work in the electrical power engineering and renewable energy sectors. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

The group projects will provide experience of working with others while also raising your awareness of commercial considerations and how industry operates. One project involves the development of an innovative product that must satisfy pre-determined criteria including a realistic business model.

Your dissertation can be linked to the University’s on-going research, giving you experience of being incorporated into a pre-existing working team and environment. Alternatively you can undertake a practice-based dissertation that’s linked to a project that you’ve chosen for its relevance to your interests, self-development and career prospects.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in electrical power engineering and/or the renewable energy industry. Roles could include designing, developing and maintaining electrical control systems and components.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems. Read more
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems.

The course, which enjoys very high student satisfaction rates, has been carefully designed to meet the needs of industry. It also meets the academic requirements of the Institution of Engineering and Technology (IET), by whom it is fully accredited.

Electrical power engineers need to be able to work in multidisciplinary teams and to show organisational and commercial skills alongside technical knowledge. The course therefore has a strong focus on project management, self-development and employability.

You’ll benefit from the University’s excellent facilities that include specialist electrical and electronics laboratory resources. Northumbria has a well-established reputation for producing graduates who can apply their knowledge to generate creative solutions for sustainable electrical power systems.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Learn From The Best

Our teaching team includes experts from the Northumbria Photovoltaics Application Centre (NPAC) and Power and Wind Energy Research (PaWER) group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, laboratory sessions, computer workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a practical or theoretical master’s dissertation that will hone your skills in evaluating and applying research techniques and methodologies.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Learning Environment

Northumbria University provides outstanding facilities for electrical power engineering. Our laboratories have equipment that includes oscilloscopes, signal generators and Labview software as well as National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) to measure and control signal voltages.

Our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the practical/theoretical dissertation that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. Our specialist interests include electrical and electronic engineering, mobile communication, microelectronic, renewable and sustainable energy technologies, and advanced materials.

Give Your Career An Edge

The course will equip you with the knowledge and skills you’ll need to work in the electrical power engineering and renewable energy sectors. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

The group projects will provide experience of working with others while also raising your awareness of commercial considerations and how industry operates. One project involves the development of an innovative product that must satisfy pre-determined criteria including a realistic business model.

Your dissertation can be linked to the University’s on-going research, giving you experience of being incorporated into a pre-existing working team and environment. Alternatively you can undertake a practice-based dissertation that’s linked to a project that you’ve chosen for its relevance to your interests, self-development and career prospects.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in electrical power engineering and/or the renewable energy industry. Roles could include designing, developing and maintaining electrical control systems and components.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
Gaining essential knowledge and skills in designing, managing, controlling and analysing the 21st century electric grid, you will bridge the gap that the Electrical Power industry is facing. Read more

Gaining essential knowledge and skills in designing, managing, controlling and analysing the 21st century electric grid, you will bridge the gap that the Electrical Power industry is facing. As an Electrical Power Engineer you will play a vital role in the development of a sustainable energy market. Your role will enable the merger of new technologies and the integration of renewable sources in the industry.

The MSc Electrical Power Engineering offers very exciting opportunities to understand the real challenges in future power networks and to develop innovative solutions.

GCU’s School of Engineering and Built Environment has almost 3 decades worth of graduates in the Electrical and Electronic Engineering field and this new Masters has been developed with UK-SPEC/IET (Institution of Engineering and Technology) to develop motivated and critical thinkers for the industry.

Students on the MSc Electrical Power Engineering programme are encouraged to join the IET and the Energy Institute (EI) and to participate in the activities which are frequently hosted by GCU. Involvement in the activities of the engineering institutions is an important aspect of career development for you as a student engineer, especially from the point of view of the eventual attainment of Chartered Engineer Status.

What you will study

Through the world class research led activities you will undertake you will develop proficiency in:

  • Exploring operational principles and management of future power networks and the importance of network asset management
  • Analyse and design power systems problems
  • Managerial, communication and information technology skills
  • Innovative thinking to accommodate future technological changes
  • Sufficiently wide perspective of the subject area to evaluate problem solving approaches.

Module information

Project Planning & Management

This module aims to develop in the student, the ability to select, develop and plan an MSc research project; to research and critically analyse the literature associated with the project; to present research findings effectively; and to be able to apply a competent process of thinking to all aspects of the project. In addition, the module aims to give the student an appreciation of the relationship between these skills and those associated with industrial project management.

Power Electronics and Drive Systems

This module examines Electro-magnetism and rare earth permanent magnets. It illustrates the applications of power electronic devices in addition to control and design of converter circuits and determination of filter technologies based on harmonic calculations. Characteristics of modern power electronic devices, driver circuits and protection. Also, it shows analysis and design of practical applications of electrical machines and power electronic systems.

Power System Operation & Protection

Critically analyse and assess technical requirements for power system operation, management and planning. It also develops a comprehensive view of power flow analysis, stability and protections. Appropriate modelling, analysis and design skills of AC power systems in steady state and in post-fault operation will be introduced.

Control Systems

This module aims to consolidate advanced classical and modern control design techniques encompassing the practical considerations in applying control design in an industrial environment. The appropriateness and difficulties encountered in applying various design techniques in practice is explored.

Energy Audit and Energy Asset Management

This module provides an understanding of the basic concepts and exposure to the relevant international standards in the areas of interests before it focuses the strategies and procedures of carrying out energy audit and asset management. The module will focus on life cycle management, including commissioning/decommissioning of equipment, techniques available for condition monitoring and statistical tools for remaining life and risk analysis.

Smart Grid & Sustainable Energy Systems

The module aims to introduce smart grids and renewable energy systems. It equips students with a detailed knowledge and problem solving skills of the engineering aspects of smart grids and the renewable generation of electricity.

Advanced AC and DC Transmission Systems

The module aims to equip the students with the knowledge and skills required for the design and analysis of hybrid modern AC/DC power systems. This module develops the students' understanding of FACTS (Flexible AC Transmission Systems), HVDC and other emerging power electronics applications for power systems and puts emphasis on the skills required to analyse and design such systems.

Condition Monitoring

This module aims to provide an understanding of both Mechanical and Electrical Condition monitoring and associated instrumentation requirements for successful condition monitoring. The application of standard and non-standard electrical condition monitoring systems to a range of electrical plant will be explained. The students learn to use condition monitoring tools and then to evaluate the data provided by them.

MSc Dissertation

The project acts as a vehicle for extending the knowledge and understanding of the student and the technical community in some specialist area. It serves to develop and extend a range of high-level 'thinking' skills, including analysing and synthesising skills and affords the opportunity for the student to demonstrate initiative and creativity in a major piece of technological work.



Read less
Why this course?. This is the UK’s first two-year full-time MSc in Advanced Electrical Power Engineering. To be an effective power engineer you need a good knowledge of underpinning technologies and user and application requirements. Read more

Why this course?

This is the UK’s first two-year full-time MSc in Advanced Electrical Power Engineering.

To be an effective power engineer you need a good knowledge of underpinning technologies and user and application requirements. You also require a firm understanding of the business and regulatory landscape that national and multinational power and utility companies must work within.

This course brings together advanced expertise in all aspects of electrical energy and power systems, complemented by studies in electricity markets and power systems economics.

The course is designed to provide the advanced training you need for a career in the dynamic power and energy sectors.

You’ll study

Year 1

You'll take a selection of compulsory and optional taught classes. This is combined with training in business and project management skills and research methodologies and techniques.

Potential Year 2 research projects are explored during this year through completion of a mini-project, with a final topic agreed for the start of Year 2.

Year 2

You'll undertake a major research project within the electrical power and energy disciplines. You'll also select a number of advanced taught modules designed to broaden your understanding of your chosen topic.

Facilities

You'll have exclusive access to our extensive computing network and purpose built teaching spaces including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies including:

  • LDS 6-digital partial discharge test & measurement system
  • Marx impulse generators & GIS test rigs
  • £1M distribution network and protection laboratory comprising a 100kVA microgrid, induction machines and programme load banks

You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.

Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules in Year 1. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the Year 2 research project consists of four elements, with individual criteria: 

  1. Interim report (10%, 1500 – 3000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.
  2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.
  3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.
  4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

The course provides the advanced level of knowledge and understanding required for challenging, well paid and exciting careers in the high growth power and energy sectors.

Employment prospects are excellent, with recent graduates working in power engineering consultancy, global power utilities (generation, supply and distribution), the renewable energy sector and manufacturing. They've taken up professional and technical positions as electrical engineers, power systems specialists, distribution engineer and asset managers in large energy utilities such as Iberdrola, EDF Energy and China State Grid. Graduates have also taken up roles in project management and engineering consultancy with companies such as Arup, Atkins Global, Ramboll, Moot MacDonald and AMEC.



Read less
This programme provides an opportunity to specialise in the field of electrical power. It builds on a first degree in electrical/electronic engineering and explores how modern power systems from drives to power distribution are designed and implemented. Read more

This programme provides an opportunity to specialise in the field of electrical power. It builds on a first degree in electrical/electronic engineering and explores how modern power systems from drives to power distribution are designed and implemented. This programme develops technical skills and knowledge at an advanced level, as well as developing the professional, analytical and management skills of students.

Research project

This programme includes a major research project. Many of the projects reflect the key interests of the Faculty, such as power electronics, renewable and alternative energy systems. There is the opportunity for projects to be derived from our industrial links, and a number are proposed by students, reflecting their own personal interests or experience.

Accreditation

This programme is accredited by the Institution of Engineering and Technology as fully satisfying the further learning requirements for chartered engineer (CEng) registration. An individual holding an accredited MSc must also hold a CEng-accredited honours degree to have the full exemplifying qualifications for CEng status.

Outcomes

The aims of the programme are to:

  • Provide an enhanced base of knowledge and current and reflective practice necessary to initiate a career in electrical engineering at the professional level
  • Enhance specialist knowledge in the area of electrical engineering which build upon studies at the undergraduate level
  • Further develop improved skills of independent learning and critical appraisal
  • Develop an extensive insight into industrial applications and requirements
  • Develop an extensive insight of management issues relating to engineering business
  • Develop a comprehensive knowledge of leading-edge ICT tools and techniques in electrical engineering
  • Provide the ability to progress to the next level of study.

Full time

Year 1

Students are required to study the following compulsory courses.

Part time

Year 1

Students are required to study the following compulsory courses.

Year 2

Students are required to study the following compulsory courses.

Assessment

Students are assessed through

  • Examinations
  • Case studies
  • Assignments
  • Practical work, and
  • Dissertation.

Professional recognition

This programme is accredited by the Institution of Engineering and Technology.

Careers

Graduates can pursue a wide variety of opportunities exist for electrical power engineers in both the power supply sector and large industrial consumers.



Read less
Why this course?. This course recognises the need for skilled graduates to address the world’s major issues in electrical energy and power systems. Read more

Why this course?

This course recognises the need for skilled graduates to address the world’s major issues in electrical energy and power systems. It offers an integrated programme focusing on:

  • the design, operation and analysis of power supply systems
  • power plant
  • renewables and industrial electrical equipment relating to a liberalised power supply industry
  • globalised markets and environmental drivers

The course provides the advanced level of knowledge and understanding required for challenging, well paid and exciting careers in the dynamic and high growth electrical power and renewable energy sectors.

You’ll study

There’s two semesters of compulsory and optional classes, followed by a three-month summer research project in your chosen area. There’s the opportunity to carry this out through the department's competitive MSc industrial internships.

The internships are offered in collaboration with selected department industry partners, including ScottishPower, Smarter Grid Solutions and SSE. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

You'll have exclusive access to our extensive computing network and purpose built teaching spaces, including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies, including:

  • LDS 6-digital partial discharge test & measurement system
  • Marx impulse generators & GIS test rigs
  • £1M distribution network and protection laboratory comprising a 100kVA microgrid, induction machines and programme load banks

You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.

Accreditation

The Institution of Engineering & Technology (IET) - this programme is CEng accredited and fulfils the educational requirements for registration as a Chartered Engineer when presented with a CEng accredited Bachelors programme.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.

Each module comprises of approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.

Industry engagement

Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Iberdrola, National Grid, ScottishPower, SSE, Siemens and Rolls-Royce are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project/internship consists of four elements, with individual criteria: 

  1. Interim report (10%, 1500 to 3000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.
  2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.
  3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.
  4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

The course provides the advanced level of knowledge and understanding required for challenging, well paid and exciting careers in the dynamic and high growth electrical power and renewable energy sectors.

Employment prospects are excellent, with recent graduates operating in power engineering consultancy, global power utilities (generation, supply and distribution), the renewable energy sector and manufacturing. They've taken up professional and technical positions as electrical engineers, power systems specialists, distribution engineer and asset managers in large energy utilities such as ScottishPower Energy Networks, Aker Solutions, National Grid & EDF Energy. Graduates have also taken up roles in project management and engineering consultancy with companies such as Arup, Atkins Global, Ramboll, Moot MacDonald and AMEC.



Read less
Our MSc Energy and Sustainability with Electrical Power Engineering degree considers all aspects of sustainable energy generation, transmission and distribution engineering. Read more

Our MSc Energy and Sustainability with Electrical Power Engineering degree considers all aspects of sustainable energy generation, transmission and distribution engineering. This one year course provides highly sought after skills for those who are considering a career in the electrical power industry.

Introducing your degree

Develop the skills and knowledge to design and develop our future energy networks.

Overview

This course considers all aspects of sustainable energy generation and the issues concerned with bulk electrical energy transport to the ultimate user.

It will give you a solid grounding in generation, transmission and distribution engineering, in addition to considering the wider issues of:

  • energy
  • renewable generation
  • sustainability

This course is particularly relevant for students who are considering a career in the electrical power industry.

View the programme specification document for this course

Career Opportunities

This programme provides an excellent base for students considering a career in the electrical power industry. Graduates from our MSc programme are employed worldwide in leading companies at the forefront of technology. ECS runs a dedicated careers hub which is affiliated with over 100 renowned companies such as:

  • IBM
  • Arm
  • Microsoft Research
  • Imagination Technologies
  • Nvidia
  • Samsung Google 

Visit our careers hub for more information.



Read less
This course provides electrical, electronic or power engineering graduates with the professional training needed to pursue careers as design and development engineers or researchers. Read more
This course provides electrical, electronic or power engineering graduates with the professional training needed to pursue careers as design and development engineers or researchers.

The programme covers the following advanced topics:
-Renewable energy
-Smartgrids
-Power electronics
-State space analysis and controller design
-Control of electric drives
-Design of modern electrical machines and drives
-Electrical machines
-Power systems operation

The advanced knowledge and skills you will gain from this course:
-Modeling and analysis of engineering systems, processes and products
-Design of electrical power systems and components
-Computer-aided design and analysis techniques, including software packages like MATLAB, Simulink and PSpice
-Specialist topic of your choice through an in-depth research project

Read less
Acquired competences and knowledge enables the Masters of the programme to establish new companies providing electrical power services, implement strategic… Read more

Acquired competences and knowledge enables the Masters of the programme to establish new companies providing electrical power services, implement strategic energy projects, perform research, design, production technological work at supply, management, planning and strategic departments of the companies of electrical engineering and other industrial areas, design new energy facilities at design organisations, scientific research institutes and laboratories.

The Master+ model offers either to masterpiece in the chosen discipline by choosing the Field Expert track or to strengthen the interdisciplinary skills by choosing the Interdisciplinary Expert track emphasising managerial skills or a choice of a different competence to compliment the chosen discipline and achieve a competitive advantage in one’s career.

Why @KTU?

Strong area of research

Strong engagement in research in the fields of sustainable environment of ergonomic systems, micro-networks and intelligent electrical power systems, energy transducers, etc.

Close collaboration with industrial partners

Outstanding links with local electrical power industry (Litgrid, Lietuvos energija, ESO) for cooperative placement, collaborative research and employment.

Master+

Master+ model offers either to masterpiece in the specialisation or to strengthen managerial/interdisciplinary skills by choosing individual set of competencies required for career.

MA+

Master+ is a unique model within a chosen MSc programme

The Master+ model offers either to masterpiece in the chosen discipline by choosing the Field Expert track or to strengthen the interdisciplinary skills in addition to the main discipline by choosing the Interdisciplinary Expert track providing a choice of a different competence to compliment the chosen discipline and achieve a competitive advantage in one’s career.

Students of these study programmes can choose between the path of Field Expert and Interdisciplinary Expert. Selection is made in the academic information system. Each path (competence) consists of three subjects (18 credits) allocated as follows: 1 year 1 semester (autumn) – first subject (6 credits), 1 year 2 semester (spring) – second subject (6 credits), 2 year 3 semester – third subject (6 credits). A student, who chooses a path of the Field Expert, deepens knowledge and strengthens skills in the main field of studies. The one, who chooses a path of the Interdisciplinary Expert, acquires knowledge and skills in a different area or field of studies. Competence provides a choice of alternative additional subjects.

  • Field Expert (profound knowledge and skills in the area, required for solution of scientific research tasks);
  • Interdisciplinary Expert: 
  • (fields of different knowledge and skills are combined for solution of specific tasks);

Acquisition of the competence is certified by the issue of KTU certificate and entry in the appendix to the Master’s diploma. In addition, students can acquire an international certificate (details are provided next to each competence).

Competences are implemented by KTU lecturers – experts in their area – and high level business and public sector organizations; their employees deliver lectures, submit topics for the student’s theses, placement-oriented tasks for the projects, etc.

Career

Student’s competences:

– Knowledge of qualitative and quantitative principles of operating modes, organisation and management of energy systems;

– Analysis of new and sustainable principles of electricity generation, transmission and distribution technologies and assessment of the possibilities of their use;

– Identification and assessment of energy problems, provision of solutions;

– Design and management of energy systems, efficient use of renewable energy sources for generation, transmission and use of electricity and thermal energy.

Student’s skills:

– Able to plan and manage energy economy of distribution networks and companies, design and operate electricity and thermal energy supply systems and solve financial tasks;

– Able to make engineering decisions assessed in terms of ethics, social norms, environmental protection and safety;

– Able to manage various technological processes and technical systems of energy system.



Read less
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in electrical engineering. Read more

IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in electrical engineering

- Practical guidance from electrical engineering experts in the field

- Knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college

- Credibility as the local electrical engineering expert in your firm

- Networking contacts in the industry

- Improved career prospects and income

- An Advanced Diploma of Applied Electrical Engineering (Electrical Systems)

Next intake starts July 02, 2018. Registrations are now open.

Payment is not required until 2 to 4 weeks before the start of the program.

The EIT Advanced Diploma of Applied Electrical Engineering (Electrical Systems) is recognized worldwide and has been endorsed by the International Society of Automation (ISA). Please ask us about specific information on accreditation for your location.

OVERVIEW

Join the next generation of electrical engineers and technicians and embrace a well paid, intensive yet enjoyable career by embarking on this comprehensive course on electrical engineering. It is presented in a practical and useful manner - all theory covered is tied to a practical outcome. Leading electrical engineers who are highly experienced engineers from industry, having 'worked in the trenches' in the various electrical engineering areas present the course over the web in a distance learning format using our acclaimed live e-learning techniques.

The course starts with an overview of the basic principles of electrical engineering and then goes on to discuss the essential topics in depth. With a total of 16 modules, everything that is of practical value from electrical distribution concepts to the equipment used, safety at work to power quality are all looked at in detail. Each module contains practical content so that the students can practice what they learn including the basic elements of designing a system and troubleshooting.

Most academic courses deal with engineering theory in detail but fall short when it comes to giving practical hints on what a technician is expected to know for a job in the field. In this course, the practical aspects receive emphasis so that when you go out into the field you will have the feeling that ‘you have seen it all.

*JOB OUTCOMES, INTERNATIONAL RECOGNITION AND PROFESSIONAL MEMBERSHIP:

A range of global opportunities awaits graduates of the Advanced Diploma of Applied Electrical Engineering (Electrical Systems). Pending full accreditation you may become a full member of Engineers Australia and your qualification will be recognized by Engineers Australia and (through the Dublin Accord) by leading professional associations and societies in Australia, Canada, Ireland, Korea, New Zealand, South Africa, United Kingdom and the United States. The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

For example, current enrolled students can apply for free student membership of Engineers Australia. After graduation, you can apply for membership to become an Engineering Associate, while graduates interested in UK recognition can apply for membership of the Institution of Engineering and Technology (IET) as a Technician Member of the Institution of Engineering and Technology.

This professional recognition greatly improves the global mobility of graduates, and offers you the opportunity of a truly international career.

You will be qualified to find employment as an Engineering Associate in public and private industry including transportation, manufacturing, process, construction, resource, energy and utilities industries. Engineering Associates often work in support of professional engineers or engineering technologists in a team environment. If you prefer to work in the field you may choose to find employment as a site supervisor, senior technician, engineering assistant, or similar.

WHO SHOULD COMPLETE THIS PROGRAM?

- Electrical Engineers and Technicians

- Project Engineers

- Design Engineers

- Instrumentation and Design Engineers

- Electrical Technicians

- Field Technicians

- Electricians

- Plant Operators

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Instrument Fitters and Instrumentation Engineers

- Consulting Engineers

- Production Managers

- Chemical and Mechanical Engineers

- Instrument and Process Control Technicians

In fact, anyone who wants to gain solid knowledge of the key elements of electrical engineering – to improve work skills and to create further job prospects. Even those of you who are highly experienced in electrical engineering may find it useful to attend some of the topics to gain key, up to date perspectives on electrical engineering.

PROGRAM STRUCTURE

The course is composed of 16 modules. These cover the following seven main threads to provide you with maximum practical coverage in the field of electrical engineering

- Electrical technology fundamentals

- Distribution equipment and protection

- Rotating machinery and transformers

- Power electronics

- Energy efficiency

- Earthing and safety regulations

- Operation and maintenance of electrical equipment

The 16 modules will be completed in the following order:

- Electrical Circuits

- Basic Electrical Engineering

- Fundamentals of Professional Engineering

- Electrical Drawings

- Electrical Power Distribution

- Transformers, Circuit Breakers and Switchgear

- Electrical Machines

- Power Cables and Accessories

- Earthing and Lightning / Surge Protection

- Power System Protection

- Electrical Safety and Wiring Regulations

- Testing, Troubleshooting and Maintenance of Electrical Equipment

- Energy Efficiency and Energy Use

- Power Quality

- Power Electronics and Variable Speed Drives

- DC and AC High Reliability Power Supplies

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located all around the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. We aim to give you a rapid response regarding course fees that are relevant to your individual circumstances.

We understand that cost is a major consideration before a student begins to study. For a rapid reply to your query regarding course fees and payment options, please contact a Course Advisor in your region via the below button and we will respond within two (2) business days.



Read less
Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. Read more

Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. It is also about the balance between the cost of energy and its environmental impact or the balance between the reliability of the supply and the investments needed to develop the system. This course will teach you how to quantify both sides of these equations and then how to improve the balances through technological advances and the implementation of sophisticated computing techniques.

In the first semester you learn how power systems are designed and operated. This involves studying not only the characteristics of the various components (generators, lines, cables, transformers and power electronics devices) but also how these components interact. Through lectures and computer based exercises you become familiar with power flow and fault calculations and you learn how the techniques used to study the behaviour of large systems. Experiments in our high voltage laboratory give you an appreciation for the challenges of insulation co-ordination.

During the second semester the course units explore in more depth the 'operation' and the 'plant' aspects of power systems. For example, you will study how renewable generation is integrated in a power system or how to assess and remedy power quality problems.

Prior to your summer break a preliminary study and the outline of your MSc dissertation project is completed, this is fully developed throughout the second year of the course. The yearlong enhanced individual research provides you great opportunities to develop advanced research skills and to explore in depth some of the topics discussed during the course. This includes training in research methods, and advanced simulation and experimental techniques in power systems and high voltage engineering as well as academic paper writing and poster and paper presentation.

Aims

  • Provide an advanced education in electrical power engineering.
  • Give graduates the education, the knowledge and the skills they need to make sound decisions in a rapidly changing electricity supply industry.
  • Give a sound understanding of the principles and techniques of electrical power engineering.
  • Give a broad knowledge of the issues and problems faced by electrical power engineers.
  • Give a solid working knowledge of the techniques used to solve these problems.
  • Educate students with advanced research skills necessary to address current and future technological advancements.

Coursework and assessment

You are required to take seven examinations. In addition, course work (eg lab reports) accounts for typically 20% of the mark for each course unit. One course units is assessed on the basis of coursework only.

The enhanced research project is assessed on the basis of a research poster, an extended abstract, a research papers and a dissertation of about 70 pages.

Course unit details

Course units typically include:

  • Electrical Power Fundamentals
  • Analysis of Electrical Power and Energy Conversion Systems
  • Power System Plant, Asset Management and Condition Monitoring
  • Power System Operation and Economics
  • Power System Dynamics and Quality of Supply
  • Power System Protection
  • Smart Grids and Sustainable Electricity Systems
  • Techniques for Research and Industry

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Over the last thirty years, hundreds of students from around the world have come to the University to obtain an MSc in Electrical Power Engineering or similar. After graduation, they went on to work for electric utilities, equipment manufacturers, specialised software houses, universities and consultancy companies.

This course also provides the students with additional research skills necessary for starting a PhD degree or entering an industrial research and development career. 



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

As a student on the Master's course in Electronic and Electrical Engineering, you will develop specialist skills aligned with the College of Engineering’s research interests and reflecting the needs of the electronics industry.

Key Features of MSc in Electronic and Electrical Engineering

The MSc Electronic and Electrical Engineering course covers the ability to apply the knowledge gained in the course creatively and effectively for the benefit of the profession, to plan and execute a programme of work efficiently, and to be able, on your own initiative, to enhance your skills and knowledge as required throughout your career in Electronic and Electrical Engineering.

Students on the Electronic and Electrical Engineering course benefit from the use of industry-standard equipment, such as a scanning tunnelling microscope for atomic scale probing or an hp4124 parameter analyzer for power devices, for simulation, implementation and communication.

During the Electronic and Electrical Engineering course there will be the opportunity to choose and apply suitable prototyping and production methods and components, gain knowledge in constructing and evaluating advanced models of various manufacturing techniques, and be able to differentiate, analyse and discuss various product lifetime management solutions and how they affect different sectors of Electronic and Electrical Engineering industry.

The MSc in Electronic and Electrical Engineering programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation in Electronic and Electrical Engineering. Students on the Electronic and Electrical Engineering course must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode of MSc in Electronic and Electrical Engineering

The part-time scheme of the MSc in Electronic and Electrical Engineering is a version of the full-time equivalent MSc in Electronic and Electrical Engineering scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option in Electronic and Electrical Engineering.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules on Electronic and Electrical Engineering

Modules on the MSc Electronic and Electrical Engineering course can vary each year but you could expect to study:

Communication Skills for Research Engineers

Energy and Power Electronics Laboratory

Power Semiconductor Devices

Advanced Power Electronics and Drives

Wide Band-Gap Electronics

Power Generation Systems

Modern Control Systems

Advanced Power Systems

Signals and Systems

Digital Communications

Optical Communications

Probing at the Nanoscale

RF and Microwaves

Wireless Communications

Facilities for Electronic and Electrical Engineering

The new home of the Electronic and Electrical Engineering programme is at the innovative Bay Campus which provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Find out more about the facilities used by Electronic and Electrical students at Swansea University, including the electronics lab on our website.

Links with Industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

Electronic and Electrical Engineering has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses including the MSc in Electronic and Electrical Engineering maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students including those on the MSc in Electronic and Electrical Engineering.

Careers

Electronic and Electrical Engineering graduates find employment in industry, research centres, government or as entrepreneurs in a wide range of careers, from a design and development role for electronic and electrical equipment or as a technological specialist contributing to a multi-disciplinary team in a range of fields, including medicine, travel, business and education.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.



Read less
Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. Read more

Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. It is also about the balance between the cost of energy and its environmental impact or the balance between the reliability of the supply and the investments needed to develop the system. These programmes will teach you how to quantify both sides of these equations and then how to improve the balances through technological advances and the implementation of sophisticated computing techniques.

During the second semester the course units explore in more depth the 'operation' and the 'plant' aspects of power systems. For example, you will study how renewable generation is integrated in a power system or how to assess and remedy power quality problems.

During the summer, your MSc dissertation project gives you a chance to develop your research skills and to explore in depth one of the topics discussed during the course.

Aims

Provide an advanced education in electrical power engineering.

Give graduates the education, the knowledge and the skills they need to make sound decisions in a rapidly changing electricity supply industry.

Give a sound understanding of the principles and techniques of electrical power engineering.

Give a broad knowledge of the issues and problems faced by electrical power engineers.

Give a solid working knowledge of the techniques used to solve these problems.

Coursework and assessment

You are required to take seven examinations. In addition, course work (eg lab reports) accounts for typically 20% of the mark for each course unit. One course units is assessed on the basis of course work only. The summer research project is assessed on the basis of a dissertation of about 50 pages.

Course unit details

Course units typically include:

  • Electrical Power Fundamentals
  • Analysis of Electrical Power and Energy Conversion Systems
  • Power System Plant, Asset Management and Condition Monitoring
  • Power System Operation and Economics
  • Power System Dynamics and Quality of Supply
  • Power System Protection
  • Smart Grids and Sustainable Electricity Systems
  • Techniques for Research and Industry

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Over the last thirty years, hundreds of students from around the world have come to the University to obtain an MSc in Electrical Power Engineering or similar. After graduation, they went on to work for electric utilities, equipment manufacturers, specialised software houses, universities and consultancy companies.



Read less
The 1-year Electrical Power Systems Masters/MSc is good, the 2-year Electrical Power Systems with Advanced Research Masters/MSc is even better!. Read more

The 1-year Electrical Power Systems Masters/MSc is good, the 2-year Electrical Power Systems with Advanced Research Masters/MSc is even better!

The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Electrical power systems are playing a pivotal role in the development of a sustainable energy supply, enabling renewable energy generation. Globally there is a big shortage of skilled engineers for designing, operating, controlling and the economic analysis of future electricity networks – smart grids

The new 2-year MSc Electrical Power Systems with Advanced Research will give you the timely advanced skills and specialist experience required to significantly enhance your career in the electrical power industry. The programme builds on a very close involvement with the power industry, the education of power engineers and extensive research work and expertise as well as the successful experience on the 1-year MSc Electrical Power Systems at the University of Birmingham. The 2-year MSc Electrical Power Systems with Advanced Research will be able to fill in the gap of skills between the 1-year MSc and PhD research.

Some modules will be taught by leading industry experts, which will give you the exciting opportunity to understand the real challenges that power industry is facing, hence propose innovative solutions. In addition, students working on relevant MSc projects may have the opportunity to work with leading industry experts directly. 

The new 2-Year MSc Electrical Power Systems with Advanced Research will run in parallel with the existing 1-Year MSc Electrical Power Systems. The taught credits in the 1st year of the 2 Year MSc are identical to that of the 1-Year MSc while the 2nd Year is mainly focused on a research project. 

This programme also aims to provide graduates with the ability to critically evaluate methodologies, analytical procedures and advanced research methods. Year 1 of the programme is focussed on the taught modules covering:

  • Control concepts and methods
  • Advanced energy conversion systems and power electronic applications
  • Advanced power electronic technologies for electrical power networks – HVDC and FACTS
  • Electrical power system engineering - using state-of-the-art computational tools and methods, and design of sustainable electrical power systems and networks
  • Economic analysis of electrical power systems and electricity markets. 

While Year 2 of the programme will give you the opportunity to work on an advanced research project. For some suitable projects, in conjunction with joint industry supervisions, industry placement may be available.

It is envisaged there will be the opportunity for students to transfer between the two programmes using the University’s procedures for transfers between programmes, subject to programme requirements. This opportunity would take place at the end of the taught part of the programme.

Course details

Electrical Power Systems with Advanced Research Masters/MSc (Two Year): 

This 2-year MSc programme meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of electrical power systems and renewable energy as well as advanced research skills. It aims to produce graduates of the highest calibre with the right advanced skills and knowledge who will be capable of leading in teams involved in the operation, control, design, and economic analysis of the electrical power systems and networks of the future – smart grids as well as developing and managing R&D programmes.

It will meet the demand for the research and development of sustainable electrical power systems and the demand for training and education of existing and future power engineers in the advanced concepts and designing of sustainable electrical power systems and renewable energy with significant research training.

Related links

Learning and teaching

Patterns of study 

The majority of students study our Masters programmes full time. Our programmes are also suitable for practising engineers who wish to study part-time or take a single module to earn Continuing Professional Development (CPD) points. Many modules are completed in three-day sessions allowing you to focus on one topic at a time. Following each session of lectures there is an opportunity for you to deepen your understanding through private study and in most cases there is also an assessed assignment. 

Core modules 

These modules cover the advanced specialist topics required for your specific degree programme, such as Power System Operation and Control, HVDC and FACTS and Power System Economics. These technologies are at the heart of many current developments in electrical power systems. 

Cross-programme option modules 

These options specialize in topics relevant to each degree programme and give you the opportunity to adapt the programme that you have chosen to study. The prior knowledge needed for each module is specified in the student handbook to help you make the most appropriate choice. This allows you the greatest possible freedom to customise your study package appropriately. 

Individual project 

In Year 2, you will have 12-months to work on a dedicated research project to develop your comprehensive research skills, which would be helpful to fill in the gap between the 1-year MSc and PhD. This is an opportunity for you to develop advanced specialist knowledge. Some projects are undertaken in collaboration with companies and, in some cases, you may work on company premises investigating issues of direct concern to future product development. 

Assessment and awards 

Assessment is by a combination of written examination and course work. There is a strong emphasis on course work to deepen understanding. The pass mark is 50%. A merit is awarded to students with an average of 60% or more and a distinction is awarded to students with an average of 70% or more, in both taught and project modules. There are prizes for students who perform especially well overall and for those who complete exceptionally good individual projects.



Read less

Show 10 15 30 per page



Cookie Policy    X