• Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Bradford Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
FindA University Ltd Featured Masters Courses
"electrical" AND "distrib…×
0 miles

Masters Degrees (Electrical Distribution)

  • "electrical" AND "distribution" ×
  • clear all
Showing 1 to 15 of 51
Order by 
Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering. Read more

Important note

Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering

Mission & Goals

Electrical Engineering is the branch of engineering that deals with the study and application of electricity, electronics and engineering electromagnetics, with particular focus on electric power systems, electrical machines and their control, electronic power converters, electrical transportation systems, electrical and electronic measurements, circuit theory and electromagnetic compatibility.
An electrical engineer has a wide background of knowledge that is necessary to address ever increasing challenges of the professional and research activities. These activities span not only in the traditional field of electricity generation, transmission and distribution, but also in the multi-faceted reality of industrial and home electrical appliances and systems, the electric systems in the transportation and health-care sectors, the electromagnetic compatibility, and the measurement and diagnosis techniques, just to mention some of the most relevant possible fields of activity.
A wide and in-depth knowledge of mathematics and physics is the essential background of graduates’ qualification in electrical engineering. Fundamental is also the background in computer science, automation and electronics applied to the different areas of electrical engineering.

The programme is entirely taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Career Opportunities

There is a steady high demand for electrical engineers: in 2010, the Master of Science graduated of that year were 60, whilst the Politecnico di Milano’s Career Service received 546 requests for employment of electrical engineers. According to the Technical Report of the Evaluation Committee of Politecnico di Milano, 88% of the Master of Science graduated in Electrical Engineer in 2007, interviewed in December 2008, declared that they would have applied again to the same Electrical Engineering Programme and the 90% of the interviewed graduated declared to have a stable, full-time employment.

- Contacts
For further information about didactic aspects of the course and curricula, visit http://www.electre.polimi.it http://www.ingpin.polimi.it or contact didattica.etec(at)polimi.it.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electrical_eng_energy_ren.pdf
This track of the Master of Science in Electrical Engineering aims to form graduates with a comprehensive scientific and technological background on electrical power systems. It builds on basic disciplines (covering digital signal processing, electromagnetic compatibility and engineering electromagnetics, measurements and diagnosis techniques, power electronics and electrical drives, design of electrical machines and apparatus, etc.) and provides solid skills in the areas of electrical energy and renewable sources, electrical systems in transportation, design and automation of electrical systems. Graduates will be highly employable in the sectors of generation, transmission, distribution and utilization of electrical energy; manufacturing of electrical machines and power electronics equipment; industrial automation; design, production and operation of electrical systems for transportation (rail, automotive, aerospace and marine); companies operating on the electricity market.
The programme is taught in English.

Subjects

Measurement Oriented Digital Signal Processing, Electric Power Systems, Science And Technology of Electrical Materials, Power Electronics, Applied Statistics, Electromagnetic Compatibility, Electrical Switching Apparatus (or other offered courses), Construction and Design of Electrical Machines, Electric Systems for Transportation, Reliability Engineering and Quality Control, Electrical Drives

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering. Read more

Important note

Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering

Mission & Goals

Electrical Engineering is the branch of engineering that deals with the study and application of electricity, electronics and engineering electromagnetics, with particular focus on electric power systems, electrical machines and their control, electronic power converters, electrical transportation systems, electrical and electronic measurements, circuit theory and electromagnetic compatibility.
An electrical engineer has a wide background of knowledge that is necessary to address ever increasing challenges of the professional and research activities. These activities span not only in the traditional field of electricity generation, transmission and distribution, but also in the multi-faceted reality of industrial and home electrical appliances and systems, the electric systems in the transportation and health-care sectors, the electromagnetic compatibility, and the measurement and diagnosis techniques, just to mention some of the most relevant possible fields of activity.
A wide and in-depth knowledge of mathematics and physics is the essential background of graduates’ qualification in electrical engineering. Fundamental is also the background in computer science, automation and electronics applied to the different areas of electrical engineering.

The programme is entirely taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Career Opportunities

There is a steady high demand for electrical engineers: in 2010, the Master of Science graduated of that year were 60, whilst the Politecnico di Milano’s Career Service received 546 requests for employment of electrical engineers. According to the Technical Report of the Evaluation Committee of Politecnico di Milano, 88% of the Master of Science graduated in Electrical Engineer in 2007, interviewed in December 2008, declared that they would have applied again to the same Electrical Engineering Programme and the 90% of the interviewed graduated declared to have a stable, full-time employment.

- Contacts
For further information about didactic aspects of the course and curricula, visit http://www.electre.polimi.it http://www.ingpin.polimi.it or contact didattica.etec(at)polimi.it.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electrical_eng_smartgrid.pdf
This track of the Master of Science in Electrical Engineering provides tools to manage the new challenges of electricity systems involving increasing presence of Renewable Energy Sources (RES) and Dispersed Generation. Such a new generation paradigm drives the evolution of distribution networks towards Smart Grids. Mastering the evolution requires new professional skills, ranging from the use of information-communication technology as enabling key for enhancing traditional networks to a full knowledge of the regulation of power systems operated in liberalized energy markets. Graduates will be highly employable in the following sectors: planning and operation of distribution systems; manufacturing of RES power plants; energy market operators.
The programme is taught in English and supported by ENEL Distribuzione S.p.A

Subjects

Electric power systems; Project management: principles & tools; Electricity Market; TLC networks for electricity systems Sensors, measurements and smart metering; Electromagnetic compatibility; Electric switching apparatus (or other offered courses); Planning & operation of distribution grids with a high penetration of RES; Renewable energy sources and network interface; Regulation of electric power systems; Network automation and protection systems; tools for network simulation; Smart grids: components, functionalities & benefits

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program. IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN. Read more
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program.

IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN:
- Skills and know-how in the latest and developing technologies in electrical systems
- Practical guidance and feedback from experts from around the world
- Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college
- Credibility and respect as the local electrical systems expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Electrical Systems)** qualification

The next intake will start on the week of June 27, 2016.

Contact us to find out more and apply (http://www.eit.edu.au/course-enquiry).

** A note regarding recognition of this program in the Australian education system: EIT is the owner of this program. The qualification is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA). EIT delivers this program to students worldwide.

Visit the website http://www.eit.edu.au/master-engineering-electrical-systems

PROFESSIONAL RECOGNITION

This Master Degree (or Graduate Diploma) is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA) in Australia.

It is a professional development program and is not currently an entry-to-practice qualification. Engineers Australia are considering this and other programs for those students desiring professional status (e.g. CPEng). However, the outcome of this review may or may not result in a student gaining chartered professional status if he or she does not already possess this.

Additional Entry Requirements

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6.0) or equivalent as outlined in the EIT Admissions Policy.

Congruent field of practice means one of the following with adequate electrical engineering content (with fields not listed below to be considered by the Dean and the Admissions committee on a case-by-case basis):

• Electrical Engineering

• Electronic and Communication Systems

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechatronic Systems

• Manufacturing and Management Systems

• Industrial Automation

• Production Engineering

Overview

Electrical power is an essential infrastructure of our society. Adequate and uninterrupted supply of electrical power of the required quality is essential for industries, commercial establishments and residences; and almost any type of human activity is impossible without the use of electricity. The ever-increasing cost of fuels required for power generation, restricted availability in many parts of the world, demand for electricity fueled by industrial growth and shortage of skilled engineers to design, operate and maintain power network components are problems felt everywhere today. The Master of Engineering (Electrical Systems) is designed to address the last-mentioned constraint, especially in today’s context where the field of electrical power is not perceived as being ‘cool’ unlike computers and communications and other similar nascent fields experiencing explosive growth. But it is often forgotten that even a highly complex and sophisticated data centre needs huge amounts of power of extremely high reliability, without which it is just so much silicon (and copper).

This program presents the topics at two levels. The first year addresses the design level where the student learns how to design the components of a power system such as generation, transmission and distribution as well as the other systems contributing to the safety of operation. The topics in the first year also cover the automation and control components that contribute to the high level of reliability expected from today’s power systems. Because of the constraints imposed by the fuel for power generation and the environmental degradation that accompanies power generation by fossil fuels, the attention today is focused on renewable energy sources and also more importantly how to make the generation of power more efficient and less polluting so that you get a double benefit of lower fuel usage and lower environmental impact. Even the best designed systems need to be put together efficiently. Setting up power generation and transmission facilities involves appreciable capital input and complex techniques for planning, installation and commissioning. Keeping this in view, a unit covering project management is included in the first year.

The second year of the program focuses on the highly complex theory of power systems. If the power system has to perform with a high degree of reliability and tide over various disturbances that invariably occur due to abnormal events in the power system, it is necessary to use simulation techniques that can accurately model a power system and predict its behavior under various possible disturbance conditions. These aspects are covered in the course units dealing with power system analysis and stability studies for steady-state, dynamic and transient conditions. The aspect of power quality and harmonic flow studies is also included as a separate unit.

The study of power systems has an extensive scope and besides the topics listed above, a student may also like to cover some other related topic of special interest. The ‘Special Topics in Electrical Power Systems’ unit aims to provide students with the opportunity for adding one ‘state-of-the art’ topic from a list of suggested fields. Examples are: Smart grids, Micro-grids and Geographic Information System (GIS) application in utility environment.

The Masters Thesis which spans over two complete semesters is the capstone of the program, requiring a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding units. As a significant research component of the course, this program component will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling the students to critique current professional practice in the electrical power industry.

WHO WOULD BENEFIT

Those seeking to achieve advanced know-how and expertise in industrial automation, including but not limited to:

- Electric Utility engineers

- Electrical Engineers and Electricians

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Consulting Engineers

- Production Managers

Read less
This Electrical and Electronic Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of electrical and electronic engineering. Read more
This Electrical and Electronic Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of electrical and electronic engineering. Particular prominence is given to electrical power systems and machines, robotics and sensors, digital systems incorporating VHDL and signal processing.

An emphasis on applied technical work will strengthen the engineering development skills of students from an academic background.

WHY CHOOSE THIS COURSE?

-The programme is delivered by a specialist team of academics
-Electrical and electronic research carried out in the Faculty is recognised as 5% World-leading, 45% Internationally Excellent, 25% International, 25% National (RAE 2008)
-Access to state-of-the-art studio, laboratory and computing facilities within the new Engineering and Computing building
-Personal tutor support throughout the postgraduate study
-Excellent links with a number of industrial organisations enable access to the latest technology and real-world applications

WHAT WILL I LEARN?

The work carried out on this course will provide the demonstrable expertise necessary to help secure professional level employment in related industries. The topic areas also provide opportunities for interaction with the Faculty’s Research Centres who will source some of the individual projects for the programme.

The MSc in Electrical and Electronic Engineering curriculum consists of a fixed menu of study and a substantial MSc project. Successful completion of all elements leads to the award of MSc in Electrical and Electronic Engineering. Completion of the taught modules without a project leads to the award of a Postgraduate Diploma.

The mandatory modules are as follows:
-Digital System Design with VHDL
-Electrical Machines and Drives
-Power Systems
-Digital Signal and Image Processing
-Robotics: Kinematics, Dynamics and Applications
-Measurement and Sensor Technology
-Microprocessor Applications
-Renewable Energy and Smart Grid
-Individual Project

The substantial individual project gives students the opportunity to work on a detailed area of related technology alongside an experienced academic supervisor. Some projects are offered in conjunction with the work of the Faculty’s Research Centres or industry.

Typical project titles include:
-Embedded network interface development for measurement instruments
-Wireless sensors for industrial thermocouple temperature monitoring
-Power system network simulation
-Wind turbine generator simulation

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

The specialist topics studied on the programme will prepare you for work in specialist companies involved with electrical and electronic engineering. There are also many roles in related industries that rely on the technology.

Possible destinations include:
-Electrical power supply generation and distribution including renewables;
-Transport and industrial equipment manufacturers employing electrical drives; electrical vehicles are anticipated to create an increased demand in this area
-Industrial measurement and monitoring systems
-Robotics and associated activities
-Microelectronic applications

Opportunities also exist to complete a PhD research degree upon completion of the master’s course.

Electrical and electronic technology is now indispensible for modern life. We rely on electricity for the reliable supply of essential energy to our homes and businesses. Electronics is at the heart of products enabling our transport and communication systems.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
This programme provides an opportunity to specialise in the field of electrical power. It builds on a first degree in electrical/electronic engineering and explores how modern power systems from drives to power distribution are designed and implemented. Read more
This programme provides an opportunity to specialise in the field of electrical power. It builds on a first degree in electrical/electronic engineering and explores how modern power systems from drives to power distribution are designed and implemented. This programme develops technical skills and knowledge at an advanced level, as well as developing the professional, analytical and management skills of students. This programme includes a major research project. Many of the projects reflect the key interests of the Faculty, such as power electronics, renewable and alternative energy systems. There is the opportunity for projects to be derived from our industrial links, and a number are proposed by students, reflecting their own personal interests or experience.

The aims of the programme are:

- To provide an enhanced base of knowledge and current and reflective practice necessary to initiate a career in electrical engineering at the professional level

- To enhance specialist knowledge in the area of electrical engineering which build upon studies at the undergraduate level

- To further develop improved skills of independent learning and critical appraisal

- To develop an extensive insight into industrial applications and requirements

- To develop an extensive insight of management issues relating to engineering business

- To develop a comprehensive knowledge of leading-edge ICT tools and techniques in electrical engineering

- To provide the ability to progress to the next level of study.

Visit the website http://www2.gre.ac.uk/study/courses/pg/electr/elecpow

Engineering - Electrical and Electronic

The Department of Electronic, Electrical & Computer Engineering has a focus on innovation, analysis and development within a wide range of advanced engineering technologies. Students develop an understanding of both hardware and software, enabling them to design electronic and electrical systems capable of meeting the exacting demands of a diverse range of applications.

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Smart Grids and Sustainability (15 credits)
Electrical Machines and Drives (15 credits)
Group Power Project (15 credits)
Power Systems Analysis (15 credits)
Technology Integration and Interfacing (15 credits)
Power Electronic Converters (15 credits)
Individual Research Project (60 credits)
Research, Planning and Communication (15 credits)
Strategy & Management (15 credits)

Part time
Year 1
Students are required to study the following compulsory courses.

Electrical Machines and Drives (15 credits)
Group Power Project (15 credits)
Power Systems Analysis (15 credits)
Power Electronic Converters (15 credits)

- Year 2:
Students are required to study the following compulsory courses.

Smart Grids and Sustainability (15 credits)
Technology Integration and Interfacing (15 credits)
Individual Research Project (60 credits)
Research, Planning and Communication (15 credits)
Strategy & Management (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

Students are assessed through examinations, case studies, assignments, practical work and a dissertation.

Career options

Graduates can pursue a wide variety of opportunities exist for electrical power engineers in both the power supply sector and large industrial consumers.

Find out about the teaching and learning outcomes here - http://www2.gre.ac.uk/__data/assets/pdf_file/0010/643915/MSc-Electrical-Power-Engineering.pdf

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
This course recognises the need for skilled graduates to address the world’s major issues in electrical energy and power systems. Read more

Why this course?

This course recognises the need for skilled graduates to address the world’s major issues in electrical energy and power systems. It offers an integrated programme focusing on:
- the design, operation and analysis of power supply systems
- power plant
- renewables and industrial electrical equipment relating to a liberalised power supply industry
- globalised markets and environmental drivers

The course provides the advanced level of knowledge and understanding required for challenging, well paid and exciting careers in the dynamic and high growth electrical power and renewable energy sectors.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/electricalpowerengineeringwithbusiness/

You’ll study

There’s two semesters of compulsory and optional classes, followed by a three-month summer research project in your chosen area. There’s the opportunity to carry this out through the department's competitive MSc industrial internships.

The internships are offered in collaboration with selected department industry partners, including ScottishPower, Smarter Grid Solutions and SSE. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

You'll have exclusive access to our extensive computing network and purpose built teaching spaces, including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies, including:
- LDS 6-digital partial discharge test & measurement system
- Marx impulse generators & GIS test rigs
- £1M distribution network and protection laboratory comprising a 100kVA microgrid, induction machines and programme load banks

You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.

Accreditation

The course is fully accredited by the professional body, the Institution of Engineering and Technology (IET).

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.
Each module comprises of approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.
The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.
You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.

- Industry engagement
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Iberdrola, National Grid, ScottishPower, SSE, Siemens and Rolls-Royce are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project/internship consists of four elements, with individual criteria:
1. Interim report (10%, 1500 to 3000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.

2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.

3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.

4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

The course provides the advanced level of knowledge and understanding required for challenging, well paid and exciting careers in the dynamic and high growth electrical power and renewable energy sectors.
Employment prospects are excellent, with recent graduates operating in power engineering consultancy, global power utilities (generation, supply and distribution), the renewable energy sector and manufacturing. They've taken up professional and technical positions as electrical engineers, power systems specialists, distribution engineer and asset managers in large energy utilities such as ScottishPower Energy Networks, Aker Solutions, National Grid & EDF Energy. Graduates have also taken up roles in project management and engineering consultancy with companies such as Arup, Atkins Global, Ramboll, Moot MacDonald and AMEC.

How much will I earn?

Salaries for electrical engineers start at around £20,000 to £25,000. Experienced or incorporated engineers can earn between £28,000 and £40,000. A chartered electrical engineer can earn higher salaries of £40,000 to £55,000 or more.*

*information is intended only as a guide. Figures taken from Prospects.

Find information on Scholarships here http://www.strath.ac.uk/engineering/electronicelectricalengineering/ourscholarships/.

Read less
This programme is for graduate engineers wishing to work in the electrical power industry. It develops your knowledge of electrical power and energy ystems, giving you a good understanding of the latest developments and techniques within the electrical power industry. Read more
This programme is for graduate engineers wishing to work in the electrical power industry. It develops your knowledge of electrical power and energy ystems, giving you a good understanding of the latest developments and techniques within the electrical power industry.

Course details

The programme is centred around three major themes:
-Electrical power networks with emphasis on conventional networks, smart grids, high voltage direct current transmission and asset management of network infrastructure
-Renewable energies with emphasis on wind and solar power
-Power electronics with emphasis on power electronic convertors in converting and controlling power flows in electrical networks and renewable energy systems#

What you study

For the postgraduate diploma (PgDip) award you must successfully complete 120 credits of taught modules.

For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Core modules
-Asset Management
-Emerging Transmission Systems
-Power Electronics
-Practical Health and Safety Skills
-Project Management and Enterprise
-Renewable Energy Conversion Systems
-Research and Study Skills
-Smart Power Distribution

MSc only
-Major Project

Modules offered may vary.

Teaching

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems.

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

As an electrical power and energy systems engineer you can be involved in designing, constructing, commissioning and lifecycle maintenance of complex energy production, conversion and distribution systems.

Your work could include energy storage systems, management and efficient use of energy in building, manufacturing and processing systems. You could also be involved in work relating to the environmental and economic impact of energy usage.

Examples of the types of jobs you could be doing include:
-Designing new electrical transmission and distribution systems
-Managing maintenance and repair
-Managing operations of existing systems
-Managing operations of a wind turbine farm
-Analysing the efficiency of hydroelectric power systems
-Evaluating the economic viability of new solar power installations
-Assessing the environmental impact of energy systems

Read less
This is the UK’s first two-year full-time MSc in Advanced Electrical Power Engineering. To be an effective power engineer you need a good knowledge of underpinning technologies and user and application requirements. Read more

Why this course?

This is the UK’s first two-year full-time MSc in Advanced Electrical Power Engineering.

To be an effective power engineer you need a good knowledge of underpinning technologies and user and application requirements. You also require a firm understanding of the business and regulatory landscape that national and multinational power and utility companies must work within.

This course brings together advanced expertise in all aspects of electrical energy and power systems, complemented by studies in electricity markets and power systems economics.

The course is designed to provide the advanced training you need for a career in the dynamic power and energy sectors.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedelectricalpowerengineering/

You’ll study

- Year 1
You'll take a selection of compulsory and optional taught classes. This is combined with training in business and project management skills and research methodologies and techniques.
Potential Year 2 research projects are explored during this year through completion of a mini-project, with a final topic agreed for the start of Year 2.

- Year 2
You'll undertake a major research project within the electrical power and energy disciplines. You'll also select a number of advanced taught modules designed to broaden your understanding of your chosen topic.

Facilities

You'll have exclusive access to our extensive computing network and purpose built teaching spaces including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies including:
- LDS 6-digital partial discharge test & measurement system
- Marx impulse generators & GIS test rigs
- £1M distribution network and protection laboratory comprising a 100kVA microgrid, induction machines and programme load banks

You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.

Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.

Guest lectures

Guest presentations are a regular feature of the courses. These are often done by industry partners or department alumni. Speakers will share with you how they have put their knowledge and learning into practice in the world of work.

Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Iberdrola, National Grid, ScottishPower, SSE, Siemens and Rolls-Royce are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules in Year 1. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the Year 2 research project consists of four elements, with individual criteria:
1. Interim report (10%, 1500 – 3000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.
2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.
3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.
4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Careers

The course provides the advanced level of knowledge and understanding required for challenging, well paid and exciting careers in the high growth power and energy sectors.

Employment prospects are excellent, with recent graduates working in power engineering consultancy, global power utilities (generation, supply and distribution), the renewable energy sector and manufacturing. They've taken up professional and technical positions as electrical engineers, power systems specialists, distribution engineer and asset managers in large energy utilities such as Iberdrola, EDF Energy and China State Grid. Graduates have also taken up roles in project management and engineering consultancy with companies such as Arup, Atkins Global, Ramboll, Moot MacDonald and AMEC.

How much will I earn?

Salaries for electrical engineers start at around £20,000 to £25,000. Experienced or incorporated engineers can earn between £28,000 and £40,000. A chartered electrical engineer can earn higher salaries of £40,000 to £55,000 or more.*

*Information is intended only as a guide.

Read less
The Electrical and Electronic Engineering masters explores the latest in manufacturing and systems engineering at an advanced level. Read more
The Electrical and Electronic Engineering masters explores the latest in manufacturing and systems engineering at an advanced level. You can choose to specialise in communications or mechatronics.

Take the Digital Systems and Telecommunications specialist route and create products and systems using electronics and communication technologies.

Choose the Mechatronics route and study the electronic control of mechanical and intelligent robotic systems.

From either discipline, graduates go on to a wide range of careers in digital communications, robotics, engineering and energy sectors.

With the Electrical and Electronic Engineering masters you will:
-Work with the latest technology and design.
-Graduate with a specialist degree that gives you opportunities for advanced engineering roles.
-Enjoy an international experience with the option of student exchange.
-Further develop your skills through placements and industry-led case studies.
-Qualify with an internationally-recognised degree accredited by the Institution of Engineering and Technology (IET).

This course has several different available start dates and study options - for more information, see the relevant web-page:
SEPTEMBER 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02535-1PTA-1718/Electrical_and_Electronic_Engineering_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Full Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02519-1FTAB-1718/Electrical_and_Electronic_Engineering?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02535-1PTAB-1718/Electrical_and_Electronic_Engineering_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

Programme Description

Accredited by the Energy Institute, this Masters programme aims to enable graduates to qualify for entry into the profession of electrical and electronic engineering with a bias towards energy engineering and renewable technologies.

In addition to the knowledge and understanding of electrical and electronic engineering there will be an integrated understanding of power systems, instrumentation systems, telecommunications systems and technologies, and business, reinforced with personal and inter-personal skills.

The programme prepares students for the next stage in their careers, whether entering employment or to enable those undertaking the programme to contribute towards research in the discipline. It also provides continuing professional development opportunities related to the electrical and electronic engineering professions and sectors.

Industries where graduates are likely to find employment opportunities include electrical power generation and distribution, renewable energy engineering, telecommunications engineering, transport engineering and electronic engineering.

Career Opportunities

The programme will provide an excellent opportunity for students wishing to pursue a professionally qualified career in the electrical power industry, the renewable energy sector, the offshore industry and in industrial power electronics design.

Assessment

Students will be assessed via a combination of examinations, coursework, presentations,case study analysis, reports and the final dissertation.

Accreditation

MSc Electrical and Electronic Engineering is accredited by the Institution of Engineering and Technology (IET) and its students meet the UK Engineering Council’s further learning requirements for registration as a Chartered Engineer.

Read less
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. Read more
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. There is an increased demand for advancements in electrical, electronic, control and communication systems for transport, with a particular focus on themes like higher efficiency and sustainability, safety and driving assistance, position and traffic control for smart transport planning.

Modern electrical, electronic, control and communication systems for intelligent transport require today engineers with a combination of skills and solutions from cross-disciplinary abilities spanning electrical, electronic, control and communications. In this context, the overall aim of this Conversion Masters is to provide you with an enriching learning experience, and to enhance your knowledge and skill-base in the area of modern road vehicle and rail transport systems design.

This conversion course is intended both for engineers in current practice and for fresh honours graduates to facilitate their professional development, mobility and employability.

Course content

This course aims to enhance your knowledge and skills in the area of intelligent and efficient transport systems design. You will develop advanced practical skills that will help you determine system requirements, select and deploy suitable design processes and use the latest specialist tool chains to test and/or prototype a device or algorithm. The programme will help you acquire the cross-disciplinary skills and abilities that today are vital to be able to implement effective solutions for modern electrical, electronic and communication systems applied to intelligent transport. The broad range of disciplines covered by the course will enable you to enter a career that requires a cross-disciplinary approach with a practical skillset.

The subject areas covered within the course offer you an excellent launch pad which will enable you to enter into this ever expanding, fast growing and dominant area within the electrical engineering sector, and particularly in the area of intelligent and efficient transport systems. Furthermore, the course will provide the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-Electric Motors and Control for Transport Systems
-Power Conversion and Drives for Transport Systems
-Project
-Sensor, Data Acquisition and Communication for Transport Systems

Associated careers

The course provides the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs. Graduates can expect to find employment, for example, as Electrical systems design engineers; Control systems engineers, Transport systems engineers; Plant control engineers; Electronic systems design engineer; Communication systems design engineers; Sensor systems engineers; Computer systems engineer. Examples of typical industries of employment can be: Transport; Automobile; Aviation; Electrical systems; Electronic systems; Assembly line manufacturers; Robotics and home help; Toy; Communication systems; Logistics and distribution; Consumer industry; Life-style industry; Security and surveillance; Petro-chemical.

Professional recognition

This course will be seeking accreditation from the IET.

Read less
The MSc in Electrical and Electronic Engineering allows for study of a variety of topics including electronic design, communications, software engineering, power generation and distribution, electrical machines and renewable energy systems. Read more
The MSc in Electrical and Electronic Engineering allows for study of a variety of topics including electronic design, communications, software engineering, power generation and distribution, electrical machines and renewable energy systems. The course delivers broad-based understanding of the art of electrical and electronic engineering and an in-depth study of topics covering modern technology for electrical and electronic engineering.

Students will gain experience of the types of problem encountered by academic and industrial researchers.

This course is suitable for graduates closely related disciplines who wish to convert to electrical and electronic engineering.

Students will:

develop problem solving skills
become competent users of relevant equipment and software
develop ability to think logically and critically
develop a thorough understanding of current practice and its limitations and appreciation of likely new development
develop design skills and methodologies relevant to a variety of
electrical and electronic systems, circuits and models and gain
experience of dealing with the challenges encountered by
academic and industrial researchers

Read less
This course is designed to meet the needs of electrical, electrical power, electronic and telecommunication engineers who are looking to open up their career prospects. Read more
This course is designed to meet the needs of electrical, electrical power, electronic and telecommunication engineers who are looking to open up their career prospects. You will specialise in one of three majors: Emerging Power Systems, Telecommunication and Networking, or Embedded Systems. Among a wide range of optional units, you may study electrical power, renewable energy, communications and computer engineering at the system level and the component level.

The course is designed to allow you to undertake further studies in a field of your preference through advanced coursework and a major project, ultimately developing a prototype and presenting a formal thesis on the outcome. With the approval of the course coordinator, you may also include a unit from the Curtin Business School, or the Department of Computing, or the Department of Mathematics and Statistics.

EMERGING POWER SYSTEMS (314675)

Global demands on resources have placed an urgent emphasis on supplying a growing population with affordable, environmentally responsible power. How we manage this challenging paradigm will rely on a new generation of creative, technically savvy engineers. Since fossil fuels are a finite resource, the development of alternative sources of electrical energy such as solar and wind is vital.

The challenges that face you as a power engineer include interfacing renewable sources to the electricity distribution system, maintaining stability in the presence of many small energy sources and guaranteeing an electrical supply in the presence of intermittent sources such as solar power.

This major addresses challenges in the generation, transmission and distribution of electricity. Emergent technologies like smart grid and distributed generation are covered in detail. You will have the opportunity to further investigate and apply emergent technologies through your project work.

TELECOMMUNICATIONS AND NETWORKING (314676)

The electronics and communication fields represent two of the greatest growing technology areas in the world. With the rapid progress of information technology, the role of communications is becoming even more crucial for increasing industry efficiency and competition – whether machine talking to machine, computer with computer or human with human via a wide array of methods.

This major explores relevant topics in telecommunications and networking like mobile radio communications and data network security. The wide range of optional units includes topics such as computer architectural philosophies, LAN and WAN technologies, electromagnetics, error control coding, troubleshooter management, legal frameworks, and system design. You will also have the opportunity to further investigate a specialist area and apply your skills and knowledge through your project work.

EMBEDDED SYSTEMS (314677)

Our world is characterised by the ever-increasing number of intelligent devices which have inbuilt or 'embedded' computers. Computers in the form of microprocessors are being embedded in almost every other form of system to control them or provide additional services, creating a strong demand for electrical engineers in all industrially advanced nations.

In this major, you will study intermediate and advanced topics in embedded systems, for example, embedded systems in field-programmable gate arrays (FPGAs) and embedded software engineering. You will have the opportunity to further investigate and apply emergent technologies in embedded systems through your chosen advanced project.

Credit for previous study

Applications for recognition of prior learning (RPL) are assessed on an individual basis.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less
Gain IET accreditation on this Electrical Power and Control Engineering Masters at Liverpool John Moores University. This course meets Chartered Engineer requirements and the demand for postgraduates in this growing global industry. Read more
Gain IET accreditation on this Electrical Power and Control Engineering Masters at Liverpool John Moores University. This course meets Chartered Engineer requirements and the demand for postgraduates in this growing global industry

•Complete this masters degree in one year full time
•Study at one the UK’s leading Engineering Schools
•Programme informed by internationally-acclaimed research from LJMU’s Electrical and Electronic Engineering Research Centre
•Postgraduates of this course highly sought after by major UK and international employers

This MSc degree programme provides an excellent progression point from undergraduate courses in the area of electrical engineering. You can also complete the course as development and to specialise in the Electrical Power and Control Engineering field.

Did you know that there is growing demand for electrical power engineers in the energy, automotive, and process industries? You could be involved in the design and development of electrical systems, such as those found in hybrid vehicles, cooling systems and aircraft actuators or the generation, distribution, regulation and conversion of electrical power.
You’ll develop advanced analytical and experimental skills to design new power and control systems and learn how to critically analyse designs, their functionality and expected reliability.
It will also be important for you to gain a strong understanding of the capabilities and limitations of modelling and simulation tools.

The expertise and laboratories available are aligned to the new sources of energy, green energy and the energy saving industry. LJMU specialist facilities support investigation into wind power electricity generation, where wider penetration of remote off-shore wind farm installations is expected in near future and multi-phase systems have many advantages.
The programme design provides opportunities to practice communication skills at Chartered Engineer level. You’ll gain the professional behavioural traits to prepare you for technical and management roles in power and control engineering.

Please see guidance below on core and option modules for further information on what you will study.
Level 7
Modelling and Control of Electric Machines and Drives
Control Systems
Dynamic Systems Simulation
Digital Control Power Systems Modelling
Analysis Alternative Energy Systems Modelling with Matlab and Simulink
MSc Project
Operations Research
Safety Reliability
Project Management
Programming for Engineering
LabVIEW
Professional and Leadership Skills

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Academic Framework reviews are conducted by LJMU from time to time to ensure that academic standards continue to be maintained. A review is currently in progress and will be operational for the academic year 2016/2017. Final details of this programme’s designated core and option modules will be made available on LJMU’s website as soon as possible and prior to formal enrolment for the academic year 2016/2017.

Please email if you require further guidance or clarification.

Read less
This MSc is specifically designed for students who wish to pursue advanced studies across the broad range of subjects relevant to electronic and electrical engineering. Read more

Why this course?

This MSc is specifically designed for students who wish to pursue advanced studies across the broad range of subjects relevant to electronic and electrical engineering.

You can select classes from the extensive range of postgraduate taught courses delivered by our Department of Electronic & Electrical Engineering. This unique flexible structure allows you to build a personalised MSc programme that meets your academic interests and career aspirations.

The course can lead to a wide range of career opportunities. Recent graduates have gained well paid positions in:
- electrical supply industries
- telecommunications and IT
- consulting and design companies
- healthcare and aerospace

See the website https://www.strath.ac.uk/courses/postgraduatetaught/electronicelectricalengineering/

You’ll study

There’s two semesters of compulsory and optional classes, followed by a three-month research project in your chosen area. There’s the opportunity to carry this out through the department's competitive MSc industrial internships.

The internships are offered in collaboration with selected department industry partners, including ScottishPower, Smarter Grid Solutions and SSE. You'll address engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

You'll have exclusive access to our extensive computing network and purpose-built teaching spaces, including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies including:
- LDS 6-digital partial discharge test & measurement system
- Marx impulse generators & GIS test rigs
- £1M distribution network and protection laboratory comprising a 100kVA microgrid, induction machines and programme load banks

You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.

Accreditation

The course is fully accredited by the professional body, the Institution of Engineering and Technology (IET). This means that you'll meet the educational requirements to become a “Chartered Engineer” – a must for your future engineering career.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.
Each module comprises of approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.
The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.
You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.

- Industry engagement
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Siemens, Rolls-Royce, Xilinx, Selex ES and Mott MacDonald are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.
Assessment of the summer research project/internship consists of four elements, with individual criteria:
1. Interim report (10%, 1500 – 3000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.

2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.

3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.

4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

The flexible structure of the course means graduates are able to design their own personalised programme to suit individual interests. Career opportunities are vast and include the electrical supply industries, oil and gas sector, telecommunications, IT, banking and finance, consulting and design companies, healthcare and aerospace.

Recent graduates have secured technical positions such as control engineers, design engineers and electronics engineers with organisations including GE, Jaguar LandRover and BP. They've also taken up managerial roles such as technology analysts, project managers and risk assessors with Morgan Stanley, Mott MacDonald and Atkins Global.

The MSc is also a great starting point for research within the department.

How much will I earn?

Salaries for electrical engineers start at around £20,000 to £25,000. Experienced or incorporated engineers can earn between £28,000 and £40,000. A chartered electrical engineer can earn higher salaries of £40,000 to £55,000 or more.*

*information is intended only as a guide. Figures taken from Prospects.

Find information on Scholarships here http://www.strath.ac.uk/engineering/electronicelectricalengineering/ourscholarships/.

Read less
The MSc in Electrical and Electronic Engineering integrates power systems, instrumentation systems, telecommunications systems and technologies, and business, reinforced with personal and inter-personal skills. Read more
The MSc in Electrical and Electronic Engineering integrates power systems, instrumentation systems, telecommunications systems and technologies, and business, reinforced with personal and inter-personal skills.

The programme prepares students for the next stage in their careers, whether entering employment or to enable those undertaking the programme to contribute towards research in the discipline.

Accredited by the Energy Institute.

This course is available part time, please see this web-page for more details: http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02535-1PTAB-1617/Electrical_and_Electronic_Engineering_(January)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

Programme Description

Accredited by the Energy Institute, this Masters programme aims to enable graduates to qualify for entry into the profession of electrical and electronic engineering with a bias towards energy engineering and renewable technologies.

In addition to the knowledge and understanding of electrical and electronic engineering there will be an integrated understanding of power systems, instrumentation systems, telecommunications systems and technologies, and business, reinforced with personal and inter-personal skills.

The programme provides continuing professional development opportunities related to the electrical and electronic engineering professions and sectors.

Industries where graduates are likely to find employment opportunities include electrical power generation and distribution, renewable energy engineering, telecommunications engineering, transport engineering and electronic engineering.

Career Opportunities

The programme will provide an excellent opportunity for students wishing to pursue a professionally qualified career in the electrical power industry, the renewable energy sector, the offshore industry and in industrial power electronics design.

Assessment

Students will be assessed via a combination of examinations, coursework, presentations,case study analysis, reports and the final dissertation.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X