• Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Kingston University Featured Masters Courses
Durham University Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Cambridge Featured Masters Courses
Teesside University Featured Masters Courses
"electrical" AND "electro…×
0 miles

Masters Degrees (Electrical And Electronic)

We have 289 Masters Degrees (Electrical And Electronic)

  • "electrical" AND "electronic" ×
  • clear all
Showing 1 to 15 of 289
Order by 
Our Masters in Electrical and Electronic Engineering is an advanced course designed for engineering graduates to enhance their skills in this area of high technology. Read more
Our Masters in Electrical and Electronic Engineering is an advanced course designed for engineering graduates to enhance their skills in this area of high technology. The ever increasing pace of developments in all areas of electrical and electronic engineering, (and in particular in the systems that are related to energy and the environment), requires engineers with a thorough understanding of operation principles and design methods for various modern electrical and electronic systems. As a graduate you'll be able to not only respond to the latest changes but also to look ahead and help in shaping future developments.

The unique features of this course are that the traditional electrical and electronic engineering subjects are supported by the more modern topics of computer control and machine learning techniques, which are at the forefront of modern electrical and electronic systems in the industry today. This course offers an integrated systems approach to engineering, incorporating modules in advanced power electronics and renewable energy systems, advanced instrumentation and control with signal processing, real-time systems and machine learning techniques.

There is an increasing demand for skilled engineers who are able to design and maintain electrical and electronic systems that are at the forefront of current technologies. These positions cover many industries, hence graduates from this course can expect significantly enhanced job prospects in electrical, electronic as well as systems engineering.

Modules

Digital signal processing
Pattern recognition and machine learning
Advanced Instrumentation and Design
Advanced power electronics and renewable energy systems
Technology evaluation and commercialization
Technical, research and professional skills
MSc engineering project

Professional links

The School has a strong culture of research and extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs). Teaching content on our courses is closely related to the latest research work.

This course is accredited by the IET as meeting the further learning requirements for CEng registration. The IET is one of the world’s largest engineering institutions with over 167,000 members in 127 countries.

Employability

The acquired skills in computer control and AI techniques offer additional scope for jobs in the design of decision support systems that cross traditional boundaries between engineering and other disciplines. (i.e. medical, finance). Successful graduates will enjoy exciting career opportunities from a wide range of industries, such as electrical energy supply and control, electronics and instrumentation products and services, intelligent systems and automation to include: automotive, aerospace, electrical and electronic consumer products, telecommunications. The students can also pursue PhD studies after completing the course.

Engineering management skills

Engineering employers have expressed their need for engineers with a solid grasp of the business requirements that underpin real engineering projects. Our course incorporates a management-related module focused on entrepreneurship and project management. This management module develops our graduates' commercial awareness and ensures that they have the skill-set valued by industry employers.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
This Electrical and Electronic Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of electrical and electronic engineering. Read more
This Electrical and Electronic Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of electrical and electronic engineering. Particular prominence is given to electrical power systems and machines, robotics and sensors, digital systems incorporating VHDL and signal processing.

An emphasis on applied technical work will strengthen the engineering development skills of students from an academic background.

WHY CHOOSE THIS COURSE?

-The programme is delivered by a specialist team of academics
-Electrical and electronic research carried out in the Faculty is recognised as 5% World-leading, 45% Internationally Excellent, 25% International, 25% National (RAE 2008)
-Access to state-of-the-art studio, laboratory and computing facilities within the new Engineering and Computing building
-Personal tutor support throughout the postgraduate study
-Excellent links with a number of industrial organisations enable access to the latest technology and real-world applications

WHAT WILL I LEARN?

The work carried out on this course will provide the demonstrable expertise necessary to help secure professional level employment in related industries. The topic areas also provide opportunities for interaction with the Faculty’s Research Centres who will source some of the individual projects for the programme.

The MSc in Electrical and Electronic Engineering curriculum consists of a fixed menu of study and a substantial MSc project. Successful completion of all elements leads to the award of MSc in Electrical and Electronic Engineering. Completion of the taught modules without a project leads to the award of a Postgraduate Diploma.

The mandatory modules are as follows:
-Digital System Design with VHDL
-Electrical Machines and Drives
-Power Systems
-Digital Signal and Image Processing
-Robotics: Kinematics, Dynamics and Applications
-Measurement and Sensor Technology
-Microprocessor Applications
-Renewable Energy and Smart Grid
-Individual Project

The substantial individual project gives students the opportunity to work on a detailed area of related technology alongside an experienced academic supervisor. Some projects are offered in conjunction with the work of the Faculty’s Research Centres or industry.

Typical project titles include:
-Embedded network interface development for measurement instruments
-Wireless sensors for industrial thermocouple temperature monitoring
-Power system network simulation
-Wind turbine generator simulation

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

The specialist topics studied on the programme will prepare you for work in specialist companies involved with electrical and electronic engineering. There are also many roles in related industries that rely on the technology.

Possible destinations include:
-Electrical power supply generation and distribution including renewables;
-Transport and industrial equipment manufacturers employing electrical drives; electrical vehicles are anticipated to create an increased demand in this area
-Industrial measurement and monitoring systems
-Robotics and associated activities
-Microelectronic applications

Opportunities also exist to complete a PhD research degree upon completion of the master’s course.

Electrical and electronic technology is now indispensible for modern life. We rely on electricity for the reliable supply of essential energy to our homes and businesses. Electronics is at the heart of products enabling our transport and communication systems.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
Electrical and electronic engineering are the foundation of 21st century innovations. from digital communications to robotics systems, from sustainable energy to smart environments. Read more

Electrical and electronic engineering are the foundation of 21st century innovations: from digital communications to robotics systems, from sustainable energy to smart environments. With the MSc Electrical and Electronic Engineering from GCU, you'll develop the skills to work at the forefront of these exciting fields. Through discovery and invention, you can build a better future for humanity and contribute to the common good.

Accredited by the Institution of Engineering and Technology (IET), the programme also meets the Engineering Council's further learning requirements to become a Chartered Engineer. It offers advanced study and ideal preparation so you can enter the next stage of your career. You'll also find professional development opportunities for your continued growth as a successful engineer.

The curriculum offers a comprehensive exploration of electrical and electronic engineering, with particular emphasis on today's fast-growing fields of energy engineering and renewable technologies.

  • Expand your understanding of power systems and instrumentation systems
  • Investigate telecommunications systems and technologies
  • Solidify your personal skills and practise collaborating with a team
  • Connect your learning to the real world with industry case studies and on-the-ground assignments

The MSc Electrical and Electronic Engineering offers two options for specialisation.

  • Digital Systems and Telecommunications - Master communication technologies and systems
  • Mechatronics - Study the electronic control of mechanical and intelligent robotic systems

What you will study

In addition to the knowledge and understanding of electrical and electronic engineering the programme will provide an integrated understanding of power systems, instrumentation systems, telecommunications systems and business operations, reinforced with personal and inter-personal skills.

Electrical Power Systems

The module examines topics relating to electric power generation, transmission, distribution and utilisation. This will include examination of individual power system components such as generators, transformers, overhead lines, underground cables, switchgears and protection systems as well as analysis of load flow and system fault conditions which are required for power system design and operation.

Advanced Industrial Communication Systems

Aims to provide a comprehensive knowledge and understanding of modern industrial communications systems. The operation of a wide range of state-of-the-art advanced communications systems will be studied, e.g. SCADA, satellite systems, digital cellular mobile networks and wireless sensor networks.

Measurement Theories and Devices

The generalised approach to measurement theory and devices adopted in this module will allow students to become familiar with the characteristics of measurement systems in terms of the underlying principles. Students should find this methodology to be a considerable benefit to them when they apply their expertise to solving more complex industrial measurement problems.

Measurement Systems

A range of advanced measurement systems will be studied in depth. Sensors, signal processing, low-level signal measurements, noise reduction methods and appropriate measurement strategies will be applied to industrial and environmental applications. The influence of environmental factors and operation conditions will be considered in relation to the optimisation of the measurement system.

Energy, Audit and Asset Management

Focuses on techniques for auditing and managing the amount of energy used in a range of industrial processes. The module will provide an understanding of the strategies and procedures of energy audit and energy asset management. Using case studies throughout, the module will present energy audit, managing energy usage, factors affecting energy efficiency on plant, and cost benefit analysis of introducing alternative strategies and technologies.

Professional Practice

Focuses on two themes, the first aims to develop student moral autonomy within a professional technology framework. It will examine moral issues and moral decision processes through evaluative enquiry and application of professional codes of conduct specifically in relation to design, information technology and the Internet. The second theme enhances the student's knowledge of concepts, methods and application of technology and environmental management as applied to a new or existing venture.

Renewable Energy Technologies

Renewable energy is regarded as an integral part of a sustainable development strategy. This module concentrates on the renewable energy technologies most likely to succeed in the UK and other temperate countries, i.e. solar energy, energy from waste, wind, hydro and biomass.

Condition Monitoring

Aims to provide an understanding of both Mechanical and Electrical Condition monitoring and associated instrumentation requirements for successful condition monitoring. The main focus in Mechanical Condition Monitoring is vibration monitoring since this is the most popular method of determining the condition and diagnosing faults in rotational machines, although other techniques used in condition monitoring are also covered.

Accreditation

MSc Electrical and Electronic Engineering is accredited by the Institution of Engineering and Technology (IET) and its students meet the UK Engineering Council’s further learning requirements for registration as a Chartered Engineer.

Assessment methods

Students will be assessed via a combination of examinations, coursework, presentations,case study analysis, reports and the final dissertation.

Graduate prospects

Your degree and specialist knowledge will guarantee you excellent career opportunities around the world. You might find work in the electrical power industry, the renewable energy sector, the offshore industry, transport engineering, electronic engineering or telecommunications.



Read less
Electrical and electronic engineering are the foundation of 21st century innovations. from digital communications to robotics systems, from sustainable energy to smart environments. Read more

Electrical and electronic engineering are the foundation of 21st century innovations: from digital communications to robotics systems, from sustainable energy to smart environments. With the MSc Electrical and Electronic Engineering from GCU, you'll develop the skills to work at the forefront of these exciting fields. Through discovery and invention, you can build a better future for humanity and contribute to the common good.

Accredited by the Institution of Engineering and Technology (IET), the programme also meets the Engineering Council's further learning requirements to become a Chartered Engineer. It offers advanced study and ideal preparation so you can enter the next stage of your career. You'll also find professional development opportunities for your continued growth as a successful engineer.

The curriculum offers a comprehensive exploration of electrical and electronic engineering, with particular emphasis on today's fast-growing fields of energy engineering and renewable technologies.

  • Expand your understanding of power systems and instrumentation systems
  • Investigate telecommunications systems and technologies
  • Solidify your personal skills and practise collaborating with a team
  • Connect your learning to the real world with industry case studies and on-the-ground assignments

The MSc Electrical and Electronic Engineering offers two options for specialisation.

  • Digital Systems and Telecommunications - Master communication technologies and systems
  • Mechatronics - Study the electronic control of mechanical and intelligent robotic systems

What you will study

In addition to the knowledge and understanding of electrical and electronic engineering the programme will provide an integrated understanding of power systems, instrumentation systems, telecommunications systems and business operations, reinforced with personal and inter-personal skills.

Electrical Power Systems

The module examines topics relating to electric power generation, transmission, distribution and utilisation. This will include examination of individual power system components such as generators, transformers, overhead lines, underground cables, switchgears and protection systems as well as analysis of load flow and system fault conditions which are required for power system design and operation.

Advanced Industrial Communication Systems

Aims to provide a comprehensive knowledge and understanding of modern industrial communications systems. The operation of a wide range of state-of-the-art advanced communications systems will be studied, e.g. SCADA, satellite systems, digital cellular mobile networks and wireless sensor networks.

Measurement Theories and Devices

The generalised approach to measurement theory and devices adopted in this module will allow students to become familiar with the characteristics of measurement systems in terms of the underlying principles. Students should find this methodology to be a considerable benefit to them when they apply their expertise to solving more complex industrial measurement problems.

Measurement Systems

A range of advanced measurement systems will be studied in depth. Sensors, signal processing, low-level signal measurements, noise reduction methods and appropriate measurement strategies will be applied to industrial and environmental applications. The influence of environmental factors and operation conditions will be considered in relation to the optimisation of the measurement system.

Energy, Audit and Asset Management

Focuses on techniques for auditing and managing the amount of energy used in a range of industrial processes. The module will provide an understanding of the strategies and procedures of energy audit and energy asset management. Using case studies throughout, the module will present energy audit, managing energy usage, factors affecting energy efficiency on plant, and cost benefit analysis of introducing alternative strategies and technologies.

Professional Practice

Focuses on two themes, the first aims to develop student moral autonomy within a professional technology framework. It will examine moral issues and moral decision processes through evaluative enquiry and application of professional codes of conduct specifically in relation to design, information technology and the Internet. The second theme enhances the student's knowledge of concepts, methods and application of technology and environmental management as applied to a new or existing venture.

Renewable Energy Technologies

Renewable energy is regarded as an integral part of a sustainable development strategy. This module concentrates on the renewable energy technologies most likely to succeed in the UK and other temperate countries, i.e. solar energy, energy from waste, wind, hydro and biomass.

Condition Monitoring

Aims to provide an understanding of both Mechanical and Electrical Condition monitoring and associated instrumentation requirements for successful condition monitoring. The main focus in Mechanical Condition Monitoring is vibration monitoring since this is the most popular method of determining the condition and diagnosing faults in rotational machines, although other techniques used in condition monitoring are also covered.

Accreditation

MSc Electrical and Electronic Engineering is accredited by the Institution of Engineering and Technology (IET) and its students meet the UK Engineering Council’s further learning requirements for registration as a Chartered Engineer.

Assessment methods

Students will be assessed via a combination of examinations, coursework, presentations,case study analysis, reports and the final dissertation.

Graduate prospects

Your degree and specialist knowledge will guarantee you excellent career opportunities around the world. You might find work in the electrical power industry, the renewable energy sector, the offshore industry, transport engineering, electronic engineering or telecommunications.



Read less
The MSc in Electrical and Electronic Engineering allows for study of a variety of topics including electronic design, communications, software engineering, power generation and distribution, electrical machines and renewable energy systems. Read more
The MSc in Electrical and Electronic Engineering allows for study of a variety of topics including electronic design, communications, software engineering, power generation and distribution, electrical machines and renewable energy systems. The course delivers broad-based understanding of the art of electrical and electronic engineering and an in-depth study of topics covering modern technology for electrical and electronic engineering.

Students will gain experience of the types of problem encountered by academic and industrial researchers.

This course is suitable for graduates closely related disciplines who wish to convert to electrical and electronic engineering.

Students will:

develop problem solving skills
become competent users of relevant equipment and software
develop ability to think logically and critically
develop a thorough understanding of current practice and its limitations and appreciation of likely new development
develop design skills and methodologies relevant to a variety of
electrical and electronic systems, circuits and models and gain
experience of dealing with the challenges encountered by
academic and industrial researchers

Read less
This Masters' programme extends the technical knowledge acquired on an undergraduate programme in electrical and electronic engineering. Read more
This Masters' programme extends the technical knowledge acquired on an undergraduate programme in electrical and electronic engineering. This MSc covers a wide range of topics and the programme provides a broad subject-specific curriculum with specialism pursued through a major project. Many of the projects reflect the key research interests of the Faculty, such as embedded systems, electronic manufacturing and control and instrumentation. There is the opportunity for projects to be derived from our industrial links, and a number are proposed by students, reflecting their own personal interests or experience.

The aims of the programme are:

- To provide students with an enhanced base of knowledge and current and reflective practice necessary to initiate a career in electrical and electronic engineering at the professional engineer level

- To enhance specialist knowledge in the area of electrical and electronic engineering which build upon studies at the undergraduate level

- To further develop improved skills of independent learning and critical appraisal

- To develop an extensive insight into the industrial applications and requirements

- To develop critical insight of management issues relating to engineering business

- To develop a comprehensive knowledge of leading-edge ICT tools and techniques

- To provide the ability to progress to the next level of study.

Visit the website http://www2.gre.ac.uk/study/courses/pg/electr/elelec

Engineering - Electrical and Electronic

The Department of Electronic, Electrical & Computer Engineering has a focus on innovation, analysis and development within a wide range of advanced engineering technologies. Students develop an understanding of both hardware and software, enabling them to design electronic and electrical systems capable of meeting the exacting demands of a diverse range of applications.

What you'll study

Research Methodology (15 credits)
Internet Electronics (15 credits)
Real-Time Embedded Systems (15 credits)
Mixed Signal Electronics (15 credits)
Design of Embedded System (15 credits)
Design of Electronic System (15 credits)
Strategy and Management (15 credits)
Multiple Technology Integration (15 credits)
Individual Project and Dissertation (60 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

Students are assessed through examinations, case studies, assignments, practical work and a dissertation.

Career options

Graduates from this programme can pursue careers as electrical and electronic engineers in sectors ranging from communications to control and instrumentation in the process industries.

Find out about the teaching and learning outcomes here - http://www2.gre.ac.uk/__data/assets/pdf_file/0009/643914/MSc-Electrical-and-Electronic-Engineering.pdf

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Electrical and Electronic Engineering is characterised by the need for continuing education and training. Today, most Electrical and Electronic Engineers require more than is delivered in a conventional four-year undergraduate programme. Read more
Electrical and Electronic Engineering is characterised by the need for continuing education and training. Today, most Electrical and Electronic Engineers require more than is delivered in a conventional four-year undergraduate programme. The aim of the MEngSc (Electrical and Electronic Engineering) programme is to provide advanced coursework with options for a research element or industrial element, and additional professional development coursework. Students choose from a range of courses in Analogue, Mixed Signal, and RF Integrated Circuit Design, VLSI Architectures, Intelligent Sensors and Wireless Sensor Networks, Wireless Communications, Robotics and Mechatronics, Advanced Power Electronics and Electric Drives, Optoelectronics, Adaptive Signal Processing and Advanced Control. A range of electives for the coursework-only stream includes modules in Computer Architecture, Biomedical Design, Microsystems, Nanoelectronics, Innovation, Commercialisation, and Entrepreneurship

Visit the website: http://www.ucc.ie/en/ckr47/

Course Details

The MEngSc (EEE) has three Streams which include coursework only, coursework with a research project, or coursework with an industrial placement. Students following Stream 1 take course modules to the value of 60 credits and carry out a Minor Research Project to the value of 30 credits. Students following Stream 2 take course modules to the value of 60 credits and carry out an Industrial Placement to the value of 30 credits. Students following Stream 3 take course modules to the value of 90 credits, up to 20 credits of which can be in topics such as business, law, and innovation.

Format

In all Streams, students take five core modules from the following range of courses: Advanced Analogue and Mixed Signal Integrated Circuit Design, Advanced RF Integrated Circuit Design, Advanced VLSI Architectures, Intelligent Sensors and Wireless Sensor Networks, Wireless Communications, Robotics and Mechatronics, Advanced Power Electronics and Electric Drives, Optoelectronics, and Adaptive Signal Processing and Advanced Control. In addition, students following Stream 1 (Research Project) and Stream 2 (Industry Placement) carry out a Research Report. Following successful completion of the coursework and Research Report, students in Streams 1 and 2 carry out a research project or industry placement over the summer months.

Students who choose the coursework-only option, Stream 3, take additional courses in lieu of the project or placement. These can be chosen from a range of electives that includes modules in Computer Architecture, Biomedical Design, Microsystems, Nanoelectronics, Innovation, Commercialisation, and Entrepreneurship.

Assessment

Part I consists of coursework modules and mini-project to the value of 60 credits. These are assessed using a combination of written examinations and continuous assessment. Successful completion of the initial tranche of coursework modules qualifies the student to progress to Part II, the research project, industrial placement, or additional coursework to the value of 30 credits in the cases of Streams 1, 2, and 3, respectively.

Placement and Study Abroad Information

For students following Streams 1 and 2, research projects and industrial placements are normally in Ireland. Where the opportunity arises, a research project or work placement may be carried out outside Ireland.

Careers

MEngSc (Electrical and Electronic Engineering) graduates will have a competitive advantage in the jobs market by virtue of having completed advanced coursework in Electrical and Electronic Engineering and, in the case of Streams 1 and 2, having completed a significant research project or work placement.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
This course provides the opportunity to obtain the skills required to develop and commercialise new technologies in Electrical and Electronic Engineering. Read more
This course provides the opportunity to obtain the skills required to develop and commercialise new technologies in Electrical and Electronic Engineering. Students will have an invaluable chance to work with experts in both engineering and business, providing an excellent basis for those engineers who wish to commercialise their ideas or graduates who wish to develop their knowledge of management and entrepreneurship in a high tech environment.

The course brings together strengths and resources from of both the Department of Electrical and Electronic Engineering and the Nottingham University Business school. As will have invaluable chance to experience the steps necessary to commercialise a technical idea, this programme provides an excellent basis for the engineers who wish to commercialise their ideas or graduates who wish to explore the exciting world of commercialisation.

The course provides an excellent basis for engineers who wish to update their knowledge in this area, or students/engineers who wish to go on to do research or study for a PhD degree, as well as first degree students who would like to enhance their training.

Students will develop:
the skills required to develop and commercialise new technologies in electrical and electronic engineering
the ability to plan and undertake a research project and work in a team environment
interpersonal, communication and professional skills
the ability to communicate ideas effectively in written reports
an awareness of contemporary problems in the fields of Electrical and Electronic Engineering and both present and futuristic approaches to their solutions

Following the successful completion of the taught modules, a group research project is undertaken during the summer term.
The project will demand the completion of a major piece of commercialisation work on an advanced technical topic.

Previous research projects on this course have included:
Industrial cure monitoring in the automobile and aerospace industries
Assessment of market potential for embedded ultrasonic sensors for structural health monitoring
Commercial opportunity for novel capsule endoscopes
Commercial assessment of portable laser Doppler blood flow monitors

Scholarship information can be found at http://www.nottingham.ac.uk/graduateschool/funding/index.aspx

Read less
Many employers are desperate to recruit highly trained electrical and electronic engineers and this MSc provides you with advanced knowledge across a broad area, as well as highly sought and transferable skills that are valued by employers. Read more

Many employers are desperate to recruit highly trained electrical and electronic engineers and this MSc provides you with advanced knowledge across a broad area, as well as highly sought and transferable skills that are valued by employers.

It is a flexible programme with a range of options to accommodate your preferences, allowing you to gain subject-specific and generic skills, and combines academic depth with current industrial practice in the context of real engineering applications. You study a balance of core areas and specialist topics related to research and emerging technologies. Many of the projects are carried out in research groups or are linked to industry.

Study information

All students will complete a compulsory project, modules vary depending on your chosen pathway. 

Themes include:

Electrical and electronic engineering

  • Energy technologies
  • Energy distribution and storage, smart grids
  • Energy efficiency
  • Instrumentation
  • Project Management and Research Skills

Electronic Engineering

  • Embedded systems
  • Radio systems engineering and mobile radio
  • Digital coding
  • Project Management and Research Skills

* All modules are subject to availability.

Future prospects

Electrical and electronic engineering is one of the most in-demand subjects within engineering and many employers are keen to recruit engineers trained beyond BSc level. A lot of opportunities exist in conventional power generation and distribution, offshore wind and other renewable energies, process and food industries, communications, automotive and automation industries.

This MSc provides a rational, flexibly structured and coherent programme of postgraduate study. You achieve a profound knowledge base in a wide area of electrical and electronic engineering and develop wider skills in IT, communication, problem-solving, team working and task management.



Read less
The MSc Advanced Electrical and Electronic Engineering course aims to provide a coherent selection of electrical and electronic engineering subjects to advanced level. Read more
The MSc Advanced Electrical and Electronic Engineering course aims to provide a coherent selection of electrical and electronic engineering subjects to advanced level. Module combinations include communications and signal processing through control engineering to electrical machines and drives.

The course is ideal for the engineer who wishes to follow a career in the design and implementation of electrical and electronic circuits within the wider engineering environment.

Read less
The progress made in telecommunications and information technology allows you to benefit from greater access to entertainment, health, and commerce. Read more
The progress made in telecommunications and information technology allows you to benefit from greater access to entertainment, health, and commerce. A range of multimedia services underpins the growth in these areas. This programme focuses on practical and theoretical aspects of electronics and provides a solid foundation for engineering a wide range of electrical systems, such as embedded microcontrollers, renewable energy, power converters and high frequency communications.

Key features

-Gain hands-on experience in signal processing and embedded systems programming.
-Benefit from the industrial collaboration with British Telecommunications plc (BT) and Bombardier Transportation. Strong collaboration with BT's Goonhilly Satellite Earth Station and other companies such as Orange (France Telecom).
-Progress in a school that has gained national and international recognition for its research in satellite communications, data storage, and digital signal processing (Research Assessment Exercise RAE 2008).
-Develop research skills in leading edge technology. and advance with the support of our Centre for Security, Communications and Network Research.
-Develop your knowledge in our Digital Signal Processing [DSP] laboratory, a new networks laboratory funded in part by CISCO, a separate postgraduate study room with full internet and specialist software, and a dedicated communications laboratory.
-Explore the option of completing the programme over two years with an integral work placement year.
-Draw on the expertise of our lecturers who are nationally and internationally recognised leading researchers. Professor Martin Tomlinson is internationally recognised for the invention of the Tomlinson-Harashima precoder – a key component of any telecommunications modem.
-Benefit from Institution of Engineering and Technology (IET) accreditation. The MSc is a significant step towards the status of Chartered Engineer (CEng) which is highly sought after in industry.
-You are eligible to apply for an IET postgraduate scholarship. Amounts can vary between £2,500 and £10,000, tenable for one year, which are intended to reward excellence rather than alleviate financial hardship. For more information on the different scholarships available, details on how to apply and confirmed closing dates for applications, please visit the IET Awards and Scholarships.
-Stand out from the crowd by completing an integrated placement as part of your masters degree.

Course details

The MSc Electrical and Electronic Engineering will appeal to you if you are a design engineer. The programme provides an in-depth knowledge of specialist areas in electrical and electronic engineering underpinned by the theory and practice of modern electronics and renewable energy systems, together with the associated signal processing and embedded programming techniques. The modules have been selected to give you an even balance of essential modern areas of electrical and electronic engineering. The communications content will give you a broad grounding in communication theory and systems while the signal processing content is generally biased toward applications in communications engineering. From our experience of intensive courses, and our work with partner companies, this programme meets the current needs of electrical and electronics industry. The programme is taught in autumn and spring blocks and includes a project.

Core modules
-ROCO503 Sensors and Actuators
-BPIE500 Masters Stage 1 Placement Preparation
-PROJ509 MSc Project
-ELEC512 Nanotechnology and Nanoelectronics
-ELEC518 Digital and Wireless Communications
-SOFT561 Robot Software Engineering
-ELEC517 Integrated Power Systems
-ELEC516 Advanced Signal Processing

Optional placement year
-BPIE502 Electrical/Robotics Masters Industrial Placement

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
This course builds on our world-class research work in electrical and electronic engineering, materials and devices, robotics, mechatronics, computer networks and telecommunications, big data, and informatics. Read more
This course builds on our world-class research work in electrical and electronic engineering, materials and devices, robotics, mechatronics, computer networks and telecommunications, big data, and informatics. It is funded by the European Union, Research Councils, Royal Society, Knowledge Transfer Programmes, and industrial companies.

The course provides knowledge, experience and skills that are essential for research and development work. It is research-oriented, with 80% of the time spent on a research project and the other 20% on taught modules. It is designed to develop key research skills, build up in-depth technical knowledge and understanding as well as project management skills, communications skills and presentation skills.

You can choose the project, either as a part of ongoing research work in our research laboratories or in our partner industrial companies. This course can also be tailored as an in-house course.

Modules

Intellectual property development
Project stage 1
Project stage 2
Project stage 3
Technical, research and professional skills

Professional links

We have extensive research links with over 15 UK and 20 European companies, for example: TWI Ltd, British Telecoms, Doosan Babcock Energy Ltd, CEA, BP, ISQ and through our own companies, for example Biox Systems Ltd.

Employability

On successful completion of the course, students can either continue to MPhil/ PhD studies or work in the research and development or technical support sections in industry such as electrical and electronic engineering, computer networks, telecommunications, and other engineering disciplines.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology. Read more

On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology.

A rewarding career

Engineers apply scientific and technological principles to solve problems in a creative way. It’s a well-paid and rewarding career that is constantly changing with new developments in technology. And with a shortage of electrical and electronic engineers in the UK, your skills will be in demand.

Electrical engineers are at the forefront of many innovations in the way we live and work today. They design, produce and install systems which power and control a range of products and digital communications.

What you study

You can follow your interests to create the right programme of study for you. Initially, you take two modules in engineering principles. Then, with guidance from your course leader, you select from a range of technical modules covering topics including electrical and control engineering and electronic systems.

In addition to your technical modules, you also take an engineering management subject and participate in a multidisciplinary product development project with MSc students from a range of engineering specialisms. You develop an understanding of how engineering projects work and how they relate to the commercial world, as well as becoming part of our engineering community and learning to think like an engineer.

One third of your study will be an individual project and dissertation. You specialise in a technical area of your interest and carry out your own in-depth investigation into a particular problem. Where possible, this will be an industry-related problem.

Expertise

Many of our academic staff are actively involved in research. Examples of recent projects include • developing equipment to monitor the bone mineral density of young children for Sheffield Children's Hospital • developing palm-sized robots to enable firefighters to safely enter and negotiate hazards in burning buildings.

Course structure

Core modules

  • engineering principles
  • electrical and electronic engineering
  • international product development (group project)

Plus one of either

  • project and quality management

or

  • global supply chain and manufacturing strategy.

Options

Your remaining four modules are themed in the following subjects.

You can choose to specialise in one theme or a mix of both:

Electrical and Control Engineering

• electrical energy systems • efficient machines and electromagnetic applications • control of linear systems • industrial automation

Electronic Systems

• digital electronic systems design • mixed signal design • digital signal processing • microprocessor engineering

Assessment

Assessments will be a mix of coursework and exam, depending on the specific module studied.

Employability

You can work in areas such as • global telecommunications • consumer electronics • computer electronics • aerospace • automotive • railway • robotics • general manufacturing • water, gas and electricity supply.

You can specialise in the design of • computers • mobile phones • media streamers • satellite dishes • instrumentation and control systems • aeroplanes • military equipment • cars • electrical energy systems.

Our graduates have developed careers with companies including • BBC • Tata Steel • Emhart Glass • Sony Mobile Communications • Honeywell Control Systems • Motorola • Rolls-Royce • First ScotRail • Siemens • Vodafone.



Read less
Do you want to lead society towards a more energy-efficient future, enhance your business acumen, and further develop your technical and design ability? The MEng course develops your communication and entrepreneurial skills, and prepares you for a range of high-end careers in electrical and electronic engineering. Read more
Do you want to lead society towards a more energy-efficient future, enhance your business acumen, and further develop your technical and design ability? The MEng course develops your communication and entrepreneurial skills, and prepares you for a range of high-end careers in electrical and electronic engineering. This course, which meets the full academic requirements for Chartered Engineer status, is accredited by The Institution of Engineering and Technology (IET).

You will develop highly practical skills and learn through doing. You'll access one of the largest undergraduate laboratory spaces in the country, which you can use to further your own understanding of communications, electronics and renewable energy technologies. You will benefit from free IET membership (whilst at University) as the University is an IET Academic Partner. You will further your knowledge with a placement after successfully completing year two.

Key features

-Benefit from outstanding teaching: in the 2016 National Student Survey 91 per cent of our final year students said that “The course is intellectually stimulating”.*
-Draw on our strong industry links and benefit from industry participation in course development, delivery and project sponsorship.
-Take part in our final year student project open day showcasing the excellence of the engineering skills development and the high levels of achievement of our undergraduates, with many industrially sponsored prizes awarded.
-Develop highly practical skills and learn through doing.
-Take advantage of our flexible course, allowing you to switch between electronics and robotics until your final year, as your interests develop.
-Immerse yourself in a degree accredited by the Institution for Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer (CEng).
-Benefit from free IET membership (whilst at University) as the University is an IET Academic Partner.
-Joining our MEng course means working towards an honours degree that provides the shortest route to professional and chartered status.
-Challenge yourself. Final year MEng students work in groups to undertake a major design project that will give them the opportunity to experience a broad selection of strategic, ethical, environmental, management, operational, logistical, technical, financial, contractual and team-working challenges.
-Further your knowledge with a placement after successfully completing stage 2 or between the final two years of the MEng course.
-Receive an Apple iPad along with your core e-text books to support your learning.
-Access one of the largest undergraduate laboratory spaces in the country, which you can use to further your own understanding of communications, electronics and renewable energy technologies.

Course details

Year 1
In the first year you'll use our well-equipped laboratories to develop your knowledge and practical problem solving skills. From the start of your studies you'll find that there is an emphasis on learning by doing, and group project work will enable you to develop your problem solving and communication skills. An integrating project will encompass business and technical skills, and focus on activities that are typical of a start-up company.

Core modules
-ELEC143 Embedded Software in Context
-BPIE112 Stage 1 Electrical/Robotics Placement Preparation
-ELEC141 Analogue Electronics
-ELEC142 Digital Electronics
-ELEC144 Electrical Principles and Machines
-MATH187 Engineering Mathematics

Optional modules
-ELEC137PP Electronic Design and Build
-ROCO103PP Robot Design and Build

Year 2
You'll develop a greater understanding of underlying engineering principles and circuit design methods in the second year. Again, we place an emphasis on team work and you'll have the opportunity to do both group and individual presentations of your projects. You'll use industrial standard software tools for design and simulation in preparation for your final year individual project or for your optional placement year.

Core modules
-MATH237 Engineering Mathematics and Statistics
-BPIE212 Stage 2 Electrical/Robotics Placement Preparation
-ELEC239 Communication Systems
-ROCO218 Control Engineering
-ELEC237 Power Electronics and Generation
-ELEC240 Embedded Systems
-ELEC241 Real Time Systems

Optional placement year
You can enhance your studies with relevant experience by taking an optional placement year in the UK, France, Germany and Japan. Placements give you the opportunity to put theory into practice, and are excellent opportunity to seek final year sponsorship. Many of our graduates have been offered permanent jobs with their placement company.

Core modules
-BPIE332 Electrical Industrial Placement

Year 4
Year 3 (or Year 4 if you took an optional placement year) is an exciting opportunity to develop an individual project. You'll consolidate your knowledge, explore and evaluate new technologies, and demonstrate your communication skills in the oral and written presentation of your project. Previous project have included a landmine detection system, CreatoBot (a modular robotic system) and DishDynamics (Global Ordinance And Targeting System [GOATS]).

Core modules
-ELEC345 High Speed Communications
-ELEC347 Information and Communication Signal Processing
-ELEC349 Design and Control of Renewable Energy Technology
-PROJ324 Individual Project
-ELEC351 Advanced Embedded Programming

Final year
Your final year includes additional technical modules and a large interdisciplinary design project. Past projects have included designing a product that involved a local company and a central government department, the challenge was to build a prototype system, which was showcased at the Project Open Day. This project will most likely result in the formation of a real company (later in the year). You also have the possibility of continuing your studies to MSc level in the same academic year.

Core modules
-PROJ515 MEng Project
-ELEC512 Nanotechnology and Nanoelectronics
-ELEC518 Digital and Wireless Communications
-ELEC514 Advanced Power Systems

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Goals. This course aims, primarily, to provide advanced applied knowledge in professional subjects that assume strategic importance for the country and the region. Read more

Goals

This course aims, primarily, to provide advanced applied knowledge in professional subjects that assume strategic importance for the country and the region. Accordingly, the objectives include the acquisition, by students, of theoretical knowledge and the necessary skills for its application in the fields of Electronics and Telecommunications, or Energy and Automation. The course also aims to enable holders of an Electrical Engineering degree to carry on their studies by allowing the specialization and technical/scientific updating of professionals. The course also aims to actively contribute to promote national technological development and enhance added value in the country’s and region’s industry, through the development of projects, dissertations and industrial placements in companies and R&D institutions.



Read less

Show 10 15 30 per page



Cookie Policy    X